General and Regulatory Proteolysis in Bacillus subtilis

  • Noël Molière
  • Kürşad Turgay
Part of the Subcellular Biochemistry book series (SCBI, volume 66)


The soil-dwelling bacterium Bacillus subtilis is widely used as a model organism to study the Gram-positive branch of Bacteria. A variety of different developmental pathways, such as endospore formation, genetic competence, motility, swarming and biofilm formation, have been studied in this organism. These processes are intricately connected and regulated by networks containing e.g. alternative sigma factors, two-component systems and other regulators. Importantly, in some of these regulatory networks the activity of important regulatory factors is controlled by proteases. Furthermore, together with chaperones, the same proteases constitute the cellular protein quality control (PQC) network, which plays a crucial role in protein homeostasis and stress tolerance of this organism. In this review, we will present the current knowledge on regulatory and general proteolysis in B. subtilis and discuss its involvement in developmental pathways and cellular stress management.


Sigma Factor Heat Shock Response Small Heat Shock Protein Heat Shock Gene Protein Quality Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work in the Laboratory of KT is supported by the Deutsche Forschungsgemeinschaft.


  1. 1.
    Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33(1):152–163PubMedCrossRefGoogle Scholar
  2. 2.
    Gottesman S (2003) Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587PubMedCrossRefGoogle Scholar
  3. 3.
    Jenal U, Hengge-Aronis R (2003) Regulation by proteolysis in bacterial cells. Curr Opin Microbiol 6(2):163–172PubMedCrossRefGoogle Scholar
  4. 4.
    Kirstein J, Moliere N, Dougan DA, Turgay K (2009) Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+  proteases. Nat Rev Microbiol 7(8):589–599PubMedCrossRefGoogle Scholar
  5. 5.
    Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858PubMedCrossRefGoogle Scholar
  6. 6.
    Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286(5446):1888–1893PubMedCrossRefGoogle Scholar
  7. 7.
    Turgay K (2010) Role of proteolysis and chaperones in stress response and regulation. In: Storz G, Hengge R (eds) Bacterial stress responses, 2nd edn. ASM Press, American Society for Microbiology, Washington, DC, pp 75–90Google Scholar
  8. 8.
    Kress W, Maglica Z, Weber-Ban E (2009) Clp chaperone-proteases: structure and function. Res Microbiol 160(9):618–628PubMedCrossRefGoogle Scholar
  9. 9.
    Sauer RT, Baker TA (2011) AAA+  proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612PubMedCrossRefGoogle Scholar
  10. 10.
    Sauer RT, Bolon DN, Burton BM, Burton RE et al (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119(1):9–18PubMedCrossRefGoogle Scholar
  11. 11.
    Derre I, Rapoport G, Devine K, Rose M et al (1999) ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 32(3):581–593PubMedCrossRefGoogle Scholar
  12. 12.
    Derre I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 31(1):117–131PubMedCrossRefGoogle Scholar
  13. 13.
    Krüger E, Hecker M (1998) The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 180(24):6681–6688PubMedGoogle Scholar
  14. 14.
    Krüger E, Zühlke D, Witt E, Ludwig H et al (2001) Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20(4):852–863PubMedCrossRefGoogle Scholar
  15. 15.
    Gerth U, Kirstein J, Mostertz J, Waldminghaus T et al (2004) Fine-tuning in regulation of Clp protein content in Bacillus subtilis. J Bacteriol 186(1):179–191PubMedCrossRefGoogle Scholar
  16. 16.
    Miethke M, Hecker M, Gerth U (2006) Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J Bacteriol 188(13):4610–4619PubMedCrossRefGoogle Scholar
  17. 17.
    Kock H, Gerth U, Hecker M (2004) The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis. J Bacteriol 186(17):5856–5864PubMedCrossRefGoogle Scholar
  18. 18.
    Krüger E, Völker U, Hecker M (1994) Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. J Bacteriol 176:3360–3367PubMedGoogle Scholar
  19. 19.
    Krüger E, Witt E, Ohlmeier S, Hanschke R et al (2000) The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol 182(11):3259–3265PubMedCrossRefGoogle Scholar
  20. 20.
    Schlothauer T, Mogk A, Dougan DA, Bukau B et al (2003) MecA, an adaptor protein necessary for ClpC chaperone activity. Proc Natl Acad Sci U S A 100(5):2306–2311PubMedCrossRefGoogle Scholar
  21. 21.
