Sexual Size Dimorphism in Australopithecus: Current Understanding and New Directions

Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Sexual size dimorphism in extant and extinct species has often been viewed as a proxy for sexual selection, and by extension, mating system. As a result, various measures of relative size variation have been calculated for australopiths (particularly Australopithecusafarensis) as a means to infer mating system and social structure in these extinct hominins. Such analyses are confounded by several factors, including (1) different levels of sexual dimorphism may be present within one species when comparing different systems such as canine size, postcranial size, and body mass; (2) evidence suggests that sexual size dimorphism responds not only to sexual selection acting on both male and female size, but also to natural selection acting differentially on the sexes; and (3) measures of relative size variation within skeletal and/or dental samples of unknown sex are not direct measures of size dimorphism, but rather estimates which are subject to both known and unknown sources of error. This chapter addresses concerns and possibilities for future analyses that relate to these confounding effects, and goes on to present the current understanding of size dimorphism within Australopithecus. Specific methodologies for measuring relative size variation within fossil taxa are discussed, particularly newer techniques which incorporate information from across multiple skeletal elements. Finally, the biological and phylogenetic significance of different possible levels of dimorphism within Ardipithecusramidus and various species of Australopithecus is discussed in the context of extracting information on selection pressures beyond simple reconstruction of mating systems and social structure.

Keywords

Size dimorphism Australopithecus Sexual selection Skeletal variation 

References

  1. Alberts, S. C., Buchan, J. C., & Altmann, J. (2006). Sexual selection in wild baboons: From mating opportunities to paternity success. Animal Behaviour, 72, 1177–1196.CrossRefGoogle Scholar
  2. Altmann, J., & Alberts, S. (1987). Body mass and growth rate in a wild primate population. Oecologia, 72, 15–20.CrossRefGoogle Scholar
  3. Anderson, M. J., & Dixson, A. F. (2002). Sperm competition: Motility and the midpiece in primates. Nature, 416, 496.CrossRefGoogle Scholar
  4. Barton, R. A. (2000). Socioecology of baboons: The interaction of male and female strategies. In P. M. Kappeler (Ed.), Primate males: Causes and consequences of variation in group composition (pp. 97–107). Cambridge: Cambridge University Press.Google Scholar
  5. Beehner, J. C., Onderdonk, D. A., Alberts, S. C., & Altmann, J. (2006). The ecology of conception and pregnancy failure in wild baboons. Behavioral Ecology, 17, 741–750.CrossRefGoogle Scholar
  6. Berger, L. R., de Ruiter, D. J., Churchill, S. E., Schmid, P., Carlson, K. J., Dirks, P. H. G. M., & Kibii, J. M. (2010). Australopithecus sediba: A new species of Homo-like australopith from South Africa. Science, 328, 195–204.Google Scholar
  7. Boinski, S., Sughrue, K., Selvaggi, L., Quatrone, R., Henry, M., & Cropp, S. (2002). An expanded test of the ecological model of primate social evolution: Competitive regimes and female bonding in three species of squirrel monkeys (Saimiri oerstedii, S. boliviensis, and S. sciureus). Behaviour, 139, 227–261.CrossRefGoogle Scholar
  8. Bonnefille, R., Potts, R., Chalié, F., Jolly, D., & Peyron, O. (2004). High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proceedings of the National Academy of Sciences of the United States of America, 101, 12125–12129.Google Scholar
  9. Brockelman, W. Y., Reichard, U., Treesucon, U., & Raemaekers, J. (1998). Dispersal, pair formation and social structure in gibbons (Hylobates lar). Behavioral Ecology and Sociobiology, 42, 329–339.CrossRefGoogle Scholar
