Advertisement

Integrating Landsat with MODIS Products for Vegetation Monitoring

  • Feng Gao
Chapter

Abstract

Satellite imagery provides a valuable data source for monitoring vegetation from space. In order to monitor vegetation dynamic and changes, high spatial resolution satellite imagery with frequent acquisition is required. However, current satellite systems cannot satisfy these requirements due to either technical or fiscal difficulties. In recent years, studies have been focused on integrating high spatial resolution Landsat and high temporal resolution MODIS data for vegetation monitoring. This chapter describes three categories of approach to integrate two data sources. The first category approach adopts MODIS algorithms for Landsat data processing. The second category approach blends Landsat and MODIS data through a data fusion approach. The third category approach normalizes Landsat data using standard MODIS data products. This chapter presents examples and recent applications on the integration of Landsat and MODIS data. Their advantages and limitations are discussed.

Keywords

Leaf Area Index Land Cover Type Surface Reflectance Aerosol Optical Thickness Landsat Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Du Y, Cihlar J, Beaubien J, Latifovic R (2001) Radiometric normalization, compositing, and quality control for satellite high resolution image mosaics over large areas. IEEE Trans Geosci Remote Sens 39:623–634. doi: 10.1109/36.911119 CrossRefGoogle Scholar
  2. Feng M, Sexton JO, Huang C, Masek JG, Vermote EF, Gao F, R Narasimhan, Channan S, Wolfe RE, Townshend JR (2012) Global, long-term surface reflectance 1 records from Landsat. Remote Sens Environ (under review)Google Scholar
  3. Ganguly S, Nemani R, Zhang G et al (2012) Generating global leaf area index from Landsat: algorithm formulation and demonstration. Remote Sens Environ 122:185–202. doi: 10.1016/j.rse.2011.10.032 Google Scholar
  4. Gong P, Wang J, Yu L et al (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int J Remote Sens 34(7):2607–2654CrossRefGoogle Scholar
  5. Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the Landsat and MODIS surface reflectance: predict daily landsat surface reflectance. IEEE Trans Geosci Remote Sens 44(8):2207–2218CrossRefGoogle Scholar
  6. Gao F, Masek J, Wolfe R, Huang C (2010) Building consistent medium resolution satellite data set using moderate resolution imaging spectroradiometer products as reference. JAppl Remote Sens 4:043526. doi: 10.1117/1.3430002 CrossRefGoogle Scholar
  7. Goward SN, Masek JG, Cohen WB, Moisen G, Collatz G, Healey S, Houghton RA, Huang C, Kennedy R, Law B, Powell S, Turner D, Wulder MA (2008) Forest disturbance and North American carbon flux. EOS Trans 89:105–116, American Geophysical UnionCrossRefGoogle Scholar
  8. Gutman G, Byrnes R, Masek J, Covington S, Justice C, Franks S, Headley R (2008) Towards monitoring land cover and land-use changes at a global scale: the Global Land Survey (2005). Photogrammetr Eng Remote Sens 74:6–10Google Scholar
  9. Hansen MC, Roy DP, Lindquist E, Justice CO, Altstaat A (2008) A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in Central Africa. Remote Sens Environ 112:2495–2513CrossRefGoogle Scholar
  10. Hilker T, Wulder MA, Coops NC, Seitz N, White JC, Gao F, Masek JG, Stenhouse G (2009a) Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens Environ. doi: 10.1016/j.rse.2009.05.011
  11. Hilker T, Wulder MA, Coops NC, Linke J, McDermid G, Masek JG, Gao F, White JC (2009b) A new data fusion model for high spatial- and temporal- resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens Environ. doi: 10.1016/j.rse.2009.03.007
  12. Huang C, Goward SN, Masek JG, Gao F, Vermote EF, Thomas N, Schleeweis K, Kennedy RE, Zhu Z, Eidenshink JC, Townshend JRG (2009) Development of time series stacks of Landsat images for reconstructing forest disturbance history. Int J Digi Earth. doi: 10.1080/17538940902801614
  13. Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT (2002) An overview of MODIS land processing and products status. Remote Sens Environ 83:3–15. doi: 10.1016/S0034-4257(02)00084-6 CrossRefGoogle Scholar