    Kirstein J, Dougan DA, Gerth U, Hecker M et al (2007) The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J 26(8):2061–2070PubMedCrossRefGoogle Scholar
  22. 22.
    Kirstein J, Schlothauer T, Dougan DA, Lilie H et al (2006) Adaptor protein controlled oligomerization activates the AAA+  protein ClpC. EMBO J 25(7):1481–1491PubMedCrossRefGoogle Scholar
  23. 23.
    Wang F, Mei Z, Qi Y, Yan C et al (2011) Structure and mechanism of the hexameric MecA-ClpC molecular machine. Nature 471(7338):331–335PubMedCrossRefGoogle Scholar
  24. 24.
    Turgay K, Hahn J, Burghoorn J, Dubnau D (1998) Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17(22):6730–6738PubMedCrossRefGoogle Scholar
  25. 25.
    Persuh M, Mandic-Mulec I, Dubnau D (2002) A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. J Bacteriol 184(8):2310–2313PubMedCrossRefGoogle Scholar
  26. 26.
    Kock H, Gerth U, Hecker M (2004) MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis. Mol Microbiol 51(4):1087–1102PubMedCrossRefGoogle Scholar
  27. 27.
    Pan Q, Garsin DA, Losick R (2001) Self-reinforcing activation of a cell-specific transcription factor by proteolysis of an anti-sigma factor in B. subtilis. Mol Cell 8(4):873–883PubMedCrossRefGoogle Scholar
  28. 28.
    Zuber P (2004) Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 186(7):1911–1918PubMedCrossRefGoogle Scholar
  29. 29.
    Zuber P (2009) Management of oxidative stress in Bacillus. Annu Rev Microbiol 63:575–597PubMedCrossRefGoogle Scholar
  30. 30.
    Garg SK, Kommineni S, Henslee L, Zhang Y et al (2009) The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of Spx. J Bacteriol 191(4):1268–1277PubMedCrossRefGoogle Scholar
  31. 31.
    Kommineni S, Garg SK, Chan CM, Zuber P (2011) YjbH-enhanced proteolysis of Spx by ClpXP in Bacillus subtilis is inhibited by the small protein YirB (YuzO). J Bacteriol 193(9):2133–2140PubMedCrossRefGoogle Scholar
  32. 32.
    Larsson JT, Rogstam A, von Wachenfeldt C (2007) YjbH is a novel negative effector of the disulphide stress regulator, Spx, in Bacillus subtilis. Mol Microbiol 66(3):669–684PubMedCrossRefGoogle Scholar
  33. 33.
    Wiegert T, Schumann W (2001) SsrA-mediated tagging in Bacillus subtilis. J Bacteriol 183(13):3885–3889PubMedCrossRefGoogle Scholar
  34. 34.
    Duman RE, Lowe J (2010) Crystal structures of Bacillus subtilis Lon protease. J Mol Biol 401(4):653–670PubMedCrossRefGoogle Scholar
  35. 35.
    Kang MS, Kim SR, Kwack P, Lim BK et al (2003) Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site. EMBO J 22(12):2893–2902PubMedCrossRefGoogle Scholar
  36. 36.
    Kang MS, Lim BK, Seong IS, Seol JH et al (2001) The ATP-dependent CodWX (HslVU) protease in Bacillus subtilis is an N-terminal serine protease. EMBO J 20(4):734–742PubMedCrossRefGoogle Scholar
  37. 37.
    Bochtler M, Hartmann C, Song HK, Bourenkov GP et al (2000) The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403(6771):800–805PubMedCrossRefGoogle Scholar
  38. 38.
    Sousa MC, Trame CB, Tsuruta H, Wilbanks SM et al (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103(4):633–643PubMedCrossRefGoogle Scholar
  39. 39.
    Ito K, Akiyama Y (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231PubMedCrossRefGoogle Scholar
  40. 40.
    Deuerling E, Mogk A, Richter C, Purucker M et al (1997) The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol Microbiol 23(5):921–933PubMedCrossRefGoogle Scholar
  41. 41.
    Wolfe MS (2009) Intramembrane proteolysis. Chem Rev 109(4):1599–1612PubMedCrossRefGoogle Scholar
  42. 42.
    Urban S (2009) Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Nat Rev Microbiol 7(6):411–423PubMedGoogle Scholar
  43. 43.
    Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100(4):391–398PubMedCrossRefGoogle Scholar
  44. 44.