  10. Cheverud, J. M., Dow, M. M., & Leutenegger, W. (1985). The quantitative assessment of phylogenetic constraints in comparative analyses: Sexual dimorphism in body weight among primates. Evolution, 39, 1335–1351.CrossRefGoogle Scholar
  11. Clutton-Brock, T. H. (1977). Some aspects of intraspecific variation in feeding and ranging behaviour in primates. In T. H. Clutton-Brock (Ed.), Primate ecology: Studies of feeding and ranging behaviour in lemurs, monkeys and apes (pp. 539–556). New York: Academic Press.Google Scholar
  12. Clutton-Brock, T. H. (1985). Size, sexual dimorphism, and polygyny in primates. In W. L. Jungers (Ed.), Size and scaling in primate biology (pp. 51–60). New York: Plenum Press.CrossRefGoogle Scholar
  13. Clutton-Brock, T. H., & Harvey, P. H. (1977). Primate ecology and social organization. Journal of Zoology, London, 183, 1–39.CrossRefGoogle Scholar
  14. Clutton-Brock, T. H., Harvey, P. H., & Rudder, B. (1977). Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature, 269, 797–800.CrossRefGoogle Scholar
  15. Cunningham, D. L. (2005). Postcranial proportional variation in Australopithecus. Ph.D. Dissertation, University of Missouri-Columbia.Google Scholar
  16. Darwin, C. (1871). The descent of man, and selection in relation to sex. London: J. Murray.Google Scholar
  17. Demment, M. W. (1983). Feeding ecology and the evolution of body size of baboons. African Journal of Ecology, 21, 219–233.CrossRefGoogle Scholar
  18. de Ruiter, D. J., Churchill, S. E., & Berger, L. R. (2013). Australopithecus sediba from Malapa, South Africa. In K. E. Reed, J. G., Fleagle, & R. E. Leakey (Eds.), The paleobiology of Australopithecus (pp. 147–160). Dordrecht: Springer.Google Scholar
  19. Doran, D. M. (1997). Ontogeny of locomotion in mountain gorillas and chimpanzees. Journal of Human Evolution, 32, 323–344.CrossRefGoogle Scholar
  20. Downhower, J. F. (1976). Darwin’s finches and evolution of sexual dimorphism in body size. Nature, 263, 558–563.CrossRefGoogle Scholar
  21. Ely, J., & Kurland, J. A. (1989). Spatial autocorrelation, phylogenetic constraints, and the causes of sexual dimorphism in primates. International Journal of Primatology, 10, 151–171.CrossRefGoogle Scholar
  22. Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215–223.CrossRefGoogle Scholar
  23. Flinn, M. V., & Low, B. S. (1986). Resource distribution, social competition, and mating patterns in human societies. In D. I. Rubenstein & R. W. Wrangham (Eds.), Ecological aspects of social evolution: Birds and mammals (pp. 217–243). Princeton: Princeton University Press.Google Scholar
  24. Ford, S. M. (1994). Evolution of sexual dimorphism in body weight in platyrrhines. American Journal of Primatology, 34, 221–244.CrossRefGoogle Scholar
  25. Fuentes, A. (2000). Hylobatid communities: Changing views on pair bonding and social organization in hominoids. Yearbook of Physical Anthropology, 48, 86–88.Google Scholar
  26. Galdikas, B. M. F., & Teleki, G. (1981). Variations in subsistence activities of female and male pongids: New perspectives on the origins of hominid labor division. Current Anthropology, 22, 241–256.Google Scholar
  27. Gaulin, S. J. C., & Sailer, L. D. (1984). Sexual dimorphism in weight among the primates: The relative impact of allometry and sexual selection. International Journal of Primatology, 5, 515–535.CrossRefGoogle Scholar
  28. Gordon, A. D. (2004). Evolution of body size and sexual size dimorphism in the order primates: Rensch’s rule, quantitative genetics, and phylogenetic effects. Ph.D. Dissertation, University of Texas.Google Scholar
  29. Gordon, A. D. (2006a). Scaling of size and dimorphism in primates I: Microevolution. International Journal of Primatology, 27, 27–61.CrossRefGoogle Scholar
  30. Gordon, A. D. (2006b). Scaling of size and dimorphism in primates II: Macroevolution. International Journal of Primatology, 27, 63–105.CrossRefGoogle Scholar
