Skip to main content

Approximate Evaluation of Eigenfrequencies

  • Chapter
  • First Online:
Analytical Methods in Rotor Dynamics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 9))

  • 3535 Accesses

Abstract

Approximate evaluation of rotors flexural eigenfrequencies is investigated in Chap. 1. However, the formulation is similar for torsional vibrations of shafts or even vibrations of elastic systems in general. The Dunkerley's rule for the determination of lowest eigenfrequency of a lumped-mass, multi-degree-of-freedom elastic shaft is applied along with its extension to higher modes. This procedure generally provides lower bounds for the eigenfrequencies, but its accuracy can be increased at will by means of the root-squaring process, as suggested by Graeffe and Lobachevsky, applicable both to undamped and damped systems. Extension to continuous systems is considered too, and an integral equation formulation of the eigenvalue problem, providing upper and lower bounds for the eigenvalues, which by means of an iterative process can be brought as close as desired. Those methods are useful for predicting bending and torsional fatigue life of rotors and shafts, and furthermore, for developing methodologies for damage detection, and the estimation of position and size of flaws and cracks in rotating machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borel, L.: Vitesses Critiques des Arbres en Rotalion, Imprimerie la Concorde, Lausanne, (1954)

    Google Scholar 

  2. Dimentberg, F.M.: Flexural Vibrations of Rotating Shafts. Butterworths, London (1961)

    Google Scholar 

  3. Tondl, A.: Some Problems of Rotor Dynamics. Chapman and Hall, London (1965)

    Google Scholar 

  4. Gasch, R.: Selbsterregte Biegeschwingungen Rotierender Wellen, Konstruktion, 23, 5, (1971)

    Google Scholar 

  5. Dynamics of rotors IUTAM symposium, Lyngby, Denmark, 1974: Springer, Berlin, 1975

    Google Scholar 

  6. Federn, K.: Auswuchttechnik, Springer, Berlin, (1977)

    Google Scholar 

  7. Dimarogonas, A.D.: Vibration for Engineers, Second Edition edn. Prentice Hall Upper Saddle River, New Jersey (1996)

    Google Scholar 

  8. Dimarogonas, A. D.: Vibration of cracked structures-a state of the art review. Eng. Fract. Mech. 55(5), 831–57, (1996)

    Google Scholar 

  9. Dimarogonas, A. D.: A general method for stability analysis of rotating shafts. Ing. Arch. 44, 9–20, (1975)

    Google Scholar 

  10. Irretier, H.: Mathematical foundations of experimental modal analysis in rotor dynamics. Mech. Syst. Signal Process. 13(2), 183–191 (1999)

    Article  Google Scholar 

  11. Papadopoulos, C. A., Dimarogonas, A. D.: Stability of cracked rotors in the coupled vibration mode. ASME J. Vib. Acoust. Stress Reliab. Des. 110, 356–359, (1988)

    Google Scholar 

  12. Wauer, J.: On the dynamics of cracked rotors: A literature survey. Appl. Mech. Rev. 43(1), 13–17, (1990)

    Google Scholar 

  13. Krawczuk, M., Ostachowicz, W.M.: Transverse natural vibrations of a cracked beam loaded with a constant axial force. J. Vib. Acoust. Trans. ASME 115(4), 524–533 (1995)

    Article  Google Scholar 

  14. Darpe, A.K., Gupta, K., Chawla, A.: Experimental investigations of the response of a cracked rotor to periodic axial excitation. J. Sound Vib. 260(2), 265–286 (2003)

    Article  Google Scholar 

  15. Darpe, A.K., Gupta, K., Chawla, A.: Transient response and breathing behaviour of a cracked Jeffcott rotor. J. Sound Vib. 272(1–2), 207–243 (2004)

    Article  Google Scholar 

  16. Darpe, A.K., Gupta, K., Chawla, A.: Coupled bending, longitudinal and torsional vibrations of a cracked rotor. J. Sound Vib. 269(1–2), 33–60 (2004)

    Article  Google Scholar 

  17. Chondros, T.G.: Variational formulation of a rod under torsional vibration for crack identification. Theoret. Appl. Fract. Mech. 44, 95–104 (2005)

    Article  Google Scholar 

  18. Chondros, T.G., Labeas, G.: Torsional Vibration of a cracked rod by variational formulation and numerical analysis. J. Sound Vib. 301(3–5), 994–1006 (2007)

    Article  Google Scholar 

  19. Georgantzinos, S.K., Anifantis, N.K.: An insight into the breathing mechanism of a crack in a rotating shaft. J. Sound Vib. 318, 279–295 (2008)

    Article  Google Scholar 

  20. Papadopoulos, C.A.: The strain energy release approach for modeling cracks in rotors: A state of the art review. Mech. Syst. Signal Process. 22, 763–789 (2008)

