Advertisement

Effects of Ultraviolet Radiation on Skin Cell Proteome

  • Riikka Pastila
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 990)

Abstract

Ultraviolet (UV) radiation is known to cause both positive and negative health effects for humans. The synthesis of vitamin D is one of the rare beneficial effects of UV. The negative effects, such as sunburn and premature photoaging of the skin, increase the risk of skin cancer, which is the most detrimental health consequence of UV radiation. Although proteomics has been extensively applied in various areas of the biomedical field, this technique has not been commonly used in the cutaneous biology. Proteome maps of human keratinocytes and of murine skin have been established to characterize the cutaneous responses and the age-related differences. There are very few publications, in which proteomic techniques have been utilized in photobiology and hence there is no systematic research data available of the UV effects on the skin proteome. The proteomic studies have mainly focused on the UV-induced photoaging, which is the consequence of the long-term chronic UV exposure. Since the use of proteomics has been very narrow in the photobiology, there is room for new studies. Proteomics would offer a cost-effective way to large-scale screen the possible target molecules involved in the UV-derived photodamage, especially what the large-scale effects are after the acute and chronic exposure on the different skin cell populations.

Keywords

Proteome Skin Non-ionizing radiation Ultraviolet radiation Photo aging Skin cancer Melanoma 

References

  1. 1.
    Ullrich SE (2005) Mechanisms underlying UV-induced immune suppression. Mutat Res 571:185–205PubMedCrossRefGoogle Scholar
  2. 2.
    Diffey BL (1998) Ultraviolet radiation and human health. Clin Dermatol 16:83–89PubMedCrossRefGoogle Scholar
  3. 3.
    Matsumura Y, Ananthaswamy HN (2004) Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 195:298–308PubMedCrossRefGoogle Scholar
  4. 4.
    Melnikova VO, Ananthaswamy HN (2005) Cellular and molecular events leading to the development of skin cancer. Mutat Res 571:91–106PubMedCrossRefGoogle Scholar
  5. 5.
    Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17PubMedCrossRefGoogle Scholar
  6. 6.
    Pfeifer GP, You YH, Besaratinia A (2005) Mutations induced by ultraviolet light. Mutat Res 571:19–31PubMedCrossRefGoogle Scholar
  7. 7.
    Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88:10124–10128PubMedCrossRefGoogle Scholar
  8. 8.
    Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, Remington L, Jacks T, Brash DE (1994) Sunburn and p53 in the onset of skin cancer. Nature 372:773–776PubMedCrossRefGoogle Scholar
  9. 9.
    Ziegler A, Jonason A, Simon J, Leffell D, Brash DE (1996) Tumor suppressor gene mutations and photocarcinogenesis. Photochem Photobiol 63:432–435PubMedCrossRefGoogle Scholar
  10. 10.
    Kondo S (2000) The roles of cytokines in photoaging. J Dermatol Sci 23(Suppl 1):S30–S36PubMedCrossRefGoogle Scholar
  11. 11.
    Jansen BJ, Schalkwijk J (2003) Transcriptomics and proteomics of human skin. Brief Funct Genomic Proteomic 1:326–341PubMedCrossRefGoogle Scholar
  12. 12.
    Huang CM, Elmets CA, Van Kampen KR, DeSilva TS, Barnes S, Kim H, Tang DC (2005) Prospective highlights of functional skin proteomics. Mass Spectrom Rev 24:647–660PubMedCrossRefGoogle Scholar
  13. 13.
    Celis JE, Rasmussen HH, Madsen P, Leffers H, Honore B, Dejgaard K, Gesser B, Olsen E, Gromov P, Hoffmann HJ et al (1992) The human keratinocyte two-dimensional gel protein database (update 1992): towards an integrated approach to the study of cell proliferation, differentiation and skin diseases. Electrophoresis 13:893–959PubMedCrossRefGoogle Scholar
  14. 14.
    Celis JE, Rasmussen HH, Olsen E, Madsen P, Leffers H, Honore B, Dejgaard K, Gromov P, Hoffmann HJ, Nielsen M et al (1993) The human keratinocyte two-dimensional gel protein database: update 1993. Electrophoresis 14:1091–1198PubMedCrossRefGoogle Scholar
  15. 15.
    Celis JE, Rasmussen HH, Olsen E, Madsen P, Leffers H, Honore B, Dejgaard K, Gromov P, Vorum H, Vassilev A et al (1994) The human keratinocyte two-dimensional protein database (update 1994): towards an integrated approach to the study of cell proliferation, differentiation and skin diseases. Electrophoresis 15:1349–1458PubMedCrossRefGoogle Scholar
  16. 16.
    Celis JE, Rasmussen HH, Gromov P, Olsen E, Madsen P, Leffers H, Honore B, Dejgaard K, Vorum H, Kristensen DB et al (1995) The human keratinocyte two-dimensional gel protein database (update 1995): mapping components of signal transduction pathways. Electrophoresis 16:2177–2240PubMedCrossRefGoogle Scholar
