Skip to main content

Ionizing Radiation Effects on Cells, Organelles and Tissues on Proteome Level

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 990))

Abstract

This chapter will review the proteome alterations induced by ionizing radiation in cellular systems or using animal models with whole body or localised exposure. The recent developments in qualitative and quantitative proteome analysis using formalin-fixed paraffin-embedded material from radiobiology archives will be illustrated. The development of promising protein targets to be used as radiation biomarkers in future molecular epidemiology studies is described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marsden PA, Goligorsky MS, Brenner BM (1991) Endothelial cell biology in relation to current concepts of vessel wall structure and function. J Am Soc Nephrol 1(7):931–948

    PubMed  CAS  Google Scholar 

  2. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  PubMed  CAS  Google Scholar 

  3. Luscher TF, Richard V, Tschudi M, Yang ZH, Boulanger C (1990) Endothelial control of vascular tone in large and small coronary arteries. J Am Coll Cardiol 15(3):519–527

    Article  PubMed  CAS  Google Scholar 

  4. Herrera MD, Mingorance C, Rodriguez-Rodriguez R, Sotomayor MA (2009) Endothelial dysfunction and aging: an update. Ageing Res Rev 9(2):142–152

    Article  PubMed  Google Scholar 

  5. Falk E, Fernandez-Ortiz A (1995) Role of thrombosis in atherosclerosis and its complications. Am J Cardiol 75(6):3B–11B

    Article  PubMed  CAS  Google Scholar 

  6. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340(2):115–126

    Article  PubMed  CAS  Google Scholar 

  7. Pluder F, Barjaktarovic Z, Azimzadeh O, Mortl S, Kramer A, Steininger S, Sarioglu H, Leszczynski D, Nylund R, Hakanen A, Sriharshan A, Atkinson MJ, Tapio S (2011) Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. Radiat Environ Biophys 50(1):155–166. doi:10.1007/s00411-010-0342-9

    Article  PubMed  CAS  Google Scholar 

  8. Nylund R, Leszczynski D (2004) Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 4(5): 1359–1365

    Article  PubMed  CAS  Google Scholar 

  9. Nylund R, Leszczynski D (2006) Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics 6(17):4769–4780

    Article  PubMed  CAS  Google Scholar 

  10. Boerma M, Burton GR, Wang J, Fink LM, McGehee RE Jr, Hauer-Jensen M (2006) Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme a reductase inhibition. Blood Coagul Fibrinolysis 17(3):173–180

    Article  PubMed  CAS  Google Scholar 

  11. Sriharshan A, Boldt K, Sarioglu H, Barjaktarovic Z, Azimzadeh O, Hieber L, Zitzelsberger H, Ueffing M, Atkinson MJ, Tapio S (2012) Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced endothelial response: four key pathways. J Proteomics 75(8):2319–2330. doi:10.1016/j.jprot.2012.02.009

    Article  PubMed  CAS  Google Scholar 

  12. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511

    Article  PubMed  CAS  Google Scholar 

  13. Turtoi A, Sharan RN, Srivastava A, Schneeweiss FH (2010) Proteomic and genomic modulations induced by g-irradiation of human blood lymphocytes. Int J Radiat Biol 86(10):888–904. doi:10.3109/09553002.2010.486016

    PubMed  CAS  Google Scholar 

  14. Moore HM, Bai B, Boisvert FM, Latonen L, Rantanen V, Simpson JC, Pepperkok R, Lamond AI, Laiho M (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10(10):M111 009241. doi:10.1074/mcp.M111.009241

    PubMed  Google Scholar 

  15. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106

    PubMed  CAS  Google Scholar 

  16. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Makelainen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Rosario AS, Tirmarche M, Tomasek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case–control studies. BMJ 330(7485):223

    Article  PubMed  CAS  Google Scholar 

  17. Darby S, McGale P, Peto R, Granath F, Hall P, Ekbom A (2003) Mortality from cardiovascular disease more than 10 years after radiotherapy for breast cancer: nationwide cohort study of 90,000 Swedish women. BMJ 326(7383):256–257

    Article  PubMed  Google Scholar 

  18. Demirci S, Nam J, Hubbs JL, Nguyen T, Marks LB (2009) Radiation-induced cardiac toxicity after therapy for breast cancer: interaction between treatment era and follow-up duration. Int J Radiat Oncol Biol Phys 73(4):980–987