    Heinrich J, Wiegert T (2009) Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors. Res Microbiol 160(9):696–703PubMedCrossRefGoogle Scholar
  45. 45.
    Rudner DZ, Losick R (2001) Morphological coupling in development: lessons from prokaryotes. Dev Cell 1(6):733–742PubMedCrossRefGoogle Scholar
  46. 46.
    Kong L, Dubnau D (1994) Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc Natl Acad Sci U S A 91(13):5793–5797PubMedCrossRefGoogle Scholar
  47. 47.
    Turgay K, Hamoen LW, Venema G, Dubnau D (1997) Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 11(1):119–128PubMedCrossRefGoogle Scholar
  48. 48.
    Prepiak P, Dubnau D (2007) A peptide signal for adapter protein-mediated degradation by the AAA+  protease ClpCP. Mol Cell 26(5):639–647PubMedCrossRefGoogle Scholar
  49. 49.
    Maamar H, Dubnau D (2005) Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56(3):615–624PubMedCrossRefGoogle Scholar
  50. 50.
    Smits WK, Eschevins CC, Susanna KA, Bron S et al (2005) Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol Microbiol 56(3):604–614PubMedCrossRefGoogle Scholar
  51. 51.
    Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61(3):564–572PubMedCrossRefGoogle Scholar
  52. 52.
    Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8(9):634–644PubMedCrossRefGoogle Scholar
  53. 53.
    Caramori T, Barilla D, Nessi C, Sacchi L et al (1996) Role of FlgM in sigma D-dependent gene expression in Bacillus subtilis. J Bacteriol 178(11):3113–3118PubMedGoogle Scholar
  54. 54.
    Fredrick K, Helmann JD (1996) FlgM is a primary regulator of sigmaD activity, and its absence restores motility to a sinR mutant. J Bacteriol 178(23):7010–7013PubMedGoogle Scholar
  55. 55.
    Sorenson MK, Ray SS, Darst SA (2004) Crystal structure of the flagellar sigma/anti-sigma complex sigma(28)/FlgM reveals an intact sigma factor in an inactive conformation. Mol Cell 14(1):127–138PubMedCrossRefGoogle Scholar
  56. 56.
    Chevance FF, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6(6):455–465PubMedCrossRefGoogle Scholar
  57. 57.
    Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5(2):160–165PubMedCrossRefGoogle Scholar
  58. 58.
    Msadek T, Dartois V, Kunst F, Herbaud ML et al (1998) ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27(5):899–914PubMedCrossRefGoogle Scholar
  59. 59.
    Liu J, Zuber P (1998) A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J Bacteriol 180(16):4243–4251PubMedGoogle Scholar
  60. 60.
    Rashid MH, Tamakoshi A, Sekiguchi J (1996) Effects of mecA and mecB (clpC) mutations on expression of sigD, which encodes an alternative sigma factor, and autolysin operons and on flagellin synthesis in Bacillus subtilis. J Bacteriol 178(16):4861–4869PubMedGoogle Scholar
  61. 61.
    Ogura M, Tsukahara K (2010) Autoregulation of the Bacillus subtilis response regulator gene degU is coupled with the proteolysis of DegU-P by ClpCP. Mol Microbiol 75(5):1244–1259PubMedCrossRefGoogle Scholar
  62. 62.
    Amati G, Bisicchia P, Galizzi A (2004) DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J Bacteriol 186(18):6003–6014PubMedCrossRefGoogle Scholar
  63. 63.
    Verhamme DT, Kiley TB, Stanley-Wall NR (2007) DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol 65(2):554–568PubMedCrossRefGoogle Scholar
  64. 64.
    Kobayashi K (2007) Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol 66(2):395–409PubMedCrossRefGoogle Scholar
  65. 65.
    Tsukahara K, Ogura M (2008) Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB. BMC Microbiol 8:8PubMedCrossRefGoogle Scholar
  66. 66.
    Kearns DB, Chu F, Rudner R, Losick R (2004) Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52(2):357–369PubMedCrossRefGoogle Scholar
  67. 67.
    Calvio C, Celandroni F, Ghelardi E, Amati G et al (2005) Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J Bacteriol 187(15):5356–5366PubMedCrossRefGoogle Scholar
  68. 68.