  31. Gordon, A. D., Green, D. J., & Richmond, B. G. (2008). Strong postcranial size dimorphism in Australopithecus afarensis: Results from two new resampling methods for multivariate data sets with missing data. American Journal of Physical Anthropology, 135, 311–328.CrossRefGoogle Scholar
  32. Green, D. J., Gordon, A. D., & Richmond, B. G. (2007). Limb-size proportions in Australopithecus afarensis and Australopithecus africanus. Journal of Human Evolution, 52, 187–200.CrossRefGoogle Scholar
  33. Greenfield, L. O. (1992). Relative canine size, behavior, and diet in male ceboids. Journal of Human Evolution, 23, 469–480.CrossRefGoogle Scholar
  34. Haile-Selassie, Y., Latimer, B. M., Alene, M., Deino, A. L., Gibert, L., Melillo, S.M., Saylor, B. Z., Scott, G. R., Lovejoy, C. O. (2010). An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia. Proceedings of the National Academy of Sciences of the United States of America, 107, 12121–12126.Google Scholar
  35. Harcourt, A. H. (1997). Sperm competition in primates. The American Naturalist, 149, 189–194.CrossRefGoogle Scholar
  36. Harmon, E. H. (2006). Size and shape variation in Australopithecus afarensis proximal femora. Journal of Human Evolution, 51, 217–227.CrossRefGoogle Scholar
  37. Harmon, E. (2009). Size and shape variation in the proximal femur of Australopithecus africanus. Journal of Human Evolution, 56, 551–559.Google Scholar
  38. Hartwig-Scherer, S. (1993). Body weight prediction in early fossil hominids: Towards a taxon-‘‘independent’’ approach. American Journal of Physical Anthropology, 92, 17–36.CrossRefGoogle Scholar
  39. Hill, R. A., & Lee, P. C. (1998). Predation risk as an influence on group size in cercopithecoid primates: Implications for social structure. Journal of Zoology, 245, 447–456.CrossRefGoogle Scholar
  40. Isbell, L. A. (1991). Contest and scramble competition: Patterns of female aggression and ranging behavior among primates. Behavioral Ecology, 2, 143–155.CrossRefGoogle Scholar
  41. Isbell, L. A., & Pruetz, J. D. (1998). Differences between vervets (Cercopithecus aethiops) and patas monkeys (Erythrocebus patas) in agonistic interactions between adult females. International Journal of Primatology, 19, 837–855.CrossRefGoogle Scholar
  42. Jiang, X., Wang, Y., & Wang, Q. (1999). Coexistence of monogamy and polygyny in black-crested gibbon (Hylobates concolor). Primates, 40, 607–611.CrossRefGoogle Scholar
  43. Johnson, S. E., Gordon, A. D., Stumpf, R. M., Overdorff, D. J., & Wright, P. (2005). Morphological variation in populations of Eulemur albocollaris and E. fulvus rufus. International Journal of Primatology, 26, 1399–1416.CrossRefGoogle Scholar
  44. Josephson, S. C., Juell, K. E., & Rogers, A. R. (1996). Estimating sexual dimorphism by method-of-moments. American Journal of Physical Anthropology, 100, 191–206.CrossRefGoogle Scholar
  45. Jungers, W. L. (1988a). New estimates of body size in australopithecines. In F. E. Grine (Ed.), Evolutionary history of the ‘‘Robust’’ australopithecines (pp. 115–125). New York: Aldine de Gruyer.Google Scholar
  46. Jungers, W. L. (1988b). Relative joint size and hominoid locomotor adaptations with implications for the evolution of hominid bipedalism. Journal of Human Evolution, 17, 247–265.CrossRefGoogle Scholar
  47. Jungers, W. L. (1990a). Problems and methods in reconstructing body size in fossil primates. In J. Damuth & B. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 103–118). Cambridge: Cambridge University Press.Google Scholar
  48. Jungers, W. L. (1990b). Scaling of postcranial joint size in hominoid primates. In F. K. Jouffroy, S. M. H & C. Niemitz (Eds.), Gravity, posture and locomotion in primates (pp. 87–95). Firenze: Il Sedicesimo.Google Scholar
  49. Kappeler, P. M. (1990). The evolution of sexual size dimorphism in prosimian primates. American Journal of Primatology, 21, 201–214.CrossRefGoogle Scholar
  50. Kappeler, P. M. (1991). Patterns of sexual dimorphism in body weight among prosimian primates. Folia Primatologica, 57, 132–146.CrossRefGoogle Scholar
