Extending Context Management for Proactive Adaptation in Pervasive Environments

  • Sebastian VanSyckel
  • Gregor Schiele
  • Christian Becker
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 214)


Proactive Adaptation enables application not only to react to changes in context, but to choose, whether they adapt themselves or the context based on context prediction. This can lead to more stable configurations and thus a higher user satisfaction. An integral part of proactive adaptation is context management. In contrast to reactive approaches that typically only read context information, proactive adaptation requires the integration of context manipulation via actuators. Further, the unsteady nature of predictions requires a form of notification. We present a comprehensive approach that offers both.


Context management Proactive adaptation 


  1. 1.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)Google Scholar
  2. 2.
    Kjaer, K.E.: A survey of context-aware middleware. In: Proceedings of Software Engineering (SE), IASTED (2007)Google Scholar
  3. 3.
    Sadjadi, S.M., McKinley, P.K.: A Survey of Adaptive Middleware. Technical Report. Department of Computer Science and Engineering, Michigan State University, Michigan (2003)Google Scholar
  4. 4.
    Mayrhofer, R.: An architecture for context prediction. PhD thesis, Johannes Kepler University of Linz, Austria (2004)Google Scholar
  5. 5.
    Boytsov, A., Zaslavsky, A.: Extending context spaces theory by proactive adaptation. Smart Spaces Next Gener Wired/Wireless Network. 6294, 1–12 (2010)Google Scholar
  6. 6.
    Cook, D.J., Youngblood, M., Heierman, E., Gopalratnam, K., Rao, S., Litvin, A., Khawaja, F.: MavHome: an agent-based smart home. In: Proceedings of IEEE, Pervasive Computing and Communications (PerCom) (2003)Google Scholar
  7. 7.
    VanSyckel, S., Schiele, G., Becker, C.: Towards proactive adaptation in pervasive environments. Mobile Ubiquitous Syst: Comput. Networking, Serv. 104, 214–218 (2012)Google Scholar
  8. 8.
    Sigg, S., Haseloff, S., David, K.: An alignment approach for context prediction tasks in UbiComp environments. Pervasive Comput. 9(4), 90–97 (2010)CrossRefGoogle Scholar
  9. 9.
    Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order Markov models. J. Artif. Intell. Res. 22, 385–421 (2004)Google Scholar
  10. 10.
    Mayrhofer, R., Radi, H., Ferscha, A.: Recognizing and predicting context by learning from user behavior. Radiomatics: J. Commun. Eng. 1(1), 30–42 (2004)Google Scholar
  11. 11.
    Majuntke, V., Schiele, G., Spohrer, K., Handte, M., Becker, C.: A coordination framework for pervasive applications in multi-user environments. In: Proceedings of Intelligent Environments (IE), IEEE (2010)Google Scholar
  12. 12.
    Becker, C., Dürr, F.: On location models for ubiquitous computing. Pers. Ubiquitous Comput. 9(1), 20–31 (2005)Google Scholar
  13. 13.
    Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: Base–a micro-broker-based middleware for pervasive computing. In: Proceedings of Pervasive Computing and Communications (PerCom), IEEE (2003)Google Scholar
  14. 14.
    Want, R., Hopper, A., Falcão, V., Gibbons, J.: The active badge location system. Trans. Inf. Syst. 10(1), 91–102 (1992)Google Scholar
  15. 15.
    Boytsov, A., Zaslavsky, A.: Context prediction in pervasive computing systems: achievements and challenges. Supporting Real Time Decis. Making 13, 35–63 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sebastian VanSyckel
    • 1
  • Gregor Schiele
    • 2
  • Christian Becker
    • 1
  1. 1.University of MannheimMannheimGermany
  2. 2.DERI, National University of IrelandGalwayIreland

Personalised recommendations