Advertisement

Active Region Part A. Internal Quantum Efficiency in LEDs

  • Elison Matioli
  • Claude Weisbuch
Part of the Topics in Applied Physics book series (TAP, volume 126)

Abstract

In this chapter, we present different techniques used to assess the internal quantum efficiency (IQE) in light emitting diodes (LEDs). The commonly used technique based on temperature-dependent photoluminescence relies in strong assumptions which are discussed in this chapter. We introduce an alternative method to determine IQE based on electroluminescence, in which the external quantum efficiency (EQE) is measured from a single facet of the LED, where the light emission can be calculated with good accuracy. The IQE is ultimately obtained from the ratio of the EQE and the calculated light extraction efficiency. We develop an optical model of the light emission in a multilayered LED structure, from which we derive and validate an approximate model to easily calculate the extraction efficiency through the top facet of any LED structure. We address the various assumptions made to calculate the direct emission model through a single facet and evaluate the effect of photon recycling in the quantum wells. We also calculate the sensitivity of the model to the LED parameters and surface roughness. Finally, we apply this technique to calculate the IQE of both a state-of-the-art and a low performance GaN-based LEDs, highlighting the particular features in each structure.

Keywords

Extraction Efficiency Sapphire Substrate External Quantum Efficiency Lead Structure Carbon Black Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank James Speck for triggering this work, for his continuous interest and many enlightened discussions and Amorette Getty for her large contribution with the experimental part in this work. This material is based upon work partially supported as part of the ‘Center for Energy Efficient Materials’ at UCSB, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001009 and by the Department of Energy (DOE) under project No. DE-FC26-06NT42857 and by the Solid State Lighting and Energy Center (SSLEC) at the University of California, Santa Barbara (UCSB).

References

  1. 1.
    I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, Appl. Phys. Lett. 62, 131 (1993) ADSCrossRefGoogle Scholar
  2. 2.
    M.R. Krames, M. Ochiai-Holcomb, G.E. Hofler, C. Carter-Coman, E.I. Chen, I.-H. Tan, P. Grillot, N.F. Gardner, H.C. Chui, J.-W. Huang, S.A. Stockman, F.A. Kish, M.G. Craford, T.S. Tan, C.P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, D. Collins, Appl. Phys. Lett. 75, 2365 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, T. Mukai, Jpn. J. Appl. Phys. 41, L1431 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    J.J. Wierer, M.R. Krames, J.E. Epler, N.F. Gardner, M.G. Craford, J.R. Wendt, J.A. Simmons, M.M. Sigalas, Appl. Phys. Lett. 84, 3885 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, A. Scherer, Appl. Phys. Lett. 63, 2174 (1993) ADSCrossRefGoogle Scholar
  6. 6.
    T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 84, 855 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, H. Kudo, Appl. Phys. Lett. 83, 4906 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    A. Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn, IEEE Trans. Electron Devices 57, 1 (2010) CrossRefGoogle Scholar
  9. 9.
    J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Academic Press, San Diego, 2003) Google Scholar
  10. 10.
    A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer, S. Lahmann, C. Netzel, N. Riedel, U. Rossow, Phys. Status Solidi A 201, 2808–2813 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    M. Peter, A. Laubsch, P. Stauss, A. Walter, J. Baur, B. Hahn, Phys. Status Solidi C 5(6), 2050 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    A. David, M.J. Grundmann, J.F. Kaeding, N.F. Gardner, T.G. Mihopoulos, M.R. Krames, Appl. Phys. Lett. 92(5), 053502 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    E. Matioli, C. Weisbuch, J. Appl. Phys. 109, 073114 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    A. Getty, E. Matioli, M. Iza, C. Weisbuch, J. Speck, Appl. Phys. Lett. 94(18), 181102 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, T. Ishihara, Phys. Rev. B 66(4), 045102 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    P. Kivisaari, L. Riuttanen, J. Oksanen, S. Suihkonen, M. Ali, H. Lipsanen, J. Tulkki, Appl. Phys. Lett. 101, 021113 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Appl. Phys. Lett. 91, 141101 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2000) Google Scholar
  19. 19.
    L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995) Google Scholar
  20. 20.
    E.D. Palik, Handbook of Optical Constants I (Academic Press, San Diego, 1985) Google Scholar
  21. 21.
    A. Getty, PhD thesis, UCSB (2009) Google Scholar
  22. 22.
    H. Benisty, H. De Neve, C. Weisbuch, IEEE J. Quantum Electron. 34, 9 (1998) Google Scholar
  23. 23.
    E. Matioli, B. Fleury, E. Rangel, E. Hu, J.S. Speck, C. Weisbuch, J. Appl. Phys. 107, 053114 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    R. Windisch, P. Altieri, R. Butendeich, S. Illek, P. Stauss, W. Stein, W. Wegleiter, R. Wirth, H. Zull, K. Streubel, Proc. SPIE 5366, 43 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    H. Benisty, R. Stanley, M. Mayer, J. Opt. Soc. Am. A 15, 1192–1201 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Weber, S. Wang, IEEE J. Quantum Electron. 27, 2256 (1991) ADSCrossRefGoogle Scholar
  27. 27.
    S.L. Chuang, C.S. Chang, Phys. Rev. B 54(4), 2491 (1996) ADSCrossRefGoogle Scholar
  28. 28.
    S.L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009) Google Scholar
  29. 29.
    D. Ochoa, PhD thesis, EPFL (2000) Google Scholar
  30. 30.
    E.M. Purcell, H.C. Torrey, R.V. Pound, Phys. Rev. 69, 37–38 (1946) ADSCrossRefGoogle Scholar
  31. 31.
    A. David, C. Meier, R. Sharma, F.S. Diana, S.P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, H. Benisty, Appl. Phys. Lett. 87(10), 101107 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    G. Lerondel, R. Romestain, Appl. Phys. Lett. 74, 2740 (1999) ADSCrossRefGoogle Scholar
  33. 33.
    J.M. Elson, J.P. Rahn, J.M. Bennett, Appl. Opt. 19, 669 (1980) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Laboratoire de Physique de la Matière CondenséeCNRS, Ecole PolytechniquePalaiseauFrance

Personalised recommendations