Advertisement

Introduction Part A. Progress and Prospect of Growth of Wide-Band-Gap III-Nitrides

  • Hiroshi Amano
Part of the Topics in Applied Physics book series (TAP, volume 126)

Abstract

GaAs, InP, and their related compound semiconductors can be grown on native substrates, whereas such growth was not possible for group III nitride semiconductors in the 1970s and 1980s. Despite this drawback, researchers were able to use novel functions of group III nitride semiconductors by growing their thin films on nonnative substrates such as sapphire and Si. Today, white light emitting diodes (LEDs) based on nitrides on sapphire substrates are some of the most important key devices for energy savings given their use in general lighting. Also, LEDs and HFETs on Si are considered to be the next-generation high-performance and low-cost energy-saving devices. In this chapter, the author reviews the history of the growth of GaN by metalorganic vapor phase epitaxy using a buffer layer on nonnative substrates. The history of the low-temperature-deposited buffer layer and its impact on nitride research and the subsequent development of devices are explained.

Keywords

Buffer Layer Sapphire Substrate Nonnative Substrate Metalorganic Vapor Phase Epitaxy Hydride Vapor Phase Epitaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I wish to express my gratitude to M. Yamaguchi and Y. Honda, Nagoya University, and M. Iwaya, T. Takeuchi, S. Kamiyama and I. Akasaki of Meijo University for daily discussions.

References

  1. 1.
    F. Fichter, Z. Anorg. Chem. 54, 322 (1907) CrossRefGoogle Scholar
  2. 2.
    F. Fischer, F. Schroter, Ber. Dtsch. Chem. Ges. 43, 1465 (1910) CrossRefGoogle Scholar
  3. 3.
    W.C. Johnson, J.B. Parsons, M.C. Crew, J. Phys. Chem. 36, 2588 (1932) CrossRefGoogle Scholar
  4. 4.
    H. Welker, Z. Naturforsch. 7a, 744 (1952) ADSGoogle Scholar
  5. 5.
    N. Holonyak, S.F. Bevacqua, Appl. Phys. Lett. 1, 82 (1962) ADSCrossRefGoogle Scholar
  6. 6.
    E.E. Loebner, IEEE Trans. Elec. Dev. ED-23, 675 (1976) CrossRefGoogle Scholar
  7. 7.
    H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969) ADSCrossRefGoogle Scholar
  8. 8.
    J.I. Pankove, E.A. Miller, D. Richman, J.E. Berkeyheiser, J. Lumin. 4, 63 (1971) CrossRefGoogle Scholar
  9. 9.
    D. Richman, J. Phys. Chem. Solids 24, 1131 (1963) ADSCrossRefGoogle Scholar
  10. 10.
    J.A. Van Vechten, Phys. Rev. B 7, 1479 (1973) ADSCrossRefGoogle Scholar
  11. 11.
    J. Karpinski, J. Jun, S. Porowski, J. Cryst. Growth 66, 1 (1984) ADSCrossRefGoogle Scholar
  12. 12.
    R. Haitz, J.Y. Tsao, Phys. Status Solidi A 208, 17 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    A. Kaneta, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, Phys. Status Solidi C 3, 1897 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    K. Osamura, K. Nakajima, Y. Murakami, P.H. Shingu, A. Ohtsuki, Solid State Commun. 11, 617 (1972) ADSCrossRefGoogle Scholar
  15. 15.
    H.P. Maruska, H.P. Maruska, W.C. Rhines, D.A. Stevenson, Mater. Res. Bull. 7, 777 (1972) CrossRefGoogle Scholar
  16. 16.
    Y. Matsumoto, Jpn. J. Appl. Phys. 13, 1307 (1974) ADSCrossRefGoogle Scholar
  17. 17.
    M. Boulou, M. Furtado, G. Jacob, Philips Tech. Rev. 37, 237 (1977) Google Scholar
  18. 18.
    Y. Ohki, Y. Toyoda, H. Kobayashi, I. Akasaki, Inst. Phys. Conf. Ser. 63, 479 (1982) Google Scholar
  19. 19.
    L. Hoffman, G. Ziegler, D. Theis, C. Weyrich, J. Appl. Phys. 53, 6962 (1982) ADSCrossRefGoogle Scholar
  20. 20.
    N.B. Lukyanchkova, T.M. Pavelko, G.S. Pekar, N.N. Tkachenko, M.K. Sheinkman, Phys. Status Solidi A 64, 697 (1981) ADSCrossRefGoogle Scholar
  21. 21.
    T. Kawabata, T. Matsuda, S. Koike, J. Appl. Phys. 56, 2367 (1984) ADSCrossRefGoogle Scholar
  22. 22.
    S. Yoshida, S. Misawa, S. Gonda, Appl. Phys. Lett. 42, 427 (1983) ADSCrossRefGoogle Scholar
  23. 23.
    M.A. Khan, R.A. Skogman, R.G. Schulze, M. Gershenzon, Appl. Phys. Lett. 42, 430 (1983) ADSCrossRefGoogle Scholar
  24. 24.
    H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986) ADSCrossRefGoogle Scholar
  25. 25.
    M. Akiyama, Y. Kawarada, K. Kaminishi, Jpn. J. Appl. Phys. 23, L843 (1984) ADSCrossRefGoogle Scholar
  26. 26.
    Japan Patent, S60-256806 (1985) Google Scholar
  27. 27.
    Japan Patent, H3-89840 (1991) Google Scholar
  28. 28.
    H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, Y. Ishii, J. Lumin. 40&41, 121 (1988) CrossRefGoogle Scholar
  29. 29.
    G.V. Saparin, S.K. Obyden, I.F. Chetverkova, M.V. Chukichev, S.I. Popov, Vestn. Mosk. Univ. Ser. 3, Fis. Astron. 24, 56 (1983) Google Scholar
  30. 30.
    G.V. Saparin, S.K. Obyden, M.V. Chukichev, S.I. Popov, J. Lumin. 31, 684 (1984) CrossRefGoogle Scholar
  31. 31.
    J.C. Philips, G. Lucovsky, Bonds and Bands in Semiconductors, 1st edn. (Momentum Press, New York, 1973), p. 239 Google Scholar
  32. 32.
    H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989) ADSCrossRefGoogle Scholar
  33. 33.
    Japan Patent, H3-321353 (1991) Google Scholar
  34. 34.
    H. Amano, M. Kitoh, K. Hiramatsu, I. Akasaki, Inst. Phys. Conf. Ser. 106, 725 (1990) Google Scholar
  35. 35.
    T. Matsuoka, H. Tanaka, T. Sasaki, A. Katsui, Inst. Phys. Conf. Ser. 106, 141 (1990) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Graduate School of Engineering, Akasaki Research CenterNagoya UniversityNagoyaJapan

Personalised recommendations