  17. 17.
    Celis JE, Ostergaard M, Jensen NA, Gromova I, Rasmussen HH, Gromov P (1998) Human and mouse proteomic databases: novel resources in the protein universe. FEBS Lett 430:64–72PubMedCrossRefGoogle Scholar
  18. 18.
    Gromov P, Skovgaard GL, Palsdottir H, Gromova I, Ostergaard M, Celis JE (2003) Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon-gamma-induced polypeptides that includes manganese-superoxide dismutase and the p85beta subunit of phosphatidylinositol 3-kinase. Mol Cell Proteomics 2:70–84PubMedCrossRefGoogle Scholar
  19. 19.
    Oh JE, Krapfenbauer K, Lubec G (2004) Proteomic identification of collagens and related proteins in human fibroblasts. Amino Acids 27:305–311PubMedCrossRefGoogle Scholar
  20. 20.
    Blonder J, Terunuma A, Conrads TP, Chan KC, Yee C, Lucas DA, Schaefer CF, Yu LR, Issaq HJ, Veenstra TD, Vogel JC (2004) A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry. J Invest Dermatol 123:691–699PubMedCrossRefGoogle Scholar
  21. 21.
    Palmfeldt J, Vang S, Stenbroen V, Pedersen CB, Christensen JH, Bross P, Gregersen N (2009) Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress. Proteome Sci 7:20PubMedCrossRefGoogle Scholar
  22. 22.
    Chi A, Valencia JC, Hu ZZ, Watabe H, Yamaguchi H, Mangini NJ, Huang H, Canfield VA, Cheng KC, Yang F, Abe R, Yamagishi S, Shabanowitz J, Hearing VJ, Wu C, Appella E, Hunt DF (2006) Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. J Proteome Res 5:3135–3144PubMedCrossRefGoogle Scholar
  23. 23.
    Raymond AA, de Gonzalez PA, Stella A, Ishida-Yamamoto A, Bouyssie D, Serre G, Monsarrat B, Simon M (2008) Lamellar bodies of human epidermis: proteomics characterization by high throughput mass spectrometry and possible involvement of CLIP-170 in their trafficking/secretion. Mol Cell Proteomics 7:2151–2175PubMedCrossRefGoogle Scholar
  24. 24.
    Huang CM, Foster KW, DeSilva T, Zhang J, Shi Z, Yusuf N, Van Kampen KR, Elmets CA, Tang DC (2003) Comparative proteomic profiling of murine skin. J Invest Dermatol 121:51–64PubMedCrossRefGoogle Scholar
  25. 25.
    Huang CM, Xu H, Wang CC, Elmets CA (2005) Proteomic characterization of skin and epidermis in response to environmental agents. Expert Rev Proteomics 2:809–820PubMedCrossRefGoogle Scholar
  26. 26.
    Scott DK, Lord R, Muller HK, Malley RC, Woods GM (2007) Proteomics identifies enhanced expression of stefin A in neonatal murine skin compared with adults: functional implications. Br J Dermatol 156:1156–1162PubMedCrossRefGoogle Scholar
  27. 27.
    Muller HK, Malley RC, McGee HM, Scott DK, Wozniak T, Woods GM (2008) Effect of UV radiation on the neonatal skin immune system- implications for melanoma. Photochem Photobiol 84:47–54PubMedCrossRefGoogle Scholar
  28. 28.
    Yan Y, Xu H, Peng S, Zhao W, Wang B (2010) Proteome analysis of ultraviolet-B-induced protein expression in vitro human dermal fibroblasts. Photodermatol Photoimmunol Photomed 26:318–326PubMedCrossRefGoogle Scholar
  29. 29.
    Bertrand-Vallery V, Belot N, Dieu M, Delaive E, Ninane N, Demazy C, Raes M, Salmon M, Poumay Y, Debacq-Chainiaux F, Toussaint O (2010) Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor. PLoS One 5:e10462PubMedCrossRefGoogle Scholar
  30. 30.
    Kapp LN, Painter RB (1989) Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells. Int J Radiat Biol 56:667–675PubMedCrossRefGoogle Scholar
  31. 31.
    Lamore SD, Qiao S, Horn D, Wondrak GT (2010) Proteomic identification of cathepsin B and nucleophosmin as novel UVA-targets in human skin fibroblasts. Photochem Photobiol 86:1307–1317PubMedCrossRefGoogle Scholar
  32. 32.
    Uhm YK, Jung KH, Bu HJ, Jung MY, Lee MH, Lee S, Lee S, Kim HK, Yim SV (2010) Effects of Machilus thunbergii Sieb et Zucc on UV-induced photoaging in hairless mice. Phytother Res 24:1339–1346PubMedCrossRefGoogle Scholar
  33. 33.
    Hensbergen P, Alewijnse A, Kempenaar J, van der Schors RC, Balog CA, Deelder A, Beumer G, Ponec M, Tensen CP (2005) Proteomic profiling identifies an UV-induced activation of cofilin-1 and destrin in human epidermis. J Invest Dermatol 124: 818–824PubMedCrossRefGoogle Scholar
  34. 34.
    Rezaul K, Wilson LL, Han DK (2008) Direct tissue proteomics in human diseases: potential applications to melanoma research. Expert Rev Proteomics 5:405–412PubMedCrossRefGoogle Scholar
  35. 35.
    Sabel MS, Liu Y, Lubman DM (2011) Proteomics in melanoma biomarker discovery: great potential, many obstacles. Int J Proteomics 2011:181890PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.STUK – Radiation and Nuclear Safety AuthorityHelsinkiFinland

Personalised recommendations