  51. Kay, R. F., Plavcan, J. M., Glander, K. E., & Wright, P. C. (1988). Sexual selection and canine dimorphism in New World monkeys. American Journal of Physical Anthropology, 77, 385–397.CrossRefGoogle Scholar
  52. Kimbel, W. H., & White, T. D. (1988). Variation, sexual dimorphism and the taxonomy of Australopithecus. In F. E. Grine (Ed.), Evolutionary history of the “robust” australopithecines (pp. 175–191). New York: Aldine de Gruyter.Google Scholar
  53. Kimbel, W. H., Lockwood, C. A., Ward, C. V., Leakey, M. G., Rak, Y., & Johanson, D. C. (2006). Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. Journal of Human Evolution, 51, 134–152.CrossRefGoogle Scholar
  54. Kościński, K., & Pietraszewski, S. (2004). Methods to estimate sexual dimorphism from unsexed samples: A test with computer-generated samples. Przegląd Antropologiczny-Anthropological. Review, 67, 33–55.Google Scholar
  55. Lague, M. R. (2002). Another look at shape variation in the distal femur of Australopithecus afarensis: Implications for taxonomic and functional diversity at Hadar. Journal of Human Evolution, 42, 609–626.CrossRefGoogle Scholar
  56. Lague, M. R., & Jungers, W. L. (1996). Morphometric variation in Plio-Pleistocene hominid distal humeri. American Journal of Physical Anthropology, 101, 401–427.CrossRefGoogle Scholar
  57. Lappan, S. (2007). Social relationships among males in multimale siamang groups. International Journal of Primatology, 28, 369–387.CrossRefGoogle Scholar
  58. Lee, S.-H. (2001). Assigned resampling method: a new method to estimate size sexual dimorphism in samples of unknown sex. Przegląd Antropologiczny-Anthropological. Review, 64, 21–39.Google Scholar
  59. Lehman, S. M., Mayor, M., & Wright, P. C. (2005). Ecogeographic size variations in sifakas: A test of the resource seasonality and resource quality hypotheses. American Journal of Physical Anthropology, 126, 318–328.CrossRefGoogle Scholar
  60. Lehmann, J., Korstjens, A. H., & Dunbar, R. I. M. (2007). Group size, grooming and social cohesion in primates. Animal Behaviour, 74, 1617–1629.CrossRefGoogle Scholar
  61. Leigh, S. R. (1992). Patterns of variation in the ontogeny of primate body size dimorphism. Journal of Human Evolution, 23, 27–50.CrossRefGoogle Scholar
  62. Leigh, S. R. (1995). Socioecology and the ontogeny of sexual size dimorphism in anthropoid primates. American Journal of Physical Anthropology, 97, 339–356.CrossRefGoogle Scholar
  63. Leigh, S. R., & Shea, B. T. (1995). Ontogeny and the evolution of adult body size dimorphism in apes. American Journal of Primatology, 36, 37–60.CrossRefGoogle Scholar
  64. Leigh, S. R., & Shea, B. T. (1996). Ontogeny of body size variation in African apes. American Journal of Physical Anthropology, 99, 43–65.CrossRefGoogle Scholar
  65. Leutenegger, W., & Kelly, J. T. (1977). Relationship of sexual dimorphism in canine size and body size to social, behavioral, and ecological correlates in anthropoid primates. Primates, 18, 117–136.CrossRefGoogle Scholar
  66. Leutenegger, W., & Shell, B. (1987). Variability and sexual dimorphism in canine size of Australopithecus and extant hominoids. Journal of Human Evolution, 16, 359–367.CrossRefGoogle Scholar
  67. Lewis, R. J., & Kappeler, P. M. (2005). Seasonality, body condition, and the timing of reproduction in Propithecus verreauxi verreauxi in the Kirindy Forest. American Journal of Primatology, 67, 347–364.CrossRefGoogle Scholar
  68. Lindenfors, P., & Tullberg, B. S. (1998). Phylogenetic analyses of primate size evolution: the consequences of sexual selection. Biological Journal of the Linnean Society, 64, 413–447.CrossRefGoogle Scholar
  69. Lockwood, C. A. (1999). Sexual dimorphism in the face of Australopithecus africanus. American Journal of Physical Anthropology, 108, 97–127.CrossRefGoogle Scholar