    Article  Google Scholar 

  21. Saridakis, K.M., Chasalevris, A.C., Papadopoulos, C.A., Dentsoras, A.J.: Applying neural networks, genetic algorithms and fuzzy logic for the identification of cracks in shafts by using coupled response measurements. Comput. Struct. 86, 1318–1338 (2008)

    Article  Google Scholar 

  22. Lazan, B.J.: Damping of Materials and Membranes in Structural Mechanics. Pergamon Press, Oxford (1968)

    Google Scholar 

  23. Paipetis, S. A.: On the motion of a linear viscoelastic oscillator, National Technical University of Athens, Scientific Yearbook, (1971)

    Google Scholar 

  24. Bovsunovsky, A.P.: Experimental and analytical study of the damping capacity of multilayer steels. Strength Mater. 27(9), 516–524 (1995)

    Article  Google Scholar 

  25. Panteliou, S.D., Chondros, T.G., Argyrakis, V.C., Dimarogonas, A.D.: Damping factor as an indicator of crack severity. J. Sound Vib. 241(2), 235–245 (2001)

    Article  Google Scholar 

  26. Panteliou, S., Dimarogonas, A.D.: Heat propagation on a shaft due to torsional transient vibration. Int. Commun. Heat Mass Transfer 10(2), 111–122 (1983)

    Article  Google Scholar 

  27. Panteliou, S., Aspragathos, N., Dimarogonas, A. D.: Thermal effects of rotating shafts due to electrical transients causing plastic deformation. Ingenieur Archiv. 53, 173–179, (1983)

    Google Scholar 

  28. Genta, G., Tonoli, A.: A harmonic finite element for the analysis of flexural, torsional and axial rotordynamic behaviour of discs. J. Sound Vib. 196(1), 19–43 (1996)

    Article  Google Scholar 

  29. Wu, J.J.: Torsional vibration analyses of a damped shafting system using tapered shaft element. J. Sound Vib. 306(3–5), 946–954 (2007)

    Article  Google Scholar 

  30. Choi, S.T., Man, S.Y.: Dynamic analysis of geared rotor-bearing systems by the transfer matrix method. J. Mech. Des. Trans. ASME 123(4), 562–568 (2007)

    Article  Google Scholar 

  31. Xia, Z., Zheng, T., Zhang, W.: Nonlinear modeling and dynamic analysis of the rotor-bearing system. Nonlinear Dyn. 57(4), 559–577 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Avramov, K. V., Borysiuk, O. V.: Nonlinear dynamics of one disk asymmetrical rotor supported by two. journal bearings. Nonlinear Dyn. 67(2), 1201–1219, (2012)

    Google Scholar 

  33. Lu Y. J., Ji, L. F., Zhang, Y. F., Wu, Y., Liu, Y. Y., Yu, L.: Dynamic behaviours of the rotor non-linear system with fixed-tilting-pad journal bearings support. In: Proceedings of the Institution of Mechanical Engineers, Part J: J. Eng. Tribol. 224(10), 1037–1047, (2010)

    Google Scholar 

  34. Ho, J.C., Yeo, H., Ormiston, R.A.: Investigation of rotor blade structural dynamics and modeling based on measured airloads. J. Aircr. 45(5), 1631–1642 (2007)

    Article  Google Scholar 

  35. Fusato, D., Guglieri, G., Celi, R.: Flight dynamics of an articulated rotor helicopter with an external slung load. J. Am. Helicopter Soc. 46(1), 3–13 (2001)

    Article  Google Scholar 

  36. Paipetis, S.A., Theocharis, P.S., Marchese, A.: Dynamic properties of plastically pretorsion mild steel. Materialpruefung 20(10), 378–380 (1978)

    Google Scholar 

  37. Paipetis, S.A.: Dynamic properties of plastically prestressed aluminium. Materialpruefung 21(6), 198–201 (1979)

    Google Scholar 

  38. Sinha, S.K.: Dynamic characteristics of a flexible bladed-rotor with Coulomb damping due to tip-rub. J. Sound Vib. 273(4–5), 875–919 (2004)

    Article  Google Scholar 

  39. Dimarogonas, A.D., Massouros, G.: Torsional vibration of a shaft with a circumferential crack. Eng. Fracture Mech. 15, 439–444 (1981)

    Article  Google Scholar 

  40. Samarin, V. K.: Possibilities of inspecting the damage of materials on the basis of the change in the frequency of natural oscillations of samples. Problemy Prochnosti 6, 61–64, (1978)

    Google Scholar 

  41. Dimarogonas, A. D., Papadopoulos, A. C.: Vibration of cracked shafts in bending. J. Sound Vib. 91(4), 583–593, (1983)

    Google Scholar 

  42. Papadopoulos, C. A., Dimarogonas, A. D.: Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J. Sound Vib. 117(1), 81–93, (1987)

    Google Scholar 

  43. Papadopoulos, C. A., Dimarogonas, A. D.: Coupling of bending and torsional vibrations of a cracked timoshenko shaft. Ingenieur Archive (Replaced by Archive of Applied Mechanics), 57(4), 257–66, (1987)