    Article  PubMed  Google Scholar 

  19. Swerdlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, Hoskin PJ, Lister A, Radford JA, Rohatiner AZ, Linch DC (2007) Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst 99(3):206–214

    Article  PubMed  Google Scholar 

  20. Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, Guerin S, Pacquement H, Aouba A, Hawkins M, Winter D, Bourhis J, Lefkopoulos D, Diallo I, de Vathaire F (2010) Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol 28(8): 1308–1315

    Article  PubMed  Google Scholar 

  21. Azizova TV, Muirhead CR, Druzhinina MB, Grigoryeva ES, Vlasenko EV, Sumina MV, OHJ A, Zhang W, Haylock RGE, Hunter N (2010) Cardiovascular diseases in the cohort of workers first employed at Mayak PA in 1948–1958. Radiat Res 174(2): 155–168

    Article  PubMed  CAS  Google Scholar 

  22. Hauptmann M, Mohan AK, Doody MM, Linet MS, Mabuchi K (2003) Mortality from diseases of the circulatory system in radiologic technologists in the United States. Am J Epidemiol 157(3):239–248

    Article  PubMed  Google Scholar 

  23. Howe GR, Zablotska LB, Fix JJ, Egel J, Buchanan J (2004) Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res 162(5):517–526

    Article  PubMed  CAS  Google Scholar 

  24. Ivanov VK (2007) Late cancer and noncancer risks among Chernobyl emergency workers of Russia. Health Phys 93(5):470–479

    Article  PubMed  CAS  Google Scholar 

  25. McGeoghegan D, Binks K, Gillies M, Jones S, Whaley S (2008) The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005. Int J Epidemiol 37(3):506–518

    Article  PubMed  Google Scholar 

  26. Muirhead CR, O’Hagan JA, Haylock RG, Phillipson MA, Willcock T, Berridge GL, Zhang W (2009) Mortality and cancer incidence following occupational radiation exposure: third analysis of the national registry for radiation workers. Br J Cancer 100(1): 206–212

    Article  PubMed  CAS  Google Scholar 

  27. Carr ZA, Land CE, Kleinerman RA, Weinstock RW, Stovall M, Griem ML, Mabuchi K (2005) Coronary heart disease after radiotherapy for peptic ulcer disease. Int J Radiat Oncol Biol Phys 61(3): 842–850

    Article  PubMed  Google Scholar 

  28. Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat Res 160(4):381–407

    Article  PubMed  CAS  Google Scholar 

  29. Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, Grant EJ, Sugiyama H, Sakata R, Moriwaki H, Hayashi M, Konda M, Shore RE (2010) Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ 340:b5349

    Article  PubMed  Google Scholar 

  30. Darby SC, Doll R, Gill SK, Smith PG (1987) Long term mortality after a single treatment course with X-rays in patients treated for ankylosing spondylitis. Br J Cancer 55(2):179–190

    Article  PubMed  CAS  Google Scholar 

  31. Davis FG, Boice JD Jr, Hrubec Z, Monson RR (1989) Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. Cancer Res 49(21):6130–6136

    PubMed  CAS  Google Scholar 

  32. Kreuzer M, Grosche B, Schnelzer M, Tschense A, Dufey F, Walsh L (2010) Radon and risk of death from cancer and cardiovascular diseases in the German uranium miners cohort study: follow-up 1946–2003. Radiat Environ Biophys 49(2):177–185

    Article  PubMed  Google Scholar 

  33. Kreuzer M, Kreisheimer M, Kandel M, Schnelzer M, Tschense A, Grosche B (2006) Mortality from cardiovascular diseases in the German uranium miners cohort study, 1946–1998. Radiat Environ Biophys 45(3):159–166

    Article  PubMed  CAS  Google Scholar 

  34. Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, Tapio S, Elliott P (2010) Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. Radiat Environ Biophys 49(2):139–153

    Article  PubMed  CAS  Google Scholar 

  35. Richardson DB, Wing S (1999) Radiation and mortality of workers at Oak Ridge National Laboratory: positive associations for doses received at older ages. Environ Health Perspect 107(8):649–656

    Article  PubMed  CAS  Google Scholar 

  36. Talbott EO, Youk AO, McHugh-Pemu KP, Zborowski JV (2003) Long-term follow-up of the residents of the three mile Island accident area: 1979–1998. Environ Health Perspect 111(3):341–348

