Skip to main content

Macro–Micro Thinking with Structure–Property Relations: Integrating ‘Meso-levels’ in Secondary Education

  • Chapter
  • First Online:
Book cover Concepts of Matter in Science Education

Part of the book series: Innovations in Science Education and Technology ((ISET,volume 19))

Abstract

Students often experience that it is difficult to relate (sub)microscopic models to macroscopic phenomena. In line with the works of Millar, and Besson and Viennot, we have explored how to break up this ‘huge’ gap into smaller steps with intermediate ‘meso’-structures that become manifest when using a lens, a microscope, an electron scanning microscope and so on to investigate the nature of materials. Different types of structures such as weaving patterns, a thread, smaller filaments within threads, amorphous and crystalline structures come into focus. Not only the submicroscopic structures, such as molecules and atoms, and their ordering are of importance for the properties of materials and substances, the structures at the ‘intermediate’ meso-levels are related to emergent properties. Based on our experiences how students deal with the learning of intermediate meso-structures within chemistry lessons in secondary education, we present and illustrate the following strategies for designing new curriculum units: (1) conceive a material as system of subsystems on meso- and submicro-levels; (2) use intuitive notions that a property can be explained/predicted by structures within the material; (3) use intuitive notions about ‘structure’ and ‘property’; (4) use explicit scaling of structures; (5) use explicit terminology in modelling and metaphors; (6) use subsequent analogous examples; and (7) use interdisciplinary examples. In this chapter, we show how these strategies are integrated within two units which were used within a recent context-based chemistry curriculum for secondary education in the Netherlands: a unit about inorganic materials and a unit on the development of fire-resistant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera, J. M. (2006). Food product engineering: Building the right structures. Journal of the Science of Food and Agriculture, 86, 1147–1155.

    Article  Google Scholar 

  • Apotheker, J., Bulte, A., De Kleijn, E., Van Koten, G., Meinema, H., & Seller, F. (2010). Scheikunde in de dynamiek van de toekomst, over de ontwikkeling van scheikunde in de school van de 21 e eeuw. Eindrapport van de Stuurgroep nieuwe Scheikunde 2004–2010 [Chemistry in a dynamic future, about the development of school chemistry in the 21st century. Final report New Chemistry 2004–2010]. Enschede: SLO.

    Google Scholar 

  • Arievitch, I. M., & Haenen, J. J. (2005). Connecting socio cultural theory and educational practice: Galperin’s approach. Educational Psychologist, 40(3), 155–165.

    Article  Google Scholar 

  • Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Besson, U., & Viennot, L. (2004). Using models at the mesoscopic scale in teaching physics: Two experimental interventions in solid friction and fluid statics. International Journal of Science Education, 26(9), 1083–1110.

    Article  Google Scholar 

  • Bulte, A. M. W., & Van Mil, M. H. W. (2011). About parts and wholes in chemical and biological systems: reasoning, modeling and visualization strategies to connect macro and micro in chemistry and biology education. In Symposium organised at the ESERA conference, Lyon.

    Google Scholar 

  • Bulte, A. M. W., Houben, L., Meijer, M. R., & Pilot, A. (2008a). Wat een kunst …, nieuwe materialen, sterk, dicht en licht, leerlingentekst [What an art …, new materials, high strength, dense and light weighted; students’ material]. Experimental module for curriculum development in the Netherlands. Retrieved July 2010, from www.examenexperiment.nl

  • Bulte, A. M. W., Meijer, M. R., & Pilot, A. (2008b). Module 2: ‘Reddende luiers bij brand, een toevallige uitvinding duurzaam maken’ Versie 3.1. leerlingentekst, bronnenmateriaal en docentenhandleiding [Diapers and fires, making an invention sustainable, students’ materials and teachers’ manual]. Utrecht: Freudenthal Institute for Science and Mathematics Education & SLO, Universiteit Utrecht.

    Google Scholar 

  • Chi, M. T. H. (2005). Common sense conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences, 14(2), 161–199.

    Article  Google Scholar 

  • Craver, C. F. (2001). Role functions, mechanisms and hierarchy. Philosophy of Science, 68(1), 53–74.

    Article  Google Scholar 

  • Cussler, E. L., & Moggridge, G. D. (2001). Chemical product design. Cambridge: Cambridge University Press.

    Google Scholar 

  • Davidov, V. V. (1990). The concept of theoretical generalization and problems of educational psychology. Studies in Soviet Thought, 36, 169–202.

    Article  Google Scholar 

  • Davidson, D. (2001). Inquiries into truth and interpretation. Oxford: Clarendon.

    Book  Google Scholar 

  • Dolfing, R., Bulte, A. M. W., Pilot, A., & Vermunt, J. D. (2012). Domain-specific expertise of chemistry teachers on context-based education about macro-micro thinking in structure-property relations, accepted for publication. Research in Science Education, 42(3), 567–588. doi:10.1007/s11165-011-9211-z.

    Article  Google Scholar 

  • Framework. (2011). Committee on conceptual framework for the new K-12 science education standards, National Research Council. Retrieved at September 20, 2011, from http://www.nap.edu/catalog.php?record_id=13165

  • Gani, R. (2004). Chemical product design: Challenges and opportunities. Computer and Chemical Engineering, 28, 2441–2457.

    Article  Google Scholar 

  • Gentner, D., & Wolff, P. (2000). Metaphor and knowledge change. In E. Diettrich & A. Markamn (Eds.), Cognitive dynamics: Conceptual change in human and machines (pp. 295–342). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gilbert, J. K. (2006). On the nature of ‘context’ in chemical education. International Journal of Science Education, 28(9), 957–976.