    Google Scholar 

  44. Papadopoulos, C. A., Dimarogonas, A. D.: Stability of cracked rotors in the coupled vibration mode. J. Vib. Acoust. Stress Rel. Des. 110(3), 356–59, (1988)

    Google Scholar 

  45. Andrieux, S., Vare, C.: A 3D cracked beam model with unilateral contact. Application to rotors. Eur. J. Mech. A/Solids 21, 793–810 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Papadopoulos, C. A.: The strain energy release approach for modelling cracks in rotors: A state of the art review, published in the special issue of mechanical systems and signal processing for crack effects in rotordynamics. 22(4), 763–89, (2008)

    Google Scholar 

  47. Tong, K.N.: Theory of Mechanical Vibration. Wiley, New York (1963)

    MATH  Google Scholar 

  48. Meirovitch, L.: Elements of Vibration Analysis. McGraw-Hill, Tokyo (1975)

    MATH  Google Scholar 

  49. Bishop, R.E.D., Johnson, D.C.: The Mechanics of Vibration. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

  50. Bishop, R, E. D., Gladwell, G. M. L., Michaelson, S.: The Matrix Analysis of Vibration, Cambridge University Press, Cambridge, (1979)

    Google Scholar 

  51. Young, C.Y.: Random Vibration of Structures. Wiley, New York (1986)

    Google Scholar 

  52. Norton, M.P.: Fundamentals of Noise and Vibration Analysis for Engineers. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  53. Centa, C.: Vibration of Structures and Machines. Springer, New York (1993)

    Google Scholar 

  54. Traupel, W: Thermische turbomaschinen, Springer, Berlin, (1968)

    Google Scholar 

  55. Fadeev, D.K., Fadeeva, V.N.: Computational Methods of Linear Algebra. Freeman and Co., San Francisco (1963)

    Google Scholar 

  56. Dunkerley, S.: On the whirling and vibration of shafts. Phil. Trans. Roy. Soc. A 185, Part I, 279–360, (1894)

    Google Scholar 

  57. Paipetis, S.A.: A Dunkerley procedure for higher modes. Acustica 49(1), 73–76 (1981)

    MATH  Google Scholar 

  58. Hidalgo, J. I., Dhingra, A. K.: High-speed balancing of rotors with overhangs: When is overhang likely to cause problems? J. Test. Eval. 34(3), 218–223, (2006)

    Google Scholar 

  59. Timoshenko, S., Woinowski-Krieger, S.: Theory of Plates and Shells. McGraw-Hill Book Co., Inc., New York (1954)

    Google Scholar 

  60. Jacobsen, L.S., Ayre, R.S.: Engineering Vibrations. McGraw-Hill Book Co., Inc., New York (1958)

    Google Scholar 

  61. Demidovich, B.P., Maron, I.A.: Computational Mathematics. Mir Publishers, Moscow (1976)

    MATH  Google Scholar 

  62. Scarborough, J.B.: Numerical Mathematical Analysis. Johns Hopkins Press, Baltimore (1966)

    MATH  Google Scholar 

  63. Geipel, G.: Rechnerisches Verfahren zur Ermittlung der biegekritischen Grund-Schwingungen zweifach gelagerter Wellen, Konstruktion, 13(5), 199–201, (1961)

    Google Scholar 

  64. Penny, J.E., Reed, J.R.: An integral equation approach to the fundamental frequency of vibrating beams. J. Sound Vibr. 19(4), 393–400 (1971)

    Article  MATH  Google Scholar 

  65. Rutenberg, A.: A lower bound for Dunkerley’s formula in continuous elastic systems. J. Sound Vibr. 45(2), 249–252 (1976)

    Article  MATH  Google Scholar 

  66. Meirovitch, L.: Analytical Methods in Vibrations. Mc Millan Co., New York (1967)

    MATH  Google Scholar 

  67. Kanwal, R.P.: Linear Integral Equations. Academic Press, New York (1971)

    MATH  Google Scholar 

  68. Brown, F.T.: Engineering System Dynamics, 2nd edn. CRC, Taylor and Francis, London (2007)

    Google Scholar 

  69. Stoisser, C.M., Audebert, S.: A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery. Mech. Syst. Signal Process. 22, 818–844 (2008)

    Article  Google Scholar 

  70. Mukherjee, A., Rastogi, V., Dasgupta, A.: Extension of Lagrangian-Hamiltonian mechanics for continuous systems investigation of dynamics of a one-dimensional internally damped rotor driven through a dissipative coupling. Nonlinear Dyn. 58(1–2), 107–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Chondros .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dimarogonas, A.D., Paipetis, S.A., Chondros, T.G. (2013). Approximate Evaluation of Eigenfrequencies. In: Analytical Methods in Rotor Dynamics. Mechanisms and Machine Science, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5905-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5905-3_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5904-6

  • Online ISBN: 978-94-007-5905-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics