Advertisement

Approximate Evaluation of Eigenfrequencies

  • Andrew D. Dimarogonas
  • Stefanos A. Paipetis
  • Thomas G. Chondros
Chapter
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 9)

Abstract

Approximate evaluation of rotors flexural eigenfrequencies is investigated in Chap. 1. However, the formulation is similar for torsional vibrations of shafts or even vibrations of elastic systems in general. The Dunkerley's rule for the determination of lowest eigenfrequency of a lumped-mass, multi-degree-of-freedom elastic shaft is applied along with its extension to higher modes. This procedure generally provides lower bounds for the eigenfrequencies, but its accuracy can be increased at will by means of the root-squaring process, as suggested by Graeffe and Lobachevsky, applicable both to undamped and damped systems. Extension to continuous systems is considered too, and an integral equation formulation of the eigenvalue problem, providing upper and lower bounds for the eigenvalues, which by means of an iterative process can be brought as close as desired. Those methods are useful for predicting bending and torsional fatigue life of rotors and shafts, and furthermore, for developing methodologies for damage detection, and the estimation of position and size of flaws and cracks in rotating machinery.

Keywords

Critical Speed Torsional Vibration Equal Mass Elastic System Complex Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Borel, L.: Vitesses Critiques des Arbres en Rotalion, Imprimerie la Concorde, Lausanne, (1954)Google Scholar
  2. 2.
    Dimentberg, F.M.: Flexural Vibrations of Rotating Shafts. Butterworths, London (1961)Google Scholar
  3. 3.
    Tondl, A.: Some Problems of Rotor Dynamics. Chapman and Hall, London (1965)Google Scholar
  4. 4.
    Gasch, R.: Selbsterregte Biegeschwingungen Rotierender Wellen, Konstruktion, 23, 5, (1971)Google Scholar
  5. 5.
    Dynamics of rotors IUTAM symposium, Lyngby, Denmark, 1974: Springer, Berlin, 1975Google Scholar
  6. 6.
    Federn, K.: Auswuchttechnik, Springer, Berlin, (1977)Google Scholar
  7. 7.
    Dimarogonas, A.D.: Vibration for Engineers, Second Edition edn. Prentice Hall Upper Saddle River, New Jersey (1996)Google Scholar
  8. 8.
    Dimarogonas, A. D.: Vibration of cracked structures-a state of the art review. Eng. Fract. Mech. 55(5), 831–57, (1996)Google Scholar
  9. 9.
    Dimarogonas, A. D.: A general method for stability analysis of rotating shafts. Ing. Arch. 44, 9–20, (1975)Google Scholar
  10. 10.
    Irretier, H.: Mathematical foundations of experimental modal analysis in rotor dynamics. Mech. Syst. Signal Process. 13(2), 183–191 (1999)CrossRefGoogle Scholar
  11. 11.
    Papadopoulos, C. A., Dimarogonas, A. D.: Stability of cracked rotors in the coupled vibration mode. ASME J. Vib. Acoust. Stress Reliab. Des. 110, 356–359, (1988)Google Scholar
  12. 12.
    Wauer, J.: On the dynamics of cracked rotors: A literature survey. Appl. Mech. Rev. 43(1), 13–17, (1990)Google Scholar
  13. 13.
    Krawczuk, M., Ostachowicz, W.M.: Transverse natural vibrations of a cracked beam loaded with a constant axial force. J. Vib. Acoust. Trans. ASME 115(4), 524–533 (1995)CrossRefGoogle Scholar
  14. 14.
    Darpe, A.K., Gupta, K., Chawla, A.: Experimental investigations of the response of a cracked rotor to periodic axial excitation. J. Sound Vib. 260(2), 265–286 (2003)CrossRefGoogle Scholar
  15. 15.
    Darpe, A.K., Gupta, K., Chawla, A.: Transient response and breathing behaviour of a cracked Jeffcott rotor. J. Sound Vib. 272(1–2), 207–243 (2004)CrossRefGoogle Scholar
  16. 16.
    Darpe, A.K., Gupta, K., Chawla, A.: Coupled bending, longitudinal and torsional vibrations of a cracked rotor. J. Sound Vib. 269(1–2), 33–60 (2004)CrossRefGoogle Scholar
  17. 17.
    Chondros, T.G.: Variational formulation of a rod under torsional vibration for crack identification. Theoret. Appl. Fract. Mech. 44, 95–104 (2005)CrossRefGoogle Scholar
  18. 18.
    Chondros, T.G., Labeas, G.: Torsional Vibration of a cracked rod by variational formulation and numerical analysis. J. Sound Vib. 301(3–5), 994–1006 (2007)CrossRefGoogle Scholar
  19. 19.
    Georgantzinos, S.K., Anifantis, N.K.: An insight into the breathing mechanism of a crack in a rotating shaft. J. Sound Vib. 318, 279–295 (2008)CrossRefGoogle Scholar
  20. 20.
    Papadopoulos, C.A.: The strain energy release approach for modeling cracks in rotors: A state of the art review. Mech. Syst. Signal Process. 22, 763–789 (2008)CrossRefGoogle Scholar
  21. 21.
    Saridakis, K.M., Chasalevris, A.C., Papadopoulos, C.A., Dentsoras, A.J.: Applying neural networks, genetic algorithms and fuzzy logic for the identification of cracks in shafts by using coupled response measurements. Comput. Struct. 86, 1318–1338 (2008)CrossRefGoogle Scholar
  22. 22.
    Lazan, B.J.: Damping of Materials and Membranes in Structural Mechanics. Pergamon Press, Oxford (1968)Google Scholar
  23. 23.
    Paipetis, S. A.: On the motion of a linear viscoelastic oscillator, National Technical University of Athens, Scientific Yearbook, (1971)Google Scholar
  24. 24.
    Bovsunovsky, A.P.: Experimental and analytical study of the damping capacity of multilayer steels. Strength Mater. 27(9), 516–524 (1995)CrossRefGoogle Scholar
  25. 25.
    Panteliou, S.D., Chondros, T.G., Argyrakis, V.C., Dimarogonas, A.D.: Damping factor as an indicator of crack severity. J. Sound Vib. 241(2), 235–245 (2001)CrossRefGoogle Scholar
  26. 26.
    Panteliou, S., Dimarogonas, A.D.: Heat propagation on a shaft due to torsional transient vibration. Int. Commun. Heat Mass Transfer 10(2), 111–122 (1983)CrossRefGoogle Scholar
  27. 27.
    Panteliou, S., Aspragathos, N., Dimarogonas, A. D.: Thermal effects of rotating shafts due to electrical transients causing plastic deformation. Ingenieur Archiv. 53, 173–179, (1983)Google Scholar
  28. 28.
    Genta, G., Tonoli, A.: A harmonic finite element for the analysis of flexural, torsional and axial rotordynamic behaviour of discs. J. Sound Vib. 196(1), 19–43 (1996)CrossRefGoogle Scholar
  29. 29.
    Wu, J.J.: Torsional vibration analyses of a damped shafting system using tapered shaft element. J. Sound Vib. 306(3–5), 946–954 (2007)CrossRefGoogle Scholar
  30. 30.
    Choi, S.T., Man, S.Y.: Dynamic analysis of geared rotor-bearing systems by the transfer matrix method. J. Mech. Des. Trans. ASME 123(4), 562–568 (2007)CrossRefGoogle Scholar
  31. 31.
    Xia, Z., Zheng, T., Zhang, W.: Nonlinear modeling and dynamic analysis of the rotor-bearing system. Nonlinear Dyn. 57(4), 559–577 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Avramov, K. V., Borysiuk, O. V.: Nonlinear dynamics of one disk asymmetrical rotor supported by two. journal bearings. Nonlinear Dyn. 67(2), 1201–1219, (2012)Google Scholar
  33. 33.
    Lu Y. J., Ji, L. F., Zhang, Y. F., Wu, Y., Liu, Y. Y., Yu, L.: Dynamic behaviours of the rotor non-linear system with fixed-tilting-pad journal bearings support. In: Proceedings of the Institution of Mechanical Engineers, Part J: J. Eng. Tribol. 224(10), 1037–1047, (2010)Google Scholar
  34. 34.
    Ho, J.C., Yeo, H., Ormiston, R.A.: Investigation of rotor blade structural dynamics and modeling based on measured airloads. J. Aircr. 45(5), 1631–1642 (2007)CrossRefGoogle Scholar
  35. 35.
    Fusato, D., Guglieri, G., Celi, R.: Flight dynamics of an articulated rotor helicopter with an external slung load. J. Am. Helicopter Soc. 46(1), 3–13 (2001)CrossRefGoogle Scholar
  36. 36.
    Paipetis, S.A., Theocharis, P.S., Marchese, A.: Dynamic properties of plastically pretorsion mild steel. Materialpruefung 20(10), 378–380 (1978)Google Scholar
  37. 37.
    Paipetis, S.A.: Dynamic properties of plastically prestressed aluminium. Materialpruefung 21(6), 198–201 (1979)Google Scholar
  38. 38.
    Sinha, S.K.: Dynamic characteristics of a flexible bladed-rotor with Coulomb damping due to tip-rub. J. Sound Vib. 273(4–5), 875–919 (2004)CrossRefGoogle Scholar
  39. 39.
    Dimarogonas, A.D., Massouros, G.: Torsional vibration of a shaft with a circumferential crack. Eng. Fracture Mech. 15, 439–444 (1981)CrossRefGoogle Scholar
  40. 40.
    Samarin, V. K.: Possibilities of inspecting the damage of materials on the basis of the change in the frequency of natural oscillations of samples. Problemy Prochnosti 6, 61–64, (1978)Google Scholar
  41. 41.
    Dimarogonas, A. D., Papadopoulos, A. C.: Vibration of cracked shafts in bending. J. Sound Vib. 91(4), 583–593, (1983)Google Scholar
  42. 42.
    Papadopoulos, C. A., Dimarogonas, A. D.: Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J. Sound Vib. 117(1), 81–93, (1987)Google Scholar
  43. 43.
    Papadopoulos, C. A., Dimarogonas, A. D.: Coupling of bending and torsional vibrations of a cracked timoshenko shaft. Ingenieur Archive (Replaced by Archive of Applied Mechanics), 57(4), 257–66, (1987)Google Scholar
  44. 44.
    Papadopoulos, C. A., Dimarogonas, A. D.: Stability of cracked rotors in the coupled vibration mode. J. Vib. Acoust. Stress Rel. Des. 110(3), 356–59, (1988)Google Scholar
  45. 45.
    Andrieux, S., Vare, C.: A 3D cracked beam model with unilateral contact. Application to rotors. Eur. J. Mech. A/Solids 21, 793–810 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Papadopoulos, C. A.: The strain energy release approach for modelling cracks in rotors: A state of the art review, published in the special issue of mechanical systems and signal processing for crack effects in rotordynamics. 22(4), 763–89, (2008)Google Scholar
  47. 47.
    Tong, K.N.: Theory of Mechanical Vibration. Wiley, New York (1963)zbMATHGoogle Scholar
  48. 48.
    Meirovitch, L.: Elements of Vibration Analysis. McGraw-Hill, Tokyo (1975)zbMATHGoogle Scholar
  49. 49.
    Bishop, R.E.D., Johnson, D.C.: The Mechanics of Vibration. Cambridge University Press, Cambridge (1979)zbMATHGoogle Scholar
  50. 50.
    Bishop, R, E. D., Gladwell, G. M. L., Michaelson, S.: The Matrix Analysis of Vibration, Cambridge University Press, Cambridge, (1979)Google Scholar
  51. 51.