  70. Lockwood, C. A., Richmond, B. G., Jungers, W. L., & Kimbel, W. H. (1996). Randomization procedures and sexual dimorphism in Australopithecus afarensis. Journal of Human Evolution, 31, 537–548.CrossRefGoogle Scholar
  71. Lockwood, C. A., Kimbel, W. H., & Johanson, D. C. (2000). Temproal trends and metric variation in the mandibles and dentition of Australopithecus afarensis. Journal of Human Evolution, 39, 23–55.CrossRefGoogle Scholar
  72. Lockwood, C. A., Menter, C. G., Moggi-Cecchi, J., & Keyser, A. W. (2007). Extended male growth in a fossil hominin species. Science, 318, 1443–1446.CrossRefGoogle Scholar
  73. Lovejoy, C. O. (1981). The origin of man. Science, 211, 341–350.CrossRefGoogle Scholar
  74. Lovejoy, C. O. (2009). Reexamining human origins in light of Ardipithecus ramidus. Science, 326, 741–748.Google Scholar
  75. Lovejoy, C. O., Latimer, B., Suwa, G., Asfaw, B., & White, T. D. (2009a). Combining prehension and propulsion: The foot of Ardipithecus ramidus. Science, 326, 721–728.Google Scholar
  76. Lovejoy, C. O., Simpson, S. W., White, T. D., Asfaw, B., & Suwa, G. (2009b). Careful climbing in the Miocene: the forelimbs of Ardipithecus ramidus and humans are primitive. Science, 326, 701–708.Google Scholar
  77. Lovejoy, C. O., Suwa, G., Spurlock, L., Asfaw, B., & White, T. D. (2009c). The pelvis and femur of Ardipithecus ramidus: The emergence of upright walking. Science, 326, 711–716.Google Scholar
  78. Maestripieri, D., & Roney, J. R. (2005). Primate copulation calls and postcopulatory female choice. Behavioral Ecology, 16, 106–113.CrossRefGoogle Scholar
  79. Marlowe, F. W. (2003). The mating system of foragers in the standard cross-cultural sample. Cross-Cultural Research, 37, 282–306.CrossRefGoogle Scholar
  80. Martin, R. D., Willner, L. A., & Dettling, A. (1994). The evolution of sexual size dimorphism in primates. In R. V. Short & E. Balaban (Eds.), The differences between the sexes (pp. 159–200). Cambridge: Cambridge University Press.Google Scholar
  81. McHenry, H. M. (1988). New estimates of body weight in early hominids and their significance to encephalization and megadotia in “robust” australopithecines. In F. E. Grine (Ed.), Evolutionary history of the ‘‘Robust’’ australopithecines (pp. 133–148). New York: Aldine de Gruyer.Google Scholar
  82. McHenry, H. M. (1991). Sexual dimorphism in Australopithecus afarensis. Journal of Human Evolution, 20, 21–32.CrossRefGoogle Scholar
  83. McHenry, H. M. (1992). Body size and proportions in early hominids. American Journal of Physical Anthropology, 87, 407–431.CrossRefGoogle Scholar
  84. McHenry, H. M. (1994). Behavioral ecological implications of early hominid body size. Journal of Human Evolution, 27, 77–87.CrossRefGoogle Scholar
  85. McHenry, H. M. (1996). Sexual dimorphism in fossil hominids and its socioecological implications. In J. Steele & S. Shennan (Eds.), The archeology of human ancestry: Power, sex and tradition (pp. 91–109). London: Routledge.Google Scholar
  86. McHenry, H. M., & Berger, L. R. (1998). Body proportions in Australopithecus afarensis and A. africanus and the origin of the genus Homo. Journal of Human Evolution, 35, 1–22.CrossRefGoogle Scholar
  87. Mitani, J. C., Gros-Louis, J., & Richards, A. F. (1996). Sexual dimorphism, the operational sex ratio, and the intensity of male competition in polygynous primates. American Naturalist, 147, 966–980.CrossRefGoogle Scholar
  88. Mitchell, C. L., Boinski, S., & van Schaik, C. P. (1991). Competitive regimes and female bonding in two species of squirrel monkey (Saimiri oerstedi and S. sciureus). Behavioral Ecology and Sociobiology, 28, 55–60.CrossRefGoogle Scholar
  89. Paul, A. (2002). Sexual selection and mate choice. International Journal of Primatology, 23, 877–903.CrossRefGoogle Scholar
  90. Pianka, E. R. (1976). Natural selection of optimal reproductive tactics. American Zoologist, 16, 775–784.Google Scholar
  91. Pianka, E. R., & Parker, W. S. (1975). Age specific reproductive tactics. American Naturalist, 109, 453–464.CrossRefGoogle Scholar
