Abstract
Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host.
Keywords
- Virulence Factor
- Extracellular Protease
- Yersinia Pestis
- Glutamyl Endopeptidase
- Host Cell Cytosol
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options






References
Maurizi MR, Clark WP, Kim SH, Gottesman S (1990) Clp P represents a unique family of serine proteases. J Biol Chem 265(21):12546–12552
Wang J, Hartling JA, Flanagan JM (1997) The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91(4):447–456
Woo KM, Chung WJ, Ha DB, Goldberg AL et al (1989) Protease Ti from Escherichia coli requires ATP hydrolysis for protein breakdown but not for hydrolysis of small peptides. J Biol Chem 264(4):2088–2091
Gur E, Ottofuelling R, Dougan DA (2013) Machines of destruction – AAA+ proteases and the adaptors that control them. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:3–33
Frees D, Savijoki K, Varmanen P, Ingmer H (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63(5):1285–1295
Kim YI, Levchenko I, Fraczkowska K, Woodruff RV et al (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 8(3):230–233
Butler SM, Festa RA, Pearce MJ, Darwin KH (2006) Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol 60(3):553–562
Frees D, Chastanet A, Qazi S, Sorensen K et al (2004) Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54(5):1445–1462
Molière N, Turgay K (2013) General and regulatory proteolysis in Bacillus subtilis. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:3–33
Frees D, Qazi SN, Hill PJ, Ingmer H (2003) Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48(6):1565–1578
Michel A, Agerer F, Hauck CR, Herrmann M et al (2006) Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 188(16):5783–5796
Bottcher T, Sieber SA (2008) Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 130(44):14400–14401
Jelsbak L, Ingmer H, Valihrach L, Cohn MT et al (2010) The chaperone ClpX stimulates expression of Staphylococcus aureus protein A by Rot dependent and independent pathways. PLoS One 5(9):e12752
Gaillot O, Pellegrini E, Bregenholt S, Nair S et al (2000) The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol Microbiol 35(6):1286–1294
Gaillot O, Bregenholt S, Jaubert F, Di Santo JP et al (2001) Stress-induced ClpP serine protease of Listeria monocytogenes is essential for induction of listeriolysin O-dependent protective immunity. Infect Immun 69(8):4938–4943
Nair S, Milohanic E, Berche P (2000) ClpC ATPase is required for cell adhesion and invasion of Listeria monocytogenes. Infect Immun 68(12):7061–7068
Borezee E, Pellegrini E, Beretti JL, Berche P (2001) SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes. Microbiology 147(Pt 11):2913–2923
Robertson GT, Ng WL, Foley J, Gilmour R et al (2002) Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol 184(13):3508–3520
Kwon HY, Ogunniyi AD, Choi MH, Pyo SN et al (2004) The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge. Infect Immun 72(10):5646–5653
Ibrahim YM, Kerr AR, Silva NA, Mitchell TJ (2005) Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae. Infect Immun 73(2):730–740
Webb C, Moreno M, Wilmes-Riesenberg M, Curtiss R 3rd et al (1999) Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium. Mol Microbiol 34(1):112–123
Yamamoto T, Sashinami H, Takaya A, Tomoyasu T et al (2001) Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun 69(5):3164–3174
Thomsen LE, Olsen JE, Foster JW, Ingmer H (2002) ClpP is involved in the stress response and degradation of misfolded proteins in Salmonella enterica serovar Typhimurium. Microbiology 148(Pt 9):2727–2733
Fang FC, Libby SJ, Buchmeier NA, Loewen PC et al (1992) The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A 89(24):11978–11982
Micevski D, Dougan DA (2013) Proteolytic regulation of stress response pathways in Escherichia coli. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:105–128
Zhou D, Galan J (2001) Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 3(14–15):1293–1298
Ramos HC, Rumbo M, Sirard JC (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12(11):509–517
Tomoyasu T, Ohkishi T, Ukyo Y, Tokumitsu A et al (2002) The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol 184(3):645–653
Tomoyasu T, Takaya A, Isogai E, Yamamoto T (2003) Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Mol Microbiol 48(2):443–452
Lucas RL, Lostroh CP, DiRusso CC, Spector MP et al (2000) Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. J Bacteriol 182(7):1872–1882