    Hsueh YH, Cozy LM, Sham LT, Calvo RA et al (2011) DegU-phosphate activates expression of the anti-sigma factor FlgM in Bacillus subtilis. Mol Microbiol 81(4):1092–1108PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Y, Zuber P (2007) Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity. J Bacteriol 189(21):7669–7680PubMedCrossRefGoogle Scholar
  70. 70.
    Leelakriangsak M, Kobayashi K, Zuber P (2007) Dual negative control of spx transcription initiation from the P3 promoter by repressors PerR and YodB in Bacillus subtilis. J Bacteriol 189(5):1736–1744PubMedCrossRefGoogle Scholar
  71. 71.
    Leelakriangsak M, Zuber P (2007) Transcription from the P3 promoter of the Bacillus subtilis spx gene is induced in response to disulfide stress. J Bacteriol 189(5):1727–1735PubMedCrossRefGoogle Scholar
  72. 72.
    Petersohn A, Brigulla M, Haas S, Hoheisel JD et al (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183(19):5617–5631PubMedCrossRefGoogle Scholar
  73. 73.
    Nakano S, Nakano MM, Zhang Y, Leelakriangsak M et al (2003) A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc Natl Acad Sci U S A 100(7):4233–4238PubMedCrossRefGoogle Scholar
  74. 74.
    Newberry KJ, Nakano S, Zuber P, Brennan RG (2005) Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc Natl Acad Sci U S A 102(44):15839–15844PubMedCrossRefGoogle Scholar
  75. 75.
    Nakano S, Kuster-Schock E, Grossman AD, Zuber P (2003) Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci U S A 100(23):13603–13608PubMedCrossRefGoogle Scholar
  76. 76.
    Reyes DY, Zuber P (2008) Activation of transcription initiation by Spx: formation of transcription complex and identification of a Cis-acting element required for transcriptional activation. Mol Microbiol 69(3):765–779PubMedCrossRefGoogle Scholar
  77. 77.
    Nakano MM, Lin A, Zuber CS, Newberry KJ et al (2010) Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit. PLoS One 5(1):e8664PubMedCrossRefGoogle Scholar
  78. 78.
    Hecker M, Schumann W, Volker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19(3):417–428PubMedCrossRefGoogle Scholar
  79. 79.
    Mogk A, Homuth G, Scholz C, Kim L et al (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16(15):4579–4590PubMedCrossRefGoogle Scholar
  80. 80.
    Hecker M, Pane-Farre J, Volker U (2007) SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61:215–236PubMedCrossRefGoogle Scholar
  81. 81.
    Derre I, Rapoport G, Msadek T (2000) The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C. Mol Microbiol 38(2):335–347PubMedCrossRefGoogle Scholar
  82. 82.
    Hyyrylainen HL, Bolhuis A, Darmon E, Muukkonen L et al (2001) A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol 41(5):1159–1172PubMedCrossRefGoogle Scholar
  83. 83.
    Darmon E, Noone D, Masson A, Bron S et al (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 184(20):5661–5671PubMedCrossRefGoogle Scholar
  84. 84.
    Kirstein J, Zuhlke D, Gerth U, Turgay K et al (2005) A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J 24(19):3435–3445PubMedCrossRefGoogle Scholar
  85. 85.
    Fuhrmann J, Schmidt A, Spiess S, Lehner A et al (2009) McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324(5932):1323–1327PubMedCrossRefGoogle Scholar
  86. 86.
    Elsholz AK, Hempel K, Michalik S, Gronau K et al (2011) Activity control of the ClpC adaptor McsB in Bacillus subtilis. J Bacteriol 193(15):3887–3893PubMedCrossRefGoogle Scholar
  87. 87.
    Elsholz AK, Hempel K, Pother DC, Becher D et al (2011) CtsR inactivation during thiol-specific stress in low GC, Gram+  bacteria. Mol Microbiol 79(3):772–785PubMedCrossRefGoogle Scholar
  88. 88.
    Elsholz AK, Michalik S, Zuhlke D, Hecker M et al (2010) CtsR, the Gram-positive master regulator of protein quality control, feels the heat. EMBO J 29(21):3621–3629PubMedCrossRefGoogle Scholar
  89. 89.
    Leichert LI, Scharf C, Hecker M (2003) Global characterization of disulfide stress in Bacillus subtilis. J Bacteriol 185(6):1967–1975PubMedCrossRefGoogle Scholar
  90. 90.