    Article  Google Scholar 

  • Gilbert, J. K., & Treagust, D. F. (2009). Introduction: Macro, submicro and symbolic representations and the relationship between them: Key models in chemistry education. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (Model and modeling in chemical education, Vol. 4, pp. 1–8). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gilbert, J. K., Bulte, A. M. W., & Pilot, A. (2011). Concept development and transfer in context-based science education. International Journal of Science Education, 33(6), 817–837. doi:10.1080/09500693.2010.493185.

    Article  Google Scholar 

  • Harré, R., & Madden, E. H. (1975). Causal powers, a theory of natural necessity. Oxford: Basil Blackwell.

    Google Scholar 

  • Hill, M. (2004). Product and process design for structured products. AICHE Journal, 50(8), 1656–1661.

    Article  Google Scholar 

  • Jones, M. G., & Taylor, A. R. (2009). Developing a sense of scale: Looking backward. Journal of Research in Science Teaching, 46(4), 460–475.

    Article  Google Scholar 

  • Kitagawa, T., Murase, H., & Yabuki, K. (1998). Morphological study on Poly-p-phenylene benzobisoxazole (PBO) fiber. Journal of Polymer Science Part B: Polymer Physics, 36, 39–48.

    Article  Google Scholar 

  • Luisi, P. L. (2002). Emergence in chemistry: Chemistry as the embodiment of emergence. Foundations of Chemistry, 4, 183–200.

    Article  Google Scholar 

  • Meijer, M. R. (2011). Macro-meso-micro thinking with structure-property relations for chemistry education – An explorative design-based study. Ph.D. thesis, Freudenthal Institute for Science and Mathematics Education, Faculty of Science, Utrecht University, FIsme Scientific Library (formerly published as CD-β Scientific Library), Utrecht, nr 65.

    Google Scholar 

  • Meijer, M. R., Bulte, A. M. W., & Pilot, A. (2009). Structure-property relations between macro and micro representations: Relevant meso levels in authentic tasks. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (Model and modeling in chemical education, Vol. 4, pp. 195–213). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Millar, R. (1990). Making sense: What use are particle ideas to children? In P. L. Lijnse, P. Licht, W. de Vos, & A. J. Waarlo (Eds.), Relating macroscopic phenomena to microscopic particles (pp. 283–293). Utrecht: CDβ Press.

    Google Scholar 

  • Pinker, S. (2008). The stuff of thought; language as a window into human nature. London: Penguin.

    Google Scholar 

  • Rappoport, L. T., & Ashkenazi, G. (2008). Connecting levels of representation: Emergent versus submergent perspective. International Journal of Science Education, 30(12), 1585–1603.

    Article  Google Scholar 

  • Rojas, J. A., Rosell, C. M. D., Barber, C. B., Perez-Munuera, I., & Lluch, M. A. (2000). The baking process of wheat rolls followed by cryo scanning electron microscopy. European Food Research and Technology, 212(1), 57–63. doi:10.1007/s002170000209.

    Article  Google Scholar 

  • Scheffel, L., Brockmeier, W., & Parchmann, I. (2009). Historical material in macro-micro thinking: Conceptual change in chemistry education and the history of chemistry. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (Model and modeling in chemical education, Vol. 4, pp. 215–250). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Shen, L., Yang, H., Ying, J., Qiao, F., & Peng, M. (2009). Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites. Journal of Materials Science. Materials in Medicine, 20(11), 2259–2265. doi:10.1007/s10856-009-3785-2.

    Article  Google Scholar 

  • Stolk, M. J., Bulte, A. M. W., De Jong, O., & Pilot, A. (2009a). Strategies for a professional development programme: Empowering teachers for context-based chemistry education. Chemistry Education Research and Practice, 10, 154–163.

    Article  Google Scholar 

  • Stolk, M. J., Bulte, A. M. W., De Jong, O., & Pilot, A. (2009b). Towards a framework for a professional development programme: Empowering teachers for context-based chemistry education. Chemistry Education Research and Practice, 10, 164–175.

    Article  Google Scholar 

  • Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of “structure of matter”. International Journal of Science Education, 31(15), 2123–2136.

    Article  Google Scholar 

  • Tretter, T. R., Jones, M. G., & Minogue, J. (2006). Accuracy of scale conceptions in science: Mental manoeuvrings across many orders of spatial magnitude. Journal of Research in Science Teaching, 43(10), 1061–1085.

    Article  Google Scholar 

  • Van Mil, M. H. W., Boerwinkel, D. J., & Waarlo, A. J. (2013). Modelling molecular mechanisms: A framework of scientific reasoning to construct molecular-level explanations for cellular behaviour. Science Education, 22, 93–118.

    Article  Google Scholar 

  • Van Oers, B. (1998). From context to contextualization. Learning and Instruction, 8, 473–488.

    Article  Google Scholar 

  • Verhoeff, R. P., Waarlo, A. J., & Boersma, K. T. (2008). Systems modelling and the development of coherent understanding of cell biology. International Journal of Science Education, 30(4), 543–568. doi:10.1080/09500690701237780.

    Article  Google Scholar 

  • Walstra, P. (2003). Physical chemistry of food. New York: Marcel Dekker.

    Google Scholar 

  • Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19.

    Article  Google Scholar 

Download references

Acknowledgement 

The authors thank the reviewers of this chapter for their very valuable critiques and comments, which helped to improve the text. Mr. Fridolin van der Lecq is much acknowledged for providing the dedicated photographs of Fig. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid M. W. Bulte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meijer, M.R., Bulte, A.M.W., Pilot, A. (2013). Macro–Micro Thinking with Structure–Property Relations: Integrating ‘Meso-levels’ in Secondary Education. In: Tsaparlis, G., Sevian, H. (eds) Concepts of Matter in Science Education. Innovations in Science Education and Technology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5914-5_20

Download citation

Publish with us

Policies and ethics