  14. Kaufman YJ, Wald AE, Remer LA, Gao B-C, Li R-R, Flynn L (1997) The MODIS 2.1 um channel – correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans Geosci Remote Sens 35:1286–1298CrossRefGoogle Scholar
  15. Kennedy RE, Yang Z, Cohen WB (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – temporal segmentation algorithms. Remote Sens Environ 114:2897–2910CrossRefGoogle Scholar
  16. Loveland TR, Cochrane MA, Henebry GM (2008) Landsat still contributing to environmental research – response. Trends Ecol Evol 23(4):182–183CrossRefGoogle Scholar
  17. Loveland TR, Shaw DM (1996) Multi-resolution land characterization: building collaborative partnerships. In: Scott JM, Tear TH, Davis FW (eds) GAP analysis: a landscape approach to biodiversity planning. American Society for Photogrammetry and Remote Sensing, Bethesda, pp 79–85Google Scholar
  18. Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich F, Gao F, Kutler J, Lim TK (2006) A Landsat surface reflectance data set for North America, 1990–2000. IEEE Geosci Remote Sens Lett 3(1):69–72CrossRefGoogle Scholar
  19. Masek JG, Huang C, Wolfe R, Cohen W, Hall F, Kutler J, Nelson P (2008) North American forest disturbance mapped from a decadal Landsat record. Remote Sens Environ 112:2914–2926CrossRefGoogle Scholar
  20. Myneni RB, Hoffman S, Knyazikhin Y et al (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231CrossRefGoogle Scholar
  21. Olthof I, Pouliot D, Fernandes R, Latifovic R (2005) Landsat ETM + radiometric normalization comparison for northern mapping applications. Remote Sens Environ 95:388–398. doi: 10.1016/j.rse.2004.06.024 CrossRefGoogle Scholar
  22. Roy DP, Ju J, Lewis P, Schaaf C, Gao F, Hansen M, Lindquist E (2008) Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens Environ 112:3112–3130CrossRefGoogle Scholar
  23. Roy DP, Ju J, Kline K, Scaramuzza PL, Kovalskyy V, Hansen MC, Loveland TR, Vermote EF, Zhang C (2010) Web-enabled Landsat data (WELD): Landsat ETM + composited mosaics of the conterminous United States. Remote Sens Environ 114:35–49CrossRefGoogle Scholar
  24. Schott JR, Salvaggio C, Volchock WJ (1988) Radiometric scene normalization using pseudo invariant features. Remote Sens Environ 26:1–16. doi: 10.1016/0034-4257(88)90116-2 CrossRefGoogle Scholar
  25. Townshend J, Justice C, Li W, Gurney C, McManus J (1991) Global land cover classification by remote sensing: present capabilities and future possibilities. Remote Sens Environ 35:243–255CrossRefGoogle Scholar
  26. Townshend JRG, Justice CO (2002) Towards operational monitoring of terrestrial systems by moderate resolution imaging. Remote Sens Environ 83:351–359CrossRefGoogle Scholar
  27. Vermote EF et al (1997) Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm, and validation. J Geophys Res 102:17131–17 141CrossRefGoogle Scholar
  28. Vermote EF, El Saleous N, Justice C (2002) Atmospheric correction of the MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83:97–111CrossRefGoogle Scholar
  29. www1: U.S. Geological Survey (USGS) Earth Resources Observation and Science Center (EROS). Global Visualization Viewer web page. http://glovis.usgs.gov/. Accessed 31 Dec 2012
  30. www2: U. S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS). Research and Science web page. http://www.nass.usda.gov/Research_and_Science/index.asp. Accessed 31 Dec 2012
  31. www3: USGS National Land Cover Database web page. http://www.mrlc.gov/. Accessed 31 Dec 2012
  32. www4: NASA Goddard Space Flight Center (GSFC): MODIS Land Validation web page. http://landval.gsfc.nasa.gov/. Accessed 31 Dec 2012
  33. www5: NASA GSFC Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) web page. http://ledaps.nascom.nasa.gov/. Accessed 31 Dec 2012
  34. www6: The Web-Enabled Landsat Data (WELD) web page. http://weld.cr.usgs.gov/. Accessed 31 Dec 2012
  35. Zhu X, Chen J, Gao F, Masek J (2010) An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens Environ 114:2610–2623. Accessed 31 Dec 2012CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.USDA, Agricultural Research ServiceHydrology and Remote Sensing LaboratoryBeltsvilleUSA

Personalised recommendations