    Mostertz J, Scharf C, Hecker M, Homuth G (2004) Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150(Pt 2):497–512PubMedCrossRefGoogle Scholar
  91. 91.
    Schöbel S, Zellmeier S, Schumann W, Wiegert T (2004) The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol 52(4):1091–1105PubMedCrossRefGoogle Scholar
  92. 92.
    Barchinger SE, Ades SE (2013) Regulated proteolysis: control of the Escherichia coli σE-dependent cell envelope stress response. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:129–160Google Scholar
  93. 93.
    Noone D, Howell A, Devine KM (2000) Expression of ykdA, encoding a Bacillus subtilis homologue of HtrA, is heat shock inducible and negatively autoregulated. J Bacteriol 182(6):1592–1599PubMedCrossRefGoogle Scholar
  94. 94.
    Ellermeier CD, Losick R (2006) Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev 20(14):1911–1922PubMedCrossRefGoogle Scholar
  95. 95.
    Heinrich J, Wiegert T (2006) YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis. Mol Microbiol 62(2):566–579PubMedCrossRefGoogle Scholar
  96. 96.
    Heinrich J, Hein K, Wiegert T (2009) Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW. Mol Microbiol 74(6):1412–1426PubMedCrossRefGoogle Scholar
  97. 97.
    Zellmeier S, Schumann W, Wiegert T (2006) Involvement of Clp protease activity in modulating the Bacillus subtilis sigmaw stress response. Mol Microbiol 61(6):1569–1582PubMedCrossRefGoogle Scholar
  98. 98.
    Heinrich J, Lunden T, Kontinen VP, Wiegert T (2008) The Bacillus subtilis ABC transporter EcsAB influences intramembrane proteolysis through RasP. Microbiology 154(Pt 7):1989–1997PubMedCrossRefGoogle Scholar
  99. 99.
    Bramkamp M, Weston L, Daniel RA, Errington J (2006) Regulated intramembrane proteolysis of FtsL protein and the control of cell division in Bacillus subtilis. Mol Microbiol 62(2):580–591PubMedCrossRefGoogle Scholar
  100. 100.
    Wadenpohl I, Bramkamp M (2010) DivIC stabilizes FtsL against RasP cleavage. J Bacteriol 192(19):5260–5263PubMedCrossRefGoogle Scholar
  101. 101.
    Saito A, Hizukuri Y, Matsuo E, Chiba S et al (2011) Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc Natl Acad Sci U S A 108(33):13740–13745PubMedCrossRefGoogle Scholar
  102. 102.
    Gerth U, Kruger E, Derre I, Msadek T et al (1998) Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28(4):787–802PubMedCrossRefGoogle Scholar
  103. 103.
    Liu J, Cosby WM, Zuber P (1999) Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol Microbiol 33(2):415–428PubMedCrossRefGoogle Scholar
  104. 104.
    Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1(2):117–126PubMedCrossRefGoogle Scholar
  105. 105.
    Le AT, Schumann W (2009) The Spo0E phosphatase of Bacillus subtilis is a substrate of the FtsH metalloprotease. Microbiology 155(Pt 4):1122–1132PubMedCrossRefGoogle Scholar
  106. 106.
    Wehrl W, Niederweis M, Schumann W (2000) The FtsH protein accumulates at the septum of Bacillus subtilis during cell division and sporulation. J Bacteriol 182(13):3870–3873PubMedCrossRefGoogle Scholar
  107. 107.
    Cutting S, Anderson M, Lysenko E, Page A et al (1997) SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. J Bacteriol 179(17):5534–5542PubMedGoogle Scholar
  108. 108.
    Prajapati RS, Ogura T, Cutting SM (2000) Structural and functional studies on an FtsH inhibitor from Bacillus subtilis. Biochim Biophys Acta 1475(3):353–359PubMedCrossRefGoogle Scholar
  109. 109.
    Schmidt R, Decatur AL, Rather PN, Moran CP Jr et al (1994) Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J Bacteriol 176(21):6528–6537PubMedGoogle Scholar
  110. 110.
    Serrano M, Hovel S, Moran CP Jr, Henriques AO et al (2001) Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J Bacteriol 183(10):2995–3003PubMedCrossRefGoogle Scholar
  111. 111.
    Simmons LA, Grossman AD, Walker GC (2008) Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis. J Bacteriol 190(20):6758–6768PubMedCrossRefGoogle Scholar
  112. 112.