  92. Plavcan, J. M. (1994). Comparison of 4 simple methods for estimating sexual dimorphism in fossils. American Journal of Physical Anthropology, 94, 465–476.CrossRefGoogle Scholar
  93. Plavcan, J. M. (1999). Mating systems, intrasexual competition and sexual dimorphism in primates. In P. C. Lee (Ed.), Comparative primate socioecology (pp. 241–269). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  94. Plavcan, J. M. (2000). Inferring social behavior from sexual dimorphism in the fossil record. Journal of Human Evolution, 39, 327–344.CrossRefGoogle Scholar
  95. Plavcan, J. M. (2001). Sexual dimorphism in primate evolution. Yearbook of Physical Anthropology, 44, 25–53.CrossRefGoogle Scholar
  96. Plavcan, J. M. (2003). Scaling relationships between craniofacial sexual dimorphism and body mass dimorphism in primates: Implications for the fossil record. American Journal of Physical Anthropology, 120, 38–60.CrossRefGoogle Scholar
  97. Plavcan, J. M. (2004). Sexual selection, measures of sexual selection, and sexual dimorphism in primates. In P. M. Kappeler & C. P. van Schaik (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 230–252). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  98. Plavcan, J. M., & Gordon, A. D. (2007). Craniodental versus postcranial variables as estimators of size dimorphism in extinct taxa. American Journal of Physical Anthropology, 44, 190.Google Scholar
  99. Plavcan, J. M., & van Schaik, C. P. (1992). Intrasexual competition and canine dimorphism in anthropoid primates. American Journal of Physical Anthropology, 87, 461–477.CrossRefGoogle Scholar
  100. Plavcan, J. M., & van Schaik, C. P. (1997a). Interpreting hominid behavior on the basis of sexual dimorphism. Journal of Human Evolution, 32, 346–374.CrossRefGoogle Scholar
  101. Plavcan, J. M., & van Schaik, C. P. (1997b). Intrasexual competition and body weight dimorphism in anthropoid primates. American Journal of Physical Anthropology, 103, 37–68.CrossRefGoogle Scholar
  102. Plavcan, J. M., van Schaik, C. P., & Kappeler, P. M. (1995). Competition, coalitions and canine size in primates. Journal of Human Evolution, 28, 245–276.CrossRefGoogle Scholar
  103. Plavcan, J. M., Lockwood, C. A., Kimbel, W. H., Lague, M. R., & Harmon, E. H. (2005a). Sexual dimorphism in Australopithecus afarensis revisited: How strong is the case for a human-like pattern of dimorphism? Journal of Human Evolution, 48, 313–320.CrossRefGoogle Scholar
  104. Plavcan, J. M., van Schaik, C. P., & McGraw, W. S. (2005b). Seasonality, social organization, and sexual dimorphism in primates. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates (pp. 401–463). Cambridge : Cambridge University Press.Google Scholar
  105. Plavcan, J. M., Ward, C. V., & Paulus, F. L. (2009). Estimating canine tooth crown height in early Australopithecus. Journal of Human Evolution, 57, 2–10.Google Scholar
  106. Porter, A. M. W. (1995). The body weight of AL 288–1 (Lucy): A new approach using estimates of skeletal length and the body mass index. International Journal of Osteoarchaeology, 5, 203–212.CrossRefGoogle Scholar
  107. Post, E., & Stenseth, N. C. (1999). Climatic variability, plant phenology, and northern ungulates. Ecology, 80, 1322–1339.CrossRefGoogle Scholar
  108. Post, E., Langvatn, R., Forchhamer, M. C., & Stenseth, N. (1999). Environmental variation shapes sexual dimorphism in red deer. Proceedings of the National Academy of Sciences, 96, 4467–4471.CrossRefGoogle Scholar
  109. Ralls, K. (1976). Mammals in which females are larger than males. Quarterly Review of Biology, 51, 245–276.CrossRefGoogle Scholar
  110. Ravosa, M. J., Meyers, D. M., & Glander, K. E. (1993). Relative growth of the limbs and trunk in sifakas: Heterochronic, ecological, and functional considerations. American Journal of Physical Anthropology, 92, 499–520.CrossRefGoogle Scholar
  111. Rehg, J. A., & Leigh, S. R. (1999). Estimating sexual dimorphism and size differences in the fossil record: A test of methods. American Journal of Physical Anthropology, 110, 95–104.CrossRefGoogle Scholar
  112. Reichard, U. (1995). Extra-pair copulations in a monogamous gibbon. Ethology, 100, 99–112.CrossRefGoogle Scholar
  113. Remis, M. (1995). Effects of body size and social context on the arboreal activities of lowland gorillas in the Central African Republic. American Journal of Physical Anthropology, 97, 413–433.CrossRefGoogle Scholar
  114. Reno, P. L., Meindl, R. S., McCollum, M. A., & Lovejoy, C. O. (2003). Sexual dimorphism in Australopithecus afarensis was similar to that of modern humans. Proceedings of the National Academy of Sciences of the United States of America 100, 9404–9409.CrossRefGoogle Scholar
  115. Reno, P. L., Meindl, R. S., McCollum, M. A., & Lovejoy, C. O. (2005). The case is unchanged and remains robust: Australopithecus afarensis exhibits only moderate skeletal dimorphism. Journal of Human Evolution, 49, 279–288.CrossRefGoogle Scholar
  116. Reno, P. L., McCollum, M. A., Meindl, R. S., & Lovejoy, C. O. (2010). An enlarged postcranial sample confirms Australopithecus afarensis dimorphism was similar to modern humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3355–3363.Google Scholar
  117. Richmond, B. G., & Jungers, W. L. (1995). Size variation and sexual dimorphism in Australopithecus afarensis and living hominoids. Journal of Human Evolution, 29, 229–245.CrossRefGoogle Scholar
  118. Rodman, P. S., & Mitani, J. C. (1987). Orangutans: Sexual dimorphism in a solitary species. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate societies (pp. 146–154). Chicago: University of Chicago Press.Google Scholar
  119. Rogers, M. E., Abernethy, K., Bermejo, M., Cipolletta, C., Doran, D., McFarland, K., et al. (2004). Western gorilla diet: a synthesis from six sites. American Journal of Primatology, 64, 173–192.CrossRefGoogle Scholar
  120. Sarmiento, E. E. (2010). Comment on the paleobiology and classification of Ardipithecus ramidus. Science, 328, 1105.Google Scholar
  121. Scott, J. E., & Stroik, L. K. (2006). Bootstrap tests of significance and the case for humanlike skeletal-size dimorphism in Australopithecus afarensis. Journal of Human Evolution, 51, 422–428.CrossRefGoogle Scholar
  122. Simons, E. L., Plavcan, J. M., & Fleagle, J. G. (1999). Canine sexual dimorphism in Egyptian Eocene anthropoid primates: Catopithecus and Proteopithecus. Proceedings of the National Academy of Sciences of the United States of America 96, 2559–2562.CrossRefGoogle Scholar
  123. Smith, R. J. (1996). Biology and body size in human evolution. Current Anthropology, 37, 451–481.CrossRefGoogle Scholar
  124. Smith, R. J. (1999). Statistics of sexual size dimorphism. Journal of Human Evolution, 36, 423–459.CrossRefGoogle Scholar
  125. Smith, R. J., & Cheverud, J. M. (2002). Scaling of sexual dimorphism in body mass: A phylogenetic analysis of Rensch’s rule in Primates. International Journal of Primatology, 23, 1095–1135.CrossRefGoogle Scholar
  126. Sommer, V., & Reichard, U. (2000). Rethinking monogamy: The gibbon case. In P. M. Kappeler (Ed.), Primate males: Causes and consequences of variation in group composition (pp. 159–168). Cambridge: Cambridge University Press.Google Scholar
  127. Stanford, C. B. (2002). Avoiding predators: Expectations and evidence in primate antipredator behavior. International Journal of Primatology, 23, 741–757.CrossRefGoogle Scholar
  128. Sugardjito, J., & van Hooff, J. A. (1986). Age-sex class differences in the positional behaviour of the Sumatran orangutan (Pongo pygmaeus abelii) in the Gunung Leuser National Park, Indonesia. Folia Primatologica, 47, 14–25.CrossRefGoogle Scholar
  129. Sugiyama, Y., & Koman, J. (1987). A preliminary list of chimpanzees’ alimentation at Bossou, Guinea. Primates, 28, 133–147.CrossRefGoogle Scholar