Kage H, Takaya A, Ohya M, Yamamoto T (2008) Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. J Bacteriol 190(7):2470–2478
Takaya A, Suzuki M, Matsui H, Tomoyasu T et al (2003) Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice. Infect Immun 71(2):690–696
Iyoda S, Watanabe H (2005) ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 187(12):4086–4094
Brotz-Oesterhelt H, Beyer D, Kroll HP, Endermann R et al (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11(10):1082–1087
Hinzen B, Raddatz S, Paulsen H, Lampe T et al (2006) Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. ChemMedChem 1(7):689–693
Kirstein J, Hoffmann A, Lilie H, Schmidt R et al (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1(1):37–49
Sass P, Josten M, Famulla K, Schiffer G et al (2011) Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci U S A 108(42):17474–17479
Lee BG, Park EY, Lee KE, Jeon H et al (2010) Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17(4):471–478
Li DH, Chung YS, Gloyd M, Joseph E et al (2010) Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem Biol 17(9):959–969
Gominet M, Seghezzi N, Mazodier P (2011) Acyl depsipeptide (ADEP) resistance in Streptomyces. Microbiology 157(Pt 8):2226–2234
Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S et al (2011) The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem Int Ed Engl 50(26):5889–5891
Morsczeck C, Prokhorova T, Sigh J, Pfeiffer M et al (2008) Streptococcus pneumoniae: proteomics of surface proteins for vaccine development. Clin Microbiol Infect 14(1):74–81
Cao J, Li D, Gong Y, Yin N et al (2009) Caseinolytic protease: a protein vaccine which could elicit serotype-independent protection against invasive pneumococcal infection. Clin Exp Immunol 156(1):52–60
Wu K, Zhang X, Shi J, Li N et al (2010) Immunization with a combination of three pneumococcal proteins confers additive and broad protection against Streptococcus pneumoniae Infections in mice. Infect Immun 78(3):1276–1283
Matsui H, Suzuki M, Isshiki Y, Kodama C et al (2003) Oral immunization with ATP-dependent protease-deficient mutants protects mice against subsequent oral challenge with virulent Salmonella enterica serovar typhimurium. Infect Immun 71(1):30–39
Splichal I, Rychlik I, Gregorova D, Sebkova A et al (2007) Susceptibility of germ-free pigs to challenge with protease mutants of Salmonella enterica serovar Typhimurium. Immunobiology 212(7):577–582
Rotanova TV, Botos I, Melnikov EE, Rasulova F et al (2006) Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci 15(8):1815–1828
Cha SS, An YJ, Lee CR, Lee HS et al (2010) Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J 29(20):3520–3530
Tsilibaris V, Maenhaut-Michel G, Van Melderen L (2006) Biological roles of the Lon ATP-dependent protease. Res Microbiol 157(8):701–713
Takaya A, Kubota Y, Isogai E, Yamamoto T (2005) Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression. Mol Microbiol 55(3):839–852
Gur E, Sauer RT (2008) Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev 22(16):2267–2277
Gur E (2013) The Lon AAA+ protease. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:35–51
Boddicker JD, Jones BD (2004) Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells. Infect Immun 72(4):2002–2013
Takaya A, Tomoyasu T, Tokumitsu A, Morioka M et al (2002) The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol 184(1):224–232
Schechter LM, Lee CA (2001) AraC/XylS family members, HilC and HilD, directly bind and derepress the Salmonella typhimurium hilA promoter. Mol Microbiol 40(6):1289–1299
Jackson MW, Silva-Herzog E, Plano GV (2004) The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol 54(5):1364–1378
Herbst K, Bujara M, Heroven AK, Opitz W et al (2009) Intrinsic thermal sensing controls proteolysis of Yersinia virulence regulator RovA. PLoS Pathog 5(5):e1000435
Takaya A, Tabuchi F, Tsuchiya H, Isogai E et al (2008) Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease. J Bacteriol 190(12):4181–4188
Bertani I, Rampioni G, Leoni L, Venturi V (2007) The Pseudomonas putida Lon protease is involved in N-acyl homoserine lactone quorum sensing regulation. BMC Microbiol 7:71
Lipinska B, Fayet O, Baird L, Georgopoulos C (1989) Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171(3):1574–1584
Rosch JW, Caparon MG (2005) The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes. Mol Microbiol 58(4):959–968