    Pan Q, Losick R (2003) Unique degradation signal for ClpCP in Bacillus subtilis. J Bacteriol 185(17):5275–5278PubMedCrossRefGoogle Scholar
  113. 113.
    Dworkin J, Losick R (2001) Differential gene expression governed by chromosomal spatial asymmetry. Cell 107(3):339–346PubMedCrossRefGoogle Scholar
  114. 114.
    Kain J, He GG, Losick R (2008) Polar localization and compartmentalization of ClpP proteases during growth and sporulation in Bacillus subtilis. J Bacteriol 190(20):6749–6757PubMedCrossRefGoogle Scholar
  115. 115.
    Liu J, Zuber P (2000) The ClpX protein of Bacillus subtilis indirectly influences RNA polymerase holoenzyme composition and directly stimulates sigma- dependent transcription. Mol Microbiol 37(4):885–897PubMedCrossRefGoogle Scholar
  116. 116.
    Nakano MM, Hajarizadeh F, Zhu Y, Zuber P (2001) Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Mol Microbiol 42(2):383–394PubMedCrossRefGoogle Scholar
  117. 117.
    Kobayashi K, Ogura M, Yamaguchi H, Yoshida K et al (2001) Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J Bacteriol 183(24):7365–7370PubMedCrossRefGoogle Scholar
  118. 118.
    LaBell TL, Trempy JE, Haldenwang WG (1987) Sporulation-specific sigma factor sigma 29 of Bacillus subtilis is synthesized from a precursor protein, P31. Proc Natl Acad Sci U S A 84(7):1784–1788PubMedCrossRefGoogle Scholar
  119. 119.
    Zhang B, Hofmeister A, Kroos L (1998) The prosequence of pro-sigmaK promotes membrane association and inhibits RNA polymerase core binding. J Bacteriol 180(9):2434–2441PubMedGoogle Scholar
  120. 120.
    Cutting S, Oke V, Driks A, Losick R et al (1990) A forespore checkpoint for mother cell gene expression during development in B. subtilis. Cell 62(2):239–250PubMedCrossRefGoogle Scholar
  121. 121.
    Fujita M, Losick R (2002) An investigation into the compartmentalization of the sporulation transcription factor sigmaE in Bacillus subtilis. Mol Microbiol 43(1):27–38PubMedCrossRefGoogle Scholar
  122. 122.
    Ju J, Luo T, Haldenwang WG (1998) Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis. J Bacteriol 180(7):1673–1681PubMedGoogle Scholar
  123. 123.
    Pogliano K, Hofmeister AE, Losick R (1997) Disappearance of the sigma E transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation in Bacillus subtilis. J Bacteriol 179(10):3331–3341PubMedGoogle Scholar
  124. 124.
    Jonas RM, Weaver EA, Kenney TJ, Moran CP Jr et al (1988) The Bacillus subtilis spoIIG operon encodes both sigma E and a gene necessary for sigma E activation. J Bacteriol 170(2):507–511PubMedGoogle Scholar
  125. 125.
    Peters HK 3rd, Haldenwang WG (1994) Isolation of a Bacillus subtilis spoIIGA allele that suppresses processing-negative mutations in the Pro-sigma E gene (sigE). J Bacteriol 176(24):7763–7766PubMedGoogle Scholar
  126. 126.
    Stragier P, Bonamy C, Karmazyn-Campelli C (1988) Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell 52(5):697–704PubMedCrossRefGoogle Scholar
  127. 127.
    Imamura D, Kuwana R, Kroos L, Feig M et al (2011) Substrate specificity of SpoIIGA, a signal-transducing aspartic protease in Bacilli. J Biochem 149(6):665–671PubMedCrossRefGoogle Scholar
  128. 128.
    Imamura D, Zhou R, Feig M, Kroos L (2008) Evidence that the Bacillus subtilis SpoIIGA protein is a novel type of signal-transducing aspartic protease. J Biol Chem 283(22):15287–15299PubMedCrossRefGoogle Scholar
  129. 129.
    Hofmeister AE, Londono-Vallejo A, Harry E, Stragier P et al (1995) Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83(2):219–226PubMedCrossRefGoogle Scholar
  130. 130.
    Karow ML, Glaser P, Piggot PJ (1995) Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 92(6):2012–2016PubMedCrossRefGoogle Scholar
  131. 131.
    Londono-Vallejo JA, Stragier P (1995) Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev 9(4):503–508PubMedCrossRefGoogle Scholar
  132. 132.
    Rudner DZ, Fawcett P, Losick R (1999) A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc Natl Acad Sci U S A 96(26):14765–14770PubMedCrossRefGoogle Scholar
  133. 133.
    Yu YT, Kroos L (2000) Evidence that SpoIVFB is a novel type of membrane metalloprotease governing intercompartmental communication during Bacillus subtilis sporulation. J Bacteriol 182(11):3305–3309PubMedCrossRefGoogle Scholar
  134. 134.
    Rudner DZ, Losick R (2002) A sporulation membrane protein tethers the pro-sigmaK processing enzyme to its inhibitor and dictates its subcellular localization. Genes Dev 16(8):1007–1018PubMedCrossRefGoogle Scholar
  135. 135.
    Cutting S, Driks A, Schmidt R, Kunkel B et al (1991) Forespore-specific transcription of a gene in the signal transduction pathway that governs Pro-sigma K processing in Bacillus subtilis. Genes Dev 5(3):456–466PubMedCrossRefGoogle Scholar
  136. 136.
    Zhou R, Kroos L (2005) Serine proteases from two cell types target different components of a complex that governs regulated intramembrane proteolysis of pro-sigmaK during Bacillus subtilis development. Mol Microbiol 58(3):835–846PubMedCrossRefGoogle Scholar
  137. 137.
    Pan Q, Losick R, Rudner DZ (2003) A second PDZ-containing serine protease contributes to activation of the sporulation transcription factor sigmaK in Bacillus subtilis. J Bacteriol 185(20):6051–6056PubMedCrossRefGoogle Scholar
  138. 138.
    Campo N, Rudner DZ (2006) A branched pathway governing the activation of a developmental transcription factor by regulated intramembrane proteolysis. Mol Cell 23(1):25–35PubMedCrossRefGoogle Scholar
  139. 139.
    Campo N, Rudner DZ (2007) SpoIVB and CtpB are both forespore signals in the activation of the sporulation transcription factor sigmaK in Bacillus subtilis. J Bacteriol 189(16):6021–6027PubMedCrossRefGoogle Scholar
  140. 140.
    Lopez D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7):a000398PubMedCrossRefGoogle Scholar
  141. 141.
    Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441(7091):300–302PubMedCrossRefGoogle Scholar
  142. 142.
    Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42(5):1199–1209PubMedCrossRefGoogle Scholar
  143. 143.
    Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R et al (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98(20):11621–11626PubMedCrossRefGoogle Scholar
  144. 144.
    Branda SS, Chu F, Kearns DB, Losick R et al (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59(4):1229–1238PubMedCrossRefGoogle Scholar
  145. 145.
    Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107(5):2230–2234PubMedCrossRefGoogle Scholar
  146. 146.
    Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185(6):1951–1957PubMedCrossRefGoogle Scholar
  147. 147.
    Branda SS, Gonzalez-Pastor JE, Dervyn E, Ehrlich SD et al (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186(12):3970–3979PubMedCrossRefGoogle Scholar
  148. 148.
    Hamon MA, Stanley NR, Britton RA, Grossman AD et al (2004) Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52(3):847–860PubMedCrossRefGoogle Scholar
  149. 149.
    Kearns DB, Chu F, Branda SS, Kolter R et al (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55(3):739–749PubMedCrossRefGoogle Scholar
  150. 150.
    Chu F, Kearns DB, Branda SS, Kolter R et al (2006) Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59(4):1216–1228PubMedCrossRefGoogle Scholar
  151. 151.
    Chu F, Kearns DB, McLoon A, Chai Y et al (2008) A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol Microbiol 68(5):1117–1127PubMedCrossRefGoogle Scholar
  152. 152.
    Chai Y, Norman T, Kolter R, Losick R (2010) An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev 24(8):754–765PubMedCrossRefGoogle Scholar
  153. 153.
    Kolodkin-Gal I, Romero D, Cao S, Clardy J et al (2010) D-amino acids trigger biofilm disassembly. Science 328(5978):627–629PubMedCrossRefGoogle Scholar
  154. 154.
    Chai Y, Kolter R, Losick R (2010) Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability. Mol Microbiol 78(1):218–229PubMedGoogle Scholar
  155. 155.
    Völker U, Engelmann S, Maul B, Riethdorf S et al (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140(Pt 4):741–752PubMedCrossRefGoogle Scholar
  156. 156.
    Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16(6):574–581PubMedCrossRefGoogle Scholar
  157. 157.
    Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366PubMedCrossRefGoogle Scholar
  158. 158.
    Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94(1):73–82PubMedCrossRefGoogle Scholar
  159. 159.
    Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T et al (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci U S A 96(24):13732–13737PubMedCrossRefGoogle Scholar
  160. 160.
    Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S et al (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18(24):6934–6949PubMedCrossRefGoogle Scholar
  161. 161.
    Mogk A, Deuerling E, Vorderwulbecke S, Vierling E et al (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50(2):585–595PubMedCrossRefGoogle Scholar
  162. 162.
    Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ et al (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278(33):31033–31042PubMedCrossRefGoogle Scholar
  163. 163.
    Weibezahn J, Tessarz P, Schlieker C, Zahn R et al (2004) Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119(5):653–665PubMedCrossRefGoogle Scholar
  164. 164.
    Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34(2):641–646PubMedCrossRefGoogle Scholar
  165. 165.
    Straus D, Walter W, Gross CA (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev 4(12A):2202–2209PubMedCrossRefGoogle Scholar
  166. 166.
    Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833–842PubMedCrossRefGoogle Scholar
  167. 167.
    Liberek K, Galitski TP, Zylicz M, Georgopoulos C (1992) The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc Natl Acad Sci U S A 89(8):3516–3520PubMedCrossRefGoogle Scholar
  168. 168.
    Gamer J, Multhaupt G, Tomoyasu T, McCarty JS et al (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO J 15:607–617PubMedGoogle Scholar
  169. 169.
    Rodriguez F, Arsene-Ploetze F, Rist W, Rudiger S et al (2008) Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 32(3):347–358PubMedCrossRefGoogle Scholar
  170. 170.
    Jürgen B, Hanschke R, Sarvas M, Hecker M et al (2001) Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl Microbiol Biotechnol 55(3):326–332PubMedCrossRefGoogle Scholar
  171. 171.
    Kirstein J, Strahl H, Moliere N, Hamoen LW et al (2008) Localization of general and regulatory proteolysis in Bacillus subtilis cells. Mol Microbiol 70(3):682–694PubMedCrossRefGoogle Scholar
  172. 172.
    Moore SD, Sauer RT (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 76:101–124PubMedCrossRefGoogle Scholar
  173. 173.
    Keiler KC, Waller PR, Sauer RT (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271(5251):990–993PubMedCrossRefGoogle Scholar
  174. 174.
    Gur E, Ottofuelling R, Dougan DA (2012) Machines of destruction – AAA+  proteases and the adaptors that control them. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Dordrecht, pp xxx–xxxGoogle Scholar
  175. 175.
    Fujihara A, Tomatsu H, Inagaki S, Tadaki T et al (2002) Detection of tmRNA-mediated trans-translation products in Bacillus subtilis. Genes Cells 7(3):343–350PubMedCrossRefGoogle Scholar
  176. 176.
    Muto A, Fujihara A, Ito KI, Matsuno J et al (2000) Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells 5(8):627–635PubMedCrossRefGoogle Scholar
  177. 177.
    Shin JH, Price CW (2007) The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures. J Bacteriol 189(10):3729–3737PubMedCrossRefGoogle Scholar
  178. 178.
    Brötz-Oesterhelt H, Beyer D, Kroll HP, Endermann R et al (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11(10):1082–1087PubMedCrossRefGoogle Scholar
  179. 179.
    Lee BG, Park EY, Lee KE, Jeon H et al (2010) Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17(4):471–478PubMedCrossRefGoogle Scholar
  180. 180.
    Kirstein J, Hoffmann A, Lilie H, Schmidt R et al (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1(1):37–49PubMedCrossRefGoogle Scholar
  181. 181.
    Sass P, Josten M, Famulla K, Schiffer G et al (2011) Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci U S A 108(42):17474–17479PubMedCrossRefGoogle Scholar
  182. 182.
    Bottcher T, Sieber SA (2008) Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 130(44):14400–14401PubMedCrossRefGoogle Scholar
  183. 183.
    Rathore S, Sinha D, Asad M, Bottcher T et al (2010) A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Mol Microbiol 77(4):873–890Google Scholar
  184. 184.
    Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S et al (2011) The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem Int Ed Engl 50(26):5889–5891PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für MikrobiologieLeibniz Universität HannoverHannoverGermany

Personalised recommendations