    Article  PubMed  Google Scholar 

  37. Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, Atkinson MJ, Tapio S (2011) Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 11(16):3299–3311. doi:10.1002/pmic.201100178

    Article  PubMed  CAS  Google Scholar 

  38. Chen C, Lorimore SA, Evans CA, Whetton AD, Wright EG (2005) A proteomic analysis of murine bone marrow and its response to ionizing radiation. Proteomics 5(16):4254–4263

    Article  PubMed  CAS  Google Scholar 

  39. Oldgren J, Wallentin L, Grip L, Linder R, Norgaard BL, Siegbahn A (2003) Myocardial damage, inflammation and thrombin inhibition in unstable coronary artery disease. Eur Heart J 24(1):86–93

    Article  PubMed  CAS  Google Scholar 

  40. Bowman BH, Kurosky A (1982) Haptoglobin: the evolutionary product of duplication, unequal crossing over, and point mutation. Adv Hum Genet 12(189–261):453–184

    Google Scholar 

  41. Rogers JT, Bridges KR, Durmowicz GP, Glass J, Auron PE, Munro HN (1990) Translational control during the acute phase response. Ferritin synthesis in response to interleukin-1. J Biol Chem 265(24): 14572–14578

    PubMed  CAS  Google Scholar 

  42. Iwai K, Drake SK, Wehr NB, Weissman AM, LaVaute T, Minato N, Klausner RD, Levine RL, Rouault TA (1998) Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc Natl Acad Sci U S A 95(9):4924–4928

    Article  PubMed  CAS  Google Scholar 

  43. Madian AG, Regnier FE (2010) Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res 9(8):3766–3780

    Article  PubMed  CAS  Google Scholar 

  44. Khaliulin I, Schneider A, Houminer E, Borman JB, Schwalb H (2004) Apomorphine prevents myocardial ischemia/reperfusion-induced oxidative stress in the rat heart. Free Radic Biol Med 37(7): 969–976

    Article  PubMed  CAS  Google Scholar 

  45. White MY, Edwards AV, Cordwell SJ, Van Eyk JE (2008) Mitochondria: a mirror into cellular dysfunction in heart disease. Proteomics Clin Appl 2(6):845–861. doi:10.1002/prca.200780135

    Article  PubMed  CAS  Google Scholar 

  46. Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762(2): 164–180

    Article  PubMed  CAS  Google Scholar 

  47. Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38(10):1278–1295

    Article  PubMed  CAS  Google Scholar 

  48. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18(6):655–673

    Article  PubMed  CAS  Google Scholar 

  49. Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15(10):RA209–RA219

    PubMed  CAS  Google Scholar 

  50. Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I (2003) Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 5(6):789–794

    Article  PubMed  CAS  Google Scholar 

  51. Allan IM, Vaughan AT, Milner AE, Lunec J, Bacon PA (1988) Structural damage to lymphocyte nuclei by H2O2 or gamma irradiation is dependent on the mechanism of OH. radical production. Br J Cancer 58(1):34–37

    Article  PubMed  CAS  Google Scholar 

  52. Eny KM, El-Sohemy A, Cornelis MC, Sung YK, Bae SC (2005) Catalase and PPARgamma2 genotype and risk of systemic lupus erythematosus in Koreans. Lupus 14(5):351–355

    Article  PubMed  CAS  Google Scholar 

  53. Coyle CH, Kader KN (2007) Mechanisms of H2O2-induced oxidative stress in endothelial cells exposed to physiologic shear stress. ASAIO J 53(1):17–22

    Article  PubMed  CAS  Google Scholar 

  54. Wolf G (2000) Free radical production and angiotensin. Curr Hypertens Rep 2(2):167–173

    Article  PubMed  CAS  Google Scholar 

  55. Garlid KD, Costa AD, Quinlan CL, Pierre SV, Dos Santos P (2009) Cardioprotective signaling to mitochondria. J Mol Cell Cardiol 46(6):858–866

    Article  PubMed  CAS  Google Scholar 

  56. Hausenloy DJ, Yellon DM (2008) Preconditioning and postconditioning: new strategies for cardioprotection. Diabetes Obes Metab 10(6):451–459

    Article  PubMed  CAS  Google Scholar 

  57. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 61(10):3894–3901

    PubMed  CAS  Google Scholar 

  58. Barjaktarovic Z, Schmaltz D, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dörr W, Sarioglu H, Schäfer A, Atkinson MJ, Zischka H, Tapio S (2011) Radiation–induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One 6(12):e27811. doi:10.1371/journal.pone.0027811

    Article  PubMed  CAS  Google Scholar 

  59. Tapio S, Atkinson MJ (2008) Molecular information obtained from radiobiological tissue archives: achievements of the past and visions of the future. Radiat Environ Biophys 47(2):183–187

    Article  PubMed  Google Scholar 

  60. Azimzadeh O, Barjaktarovic Z, Aubele M, Calzada-Wack J, Sarioglu H, Atkinson MJ, Tapio S (2010) Formalin-fixed paraffin-embedded (FFPE) proteome analysis using gel-free and gel-based proteomics. J Proteome Res 9(9):4710–4720. doi:10.1021/pr1004168

    Article  PubMed  CAS  Google Scholar 

  61. Donadio E, Giusti L, Cetani F, Da Valle Y, Ciregia F, Giannaccini G, Pardi E, Saponaro F, Torregrossa L, Basolo F, Marcocci C, Lucacchini A (2011) Evaluation of formalin-fixed paraffin-embedded tissues in the proteomic analysis of parathyroid glands. Proteome Sci 9(1):29. doi:10.1186/1477-5956-9-29

    Article  PubMed  CAS  Google Scholar 

  62. Ostasiewicz P, Zielinska DF, Mann M, Wisniewski JR (2010) Proteome, phosphoproteome, and N-glycoproteome are quantitatively preserved in formalin-fixed paraffin-embedded tissue and analyzable by high-resolution mass spectrometry. J Proteome Res 9(7):3688–3700. doi:10.1021/pr100234w

    Article  PubMed  CAS  Google Scholar 

  63. Azimzadeh O, Scherthan H, Yentrapalli R, Barjaktarovic Z, Ueffing M, Conrad M, Neff F, Calzada-Wack J, Aubele M, Buske C, Atkinson MJ, Hauck SM, Tapio S (2012) Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation. J Proteomics 75(8):2384–2395. doi:10.1016/j.jprot.2012.02.019

    Article  PubMed  CAS  Google Scholar 

  64. Guipaud O, Holler V, Buard V, Tarlet G, Royer N, Vinh J, Benderitter M (2007) Time-course analysis of mouse serum proteome changes following exposure of the skin to ionizing radiation. Proteomics 7(21):3992–4002

    Article  PubMed  CAS  Google Scholar 

  65. Tapio S, Danescu-Mayer J, Asmuss M, Posch A, Gomolka M, Hornhardt S (2005) Combined effects of gamma radiation and arsenite on the proteome of human TK6 lymphoblastoid cells. Mutat Res 581(1–2):141–152

    PubMed  CAS  Google Scholar 

  66. Marchetti F, Coleman MA, Jones IM, Wyrobek AJ (2006) Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol 82(9):605–639. doi:10.1080/09553000600930103

    Article  PubMed  CAS  Google Scholar 

  67. Balzi M, Cremonini D, Tomassi I, Becciolini A, Giannardi G, Pelu G (1979) Radiation effects on the parotid gland of mammals. Part 2: modifications of plasma and parotid amylase activity. Strahlentherapie 155(8):566–569

    PubMed  CAS  Google Scholar 

  68. Barrett A, Jacobs A, Kohn J, Raymond J, Powles RL (1982) Changes in serum amylase and its isoenzymes after whole body irradiation. Br Med J (Clin Res Ed) 285(6336):170–171

    Article  CAS  Google Scholar 

  69. Bertho JM, Demarquay C, Frick J, Joubert C, Arenales S, Jacquet N, Sorokine-Durm I, Chau Q, Lopez M, Aigueperse J, Gorin NC, Gourmelon P (2001) Level of Flt3-ligand in plasma: a possible new bio-indicator for radiation-induced aplasia. Int J Radiat Biol 77(6):703–712. doi:10.1080/09553000110043711

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soile Tapio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tapio, S. (2013). Ionizing Radiation Effects on Cells, Organelles and Tissues on Proteome Level. In: Leszczynski, D. (eds) Radiation Proteomics. Advances in Experimental Medicine and Biology, vol 990. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5896-4_2

Download citation

Publish with us

Policies and ethics