  130. Suwa, G., Asfaw, B., Kono, R. T., Kubo, D., Lovejoy, C. O., & White, T. D. (2009a). The Ardipithecus ramidus skull and its implications for hominid origins. Science, 326, 681–687.Google Scholar
  131. Suwa, G., Kono, R. T., Simpson, S. W., Asfaw, B., Lovejoy, C. O., & White, T. D. (2009b). Paleobiological implications of the Ardipithecus ramidus dentition. Science, 326, 94–99.Google Scholar
  132. Tecot, S. R. (2008). Seasonality and predictability: The hormonal and behavioral responses of the red-bellied lemur, Eulemur rubriventer, in southeastern Madagascar. Ph.D. Dissertation, University of Texas.Google Scholar
  133. Tecot, S. (2013). Variable energetic strategies in disturbed and undisturbed rain forest habitats: fecal cortisol levels in southeastern Madagascar. In J. Masters, M. Gamba, & F. Génin (Eds.). Leaping Ahead: Advances in Prosimian Biology (pp. 185–196). Springer.Google Scholar
  134. Thorén, S., Lindenfors, P., & Kappeler, P. M. (2006). Phylogenetic analyses of dimorphism in primates: Evidence for stronger selection on canine size than on body size. American Journal of Physical Anthropology, 130, 50–59.Google Scholar
  135. Tutin, C. E. G., Ham, R. M., White, L. J. T., & Harrison, M. J. S. (1997). The primate community of the Lope Reserve, Gabon: Diets, responses to fruit scarcity, and effects on biomass. American Journal of Primatology, 42, 1–24.CrossRefGoogle Scholar
  136. Utami, S. S., Goosens, B., Bruford, M. W., de Ruiter, J. R., & van Hooff, J. A. R. A. M. (2002). Male bimaturism and reproductive success in Sumatran orang-utans. Behavioral Ecology, 13, 643–652.CrossRefGoogle Scholar
  137. van Hooff, J. A. R. A. M., & van Schaik, C. P. (1992). Cooperation in competition: The ecology of primate bonds. In A. H. Harcourt & F. M. B. de Waal (Eds.), Coalitions and alliances in humans and other animals (pp. 357–389). Oxford: Oxford University Press.Google Scholar
  138. van Schaik, C. P. (1989). The ecology of social relationships amongst female primates. In V. Standen & F. A. Foley (Eds.), Comparative socioecology: The behavioral ecology of humans and other mammals (pp. 195–218). Oxford: Blackwell Scientific Press.Google Scholar
  139. Ward, C. V., Leakey, M. G., & Walker, A. (2001). Morphology of Australopithecus anamensis from Kanapoi and Allia Bay, Kenya. Journal of Human Evolution, 41, 255–368.CrossRefGoogle Scholar
  140. Ward C. V., Plavcan, J. M., & Manthi, F. K. (2010). Anterior dental evolution in the Australopithecus anamensis-afarensis lineage. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3333–3344.Google Scholar
  141. Washburn, S. L. (1971). The study of human evolution. In P. Dolhinow & V. Sarich (Eds.), Background for man (pp. 82–117). Boston: Little, Brown.Google Scholar
  142. White, T. D., WoldeGabriel, G., Asfaw, B., Ambrose, S., Beyene, Y., Bernor, R. L., Boisserie, J -R., Currie, B., Gilbert, H., Haile-Selassie, Y., Hart, W. K., Hlusko, L. J., Howell, F. C., Kono, R. T., Lehmann, T., Louchart, A., Lovejoy, C. O., Renne, P. R., Saegusa, H., Vrba, E. S., Wesselman, H., & Suwa, G. (2006). Asa Issie, Aramis and the origin of Australopithecus. Nature, 440, 883–889.Google Scholar
  143. Wood B., & Harrison T. (2011). The evolutionary context of the first hominins. Nature, 470, 347–352.Google Scholar
  144. Wrangham, R. W. (1977). Feeding behaviour of chimpanzees in Gombe National Park, Tanzania. In T. H. Clutton-Brock (Ed.), Primate ecology: Studies of feeding and ranging behaviour in lemurs, monkeys, and apes (pp. 503–538). London: Academic Press.Google Scholar
  145. Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour, 75, 262–300.CrossRefGoogle Scholar
  146. Yamagiwa, J., & Basabose, A. K. (2006). Effects of fruit scarcity on foraging strategies of sympatric gorillas and chimpanzees. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates ecological, physical and behavioral aspects (pp. 73–96). Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity at Albany—SUNYAlbanyUSA

Personalised recommendations