Lipinska B, Zylicz M, Georgopoulos C (1990) The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol 172(4):1791–1797
Krojer T, Garrido-Franco M, Huber R, Ehrmann M et al (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416(6879):455–459
Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97(3):339–347
Krojer T, Sawa J, Schafer E, Saibil HR et al (2008) Structural basis for the regulated protease and chaperone function of DegP. Nature 453(7197):885–890
Clausen T, Kaiser M, Huber R, Ehrmann M (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12(3):152–162
Krojer T, Pangerl K, Kurt J, Sawa J et al (2008) Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc Natl Acad Sci U S A 105(22):7702–7707
Subrini O, Betton JM (2009) Assemblies of DegP underlie its dual chaperone and protease function. FEMS Microbiol Lett 296(2):143–148
Johnson K, Charles I, Dougan G, Pickard D et al (1991) The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 5(2):401–407
Humphreys S, Stevenson A, Bacon A, Weinhardt AB et al (1999) The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 67(4):1560–1568
Baumler AJ, Kusters JG, Stojiljkovic I, Heffron F (1994) Salmonella typhimurium loci involved in survival within macrophages. Infect Immun 62(5):1623–1630
Elzer PH, Phillips RW, Kovach ME, Peterson KM et al (1994) Characterization and genetic complementation of a Brucella abortus high-temperature-requirement A (htrA) deletion mutant. Infect Immun 62(10):4135–4139
Yamamoto T, Hanawa T, Ogata S, Kamiya S (1996) Identification and characterization of the Yersinia enterocolitica gsrA gene, which protectively responds to intracellular stress induced by macrophage phagocytosis and to extracellular environmental stress. Infect Immun 64(8):2980–2987
Lewis C, Skovierova H, Rowley G, Rezuchova B et al (2009) Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection. Microbiology 155(Pt 3):873–881
Brondsted L, Andersen MT, Parker M, Jorgensen K et al (2005) The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl Environ Microbiol 71(6):3205–3212
Novik V, Hofreuter D, Galan JE (2010) Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect Immun 78(8):3540–3553
Champion OL, Karlyshev AV, Senior NJ, Woodward M et al (2010) Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. J Infect Dis 201(5):776–782
Baek KT, Vegge CS, Brondsted L (2011) HtrA chaperone activity contributes to host cell binding in Campylobacter jejuni. Gut Pathog 3:13
Baek KT, Vegge CS, Skorko-Glonek J, Brondsted L (2011) Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology. Appl Environ Microbiol 77(1):57–66
Jong WS, ten Hagen-Jongman CM, Ruijter E, Orru RV et al (2010) YidC is involved in the biogenesis of the secreted autotransporter hemoglobin protease. J Biol Chem 285(51):39682–39690
Bodelon G, Marin E, Fernandez LA (2009) Role of periplasmic chaperones and BamA (YaeT/Omp85) in folding and secretion of intimin from enteropathogenic Escherichia coli strains. J Bacteriol 191(16):5169–5179
Ruiz-Perez F, Henderson IR, Leyton DL, Rossiter AE et al (2009) Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J Bacteriol 191(21):6571–6583
Humphries RM, Griener TP, Vogt SL, Mulvey GL et al (2010) N-acetyllactosamine-induced retraction of bundle-forming pili regulates virulence-associated gene expression in enteropathogenic Escherichia coli. Mol Microbiol 76(5):1111–1126
Vogt SL, Nevesinjac AZ, Humphries RM, Donnenberg MS et al (2010) The Cpx envelope stress response both facilitates and inhibits elaboration of the enteropathogenic Escherichia coli bundle-forming pilus. Mol Microbiol 76(5):1095–1110
Baud C, Gutsche I, Willery E, de Paepe D et al (2011) Membrane-associated DegP in Bordetella chaperones a repeat-rich secretory protein. Mol Microbiol 80(6):1625–1636
Baud C, Hodak H, Willery E, Drobecq H et al (2009) Role of DegP for two-partner secretion in Bordetella. Mol Microbiol 74(2):315–329
Purdy GE, Fisher CR, Payne SM (2007) IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA. J Bacteriol 189(15):5566–5573
Purdy GE, Hong M, Payne SM (2002) Shigella flexneri DegP facilitates IcsA surface expression and is required for efficient intercellular spread. Infect Immun 70(11):6355–6364
Bumann D, Aksu S, Wendland M, Janek K et al (2002) Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun 70(7):3396–3403
Lower M, Weydig C, Metzler D, Reuter A et al (2008) Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA. PLoS One 3(10):e3510
Hoy B, Lower M, Weydig C, Carra G et al (2010) Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 11(10):798–804
Wu X, Lei L, Gong S, Chen D et al (2011) The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol. BMC Microbiol 11:87
Cole JN, Aquilina JA, Hains PG, Henningham A et al (2007) Role of group A Streptococcus HtrA in the maturation of SpeB protease. Proteomics 7(24):4488–4498
Lyon WR, Caparon MG (2004) Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect Immun 72(3):1618–1625
Rigoulay C, Entenza JM, Halpern D, Widmer E et al (2005) Comparative analysis of the roles of HtrA-like surface proteases in two virulent Staphylococcus aureus strains. Infect Immun 73(1):563–572
Biswas S, Biswas I (2005) Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect Immun 73(10):6923–6934
Wilson RL, Brown LL, Kirkwood-Watts D, Warren TK et al (2006) Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence. Infect Immun 74(1):765–768
Chitlaru T, Zaide G, Ehrlich S, Inbar I et al (2011) HtrA is a major virulence determinant of Bacillus anthracis. Mol Microbiol 81(6):1542–1559
Arvidson S (2006) Extracellular enzymes. In: Fischetti VA (ed) Gram-positive pathogens (2nd edn.). ASM Press.
Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48(6):1429–1449
Shaw L, Golonka E, Potempa J, Foster SJ (2004) The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150(Pt 1):217–228
Drapeau GR (1978) Role of metalloprotease in activation of the precursor of staphylococcal protease. J Bacteriol 136(2):607–613
Lindsay JA, Foster SJ (1999) Interactive regulatory pathways control virulence determinant production and stability in response to environmental conditions in Staphylococcus aureus. Mol Gen Genet 262(2):323–331
Chan PF, Foster SJ (1998) The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus 8325–4. Microbiology 144(Pt 9):2469–2479
Rice K, Peralta R, Bast D, de Azavedo J et al (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun 69(1):159–169
Nickerson N, Ip J, Passos DT, McGavin MJ (2010) Comparison of Staphopain A (ScpA) and B (SspB) precursor activation mechanisms reveals unique secretion kinetics of proSspB (Staphopain B), and a different interaction with its cognate Staphostatin, SspC. Mol Microbiol 75(1):161–177
Nickerson NN, Joag V, McGavin MJ (2008) Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain. Mol Microbiol 69(6):1530–1543
Massimi I, Park E, Rice K, Muller-Esterl W et al (2002) Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J Biol Chem 277(44):41770–41777
Rzychon M, Sabat A, Kosowska K, Potempa J et al (2003) Staphostatins: an expanding new group of proteinase inhibitors with a unique specificity for the regulation of staphopains Staphylococcus spp. cysteine proteinases. Mol Microbiol 49(4):1051–1066
Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3(12):948–958
Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6(12):484–488
McGavin MJ, Zahradka C, Rice K, Scott JE (1997) Modification of the Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect Immun 65(7):2621–2628
Karlsson A, Saravia-Otten P, Tegmark K, Morfeldt E et al (2001) Decreased amounts of cell wall-associated protein A and fibronectin-binding proteins in Staphylococcus aureus sarA mutants due to up-regulation of extracellular proteases. Infect Immun 69(8):4742–4748
McAleese FM, Walsh EJ, Sieprawska M, Potempa J et al (2001) Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276(32):29969–29978
Potempa J, Dubin A, Korzus G, Travis J (1988) Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J Biol Chem 263(6):2664–2667
Ohbayashi T, Irie A, Murakami Y, Nowak M et al (2011) Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus. Microbiology 157(Pt 3):786–792
Mayer-Scholl A, Averhoff P, Zychlinsky A (2004) How do neutrophils and pathogens interact? Curr Opin Microbiol 7(1):62–66
Greenberg S, Grinstein S (2002) Phagocytosis and innate immunity. Curr Opin Immunol 14(1):136–145
Smagur J, Guzik K, Magiera L, Bzowska M et al (2009) A new pathway of staphylococcal pathogenesis: apoptosis-like death induced by Staphopain B in human neutrophils and monocytes. J Innate Immun 1(2):98–108
Kulig P, Zabel BA, Dubin G, Allen SJ et al (2007) Staphylococcus aureus-derived staphopain B, a potent cysteine protease activator of plasma chemerin. J Immunol 178(6):3713–3720
Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228
Marti M, Trotonda MP, Tormo-Mas MA, Vergara-Irigaray M et al (2010) Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect 12(1):55–64
Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4(4):e1000052
Reed SB, Wesson CA, Liou LE, Trumble WR et al (2001) Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect Immun 69(3):1521–1527
Coulter SN, Schwan WR, Ng EY, Langhorne MH et al (1998) Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol 30(2):393–404
Bisno AL, Stevens DL (1996) Streptococcal infections of skin and soft tissues. N Engl J Med 334(4):240–245
Rasmussen M, Bjorck L (2002) Proteolysis and its regulation at the surface of Streptococcus pyogenes. Mol Microbiol 43(3):537–544
Collin M, Olsen A (2001) Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun 69(11):7187–7189
Collin M, Olsen A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20(12):3046–3055
Collin M, Svensson MD, Sjoholm AG, Jensenius JC et al (2002) EndoS and SpeB from Streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect Immun 70(12):6646–6651
Chaussee MS, Phillips ER, Ferretti JJ (1997) Temporal production of streptococcal erythrogenic toxin B (streptococcal cysteine proteinase) in response to nutrient depletion. Infect Immun 65(5):1956–1959
von Pawel-Rammingen U, Johansson BP, Bjorck L (2002) IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 21(7):1607–1615
von Pawel-Rammingen U, Bjorck L (2003) IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr Opin Microbiol 6(1):50–55
Hidalgo-Grass C, Mishalian I, Dan-Goor M, Belotserkovsky I et al (2006) A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J 25(19):4628–4637
Sumby P, Zhang S, Whitney AR, Falugi F et al (2008) A chemokine-degrading extracellular protease made by group A Streptococcus alters pathogenesis by enhancing evasion of the innate immune response. Infect Immun 76(3):978–985
Zinkernagel AS, Timmer AM, Pence MA, Locke JB et al (2008) The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe 4(2):170–178
Gryllos I, Tran-Winkler HJ, Cheng MF, Chung H et al (2008) Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc Natl Acad Sci U S A 105(43):16755–16760
Bryan JD, Shelver DW (2009) Streptococcus agalactiae CspA is a serine protease that inactivates chemokines. J Bacteriol 191(6):1847–1854
Bever RA, Iglewski BH (1988) Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J Bacteriol 170(9):4309–4314
Heck LW, Morihara K, McRae WB, Miller EJ (1986) Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect Immun 51(1):115–118
Castellino FJ, Ploplis VA (2005) Structure and function of the plasminogen/plasmin system. Thromb Haemost 93(4):647–654
Beaufort N, Seweryn P, de Bentzmann S, Tang A et al (2010) Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa. Biochem J 428(3):473–482
Leduc D, Beaufort N, de Bentzmann S, Rousselle JC et al (2007) The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis. Infect Immun 75(8):3848–3858
Haiko J, Laakkonen L, Juuti K, Kalkkinen N et al (2010) The omptins of Yersinia pestis and Salmonella enterica cleave the reactive center loop of plasminogen activator inhibitor 1. J Bacteriol 192(18):4553–4561
Ramu P, Lobo LA, Kukkonen M, Bjur E et al (2008) Activation of pro-matrix metalloproteinase-9 and degradation of gelatin by the surface protease PgtE of Salmonella enterica serovar Typhimurium. Int J Med Microbiol 298(3–4):263–278
Galvan EM, Lasaro MA, Schifferli DM (2008) Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 76(4):1456–1464
Guina T, Yi EC, Wang H, Hackett M et al (2000) A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 182(14):4077–4086
Schmidtchen A, Frick IM, Andersson E, Tapper H et al (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46(1):157–168
Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K et al (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48(12):4673–4679
Acknowledgement
We would like to thank the Danish Council for Independent Research, Natural Sciences for support grant number: 272-08-0371.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Frees, D., Brøndsted, L., Ingmer, H. (2013). Bacterial Proteases and Virulence. In: Dougan, D. (eds) Regulated Proteolysis in Microorganisms. Subcellular Biochemistry, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5940-4_7
Download citation
DOI: https://doi.org/10.1007/978-94-007-5940-4_7
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-5939-8
Online ISBN: 978-94-007-5940-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)