    Young, C.Y.: Random Vibration of Structures. Wiley, New York (1986)Google Scholar
  52. 52.
    Norton, M.P.: Fundamentals of Noise and Vibration Analysis for Engineers. Cambridge University Press, Cambridge (1989)Google Scholar
  53. 53.
    Centa, C.: Vibration of Structures and Machines. Springer, New York (1993)Google Scholar
  54. 54.
    Traupel, W: Thermische turbomaschinen, Springer, Berlin, (1968)Google Scholar
  55. 55.
    Fadeev, D.K., Fadeeva, V.N.: Computational Methods of Linear Algebra. Freeman and Co., San Francisco (1963)Google Scholar
  56. 56.
    Dunkerley, S.: On the whirling and vibration of shafts. Phil. Trans. Roy. Soc. A 185, Part I, 279–360, (1894)Google Scholar
  57. 57.
    Paipetis, S.A.: A Dunkerley procedure for higher modes. Acustica 49(1), 73–76 (1981)zbMATHGoogle Scholar
  58. 58.
    Hidalgo, J. I., Dhingra, A. K.: High-speed balancing of rotors with overhangs: When is overhang likely to cause problems? J. Test. Eval. 34(3), 218–223, (2006)Google Scholar
  59. 59.
    Timoshenko, S., Woinowski-Krieger, S.: Theory of Plates and Shells. McGraw-Hill Book Co., Inc., New York (1954)Google Scholar
  60. 60.
    Jacobsen, L.S., Ayre, R.S.: Engineering Vibrations. McGraw-Hill Book Co., Inc., New York (1958)Google Scholar
  61. 61.
    Demidovich, B.P., Maron, I.A.: Computational Mathematics. Mir Publishers, Moscow (1976)zbMATHGoogle Scholar
  62. 62.
    Scarborough, J.B.: Numerical Mathematical Analysis. Johns Hopkins Press, Baltimore (1966)zbMATHGoogle Scholar
  63. 63.
    Geipel, G.: Rechnerisches Verfahren zur Ermittlung der biegekritischen Grund-Schwingungen zweifach gelagerter Wellen, Konstruktion, 13(5), 199–201, (1961)Google Scholar
  64. 64.
    Penny, J.E., Reed, J.R.: An integral equation approach to the fundamental frequency of vibrating beams. J. Sound Vibr. 19(4), 393–400 (1971)zbMATHCrossRefGoogle Scholar
  65. 65.
    Rutenberg, A.: A lower bound for Dunkerley’s formula in continuous elastic systems. J. Sound Vibr. 45(2), 249–252 (1976)zbMATHCrossRefGoogle Scholar
  66. 66.
    Meirovitch, L.: Analytical Methods in Vibrations. Mc Millan Co., New York (1967)zbMATHGoogle Scholar
  67. 67.
    Kanwal, R.P.: Linear Integral Equations. Academic Press, New York (1971)zbMATHGoogle Scholar
  68. 68.
    Brown, F.T.: Engineering System Dynamics, 2nd edn. CRC, Taylor and Francis, London (2007)Google Scholar
  69. 69.
    Stoisser, C.M., Audebert, S.: A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery. Mech. Syst. Signal Process. 22, 818–844 (2008)CrossRefGoogle Scholar
  70. 70.
    Mukherjee, A., Rastogi, V., Dasgupta, A.: Extension of Lagrangian-Hamiltonian mechanics for continuous systems investigation of dynamics of a one-dimensional internally damped rotor driven through a dissipative coupling. Nonlinear Dyn. 58(1–2), 107–127 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andrew D. Dimarogonas
    • 1
  • Stefanos A. Paipetis
    • 2
  • Thomas G. Chondros
    • 2
  1. 1.Mechanical Engineering DepartmentWashington UniversitySt. LouisUSA
  2. 2.Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations