Advertisement

Qualitative Analysis of Skull Stripping Accuracy for MRI Brain Images

  • Shafaf Ibrahim
  • Noor Elaiza Abdul Khalid
  • Mazani Manaf
  • Mohd Ezane Aziz
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 214)

Abstract

Skull stripping isolates brain from the non-brain tissues. It supplies major significance in medical and image processing fields. Nevertheless, the manual process of skull stripping is challenging due to the complexity of images, time consuming and prone to human errors. This paper proposes a qualitative analysis of skull stripping accuracy for Magnetic Resonance Imaging (MRI) brain images. Skull stripping of eighty MRI images is performed using Seed-Based Region Growing (SBRG). The skull stripped images are then presented to three experienced radiologists for visual qualitative evaluation. The level of accuracy is divided into five categories of “over delineation”, “less delineation”, “slightly over delineation”, “slightly less delineation” and “correct delineation”. Primitive statistical methods are calculated to examine the skull stripping performances. In another note, Fleiss Kappa statistical analysis is used to measure the agreement among radiologists. The qualitative performances analysis proved that the SBRG is an effective technique for skull stripping.

Keywords

Qualitative analysis Skull stripping Seed-based region growing Medical imaging Magnetic resonance imaging 

Notes

Acknowledgments

Thousand thanks to Hospital Sungai Buloh for their full cooperation during the collection of MRI brain images. Special thanks to Dr Mohd Ezane Aziz, Dr Win Mar Jalaluddin and Dr Nik Munirah Nik Mahdi, the radiologists involved in the qualitative analysis. Finally, thanks to Research Management Institute (RMI), UiTM and financial support from ERGS-grant (600-RMI/ST/ERGS 5/3/(6/2011)) under the Department of Higher Education, Malaysia.

References

  1. 1.
    Isaac, N.B.: Handbook of medical imaging: processing and analysis, Academic, New York (2000)Google Scholar
  2. 2.
    Bullmore, E., Sporn, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)Google Scholar
  3. 3.
    Ibrahim, S., Khalid, N.E.A., Manaf, M., Ngah, U.K.: Particle swarm optimization vs seed-based region growing: brain abnormalities segmentation. Int. J. Artif. Intell. 7(A11), 174–188 (2011)Google Scholar
  4. 4.
    Zhuang, A.H., Valentino, D.J., Toga, A.W.: Skull-stripping magnetic resonance brain images using a model-based level set. NeuroImage 32, 79–92 (2006)Google Scholar
  5. 5.
    Roslan, R., Jamil, N., Mahmud, R.: Skull stripping magnetic resonance images brain images region growing versus mathematical morphology. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 3, 150–158 (2011)Google Scholar
  6. 6.
    Notestine, C.F., Ozyurt, I.B., Clark, C.P., Morris, S., Grethe, A.B., Bondi, M.W., Jernigan, T.L., Fischl, B., Segonne, F., Shattuck, D.W., Leathy, R.M., Rex, D.E., Toga, A.W., Zou, K.H., Birn, M., Brown, G.: Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction and slice location, Human Brain Mapp. 27(2), 99–113 (2006)Google Scholar
  7. 7.
    Eskildsen, S.F., Coupe, P., Fonov, V., Manjon, J.V., Leung, K.K., Guizard, N., Wassef, S.N., Ostergaard, L.R., Collins, D. L.: BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59(3), 2362–2373 (2012)Google Scholar
  8. 8.
    Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B.: A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3), 1060–75 (2004)Google Scholar
  9. 9.
    Ishak, N.F., Logeswaran, R., Tan, W.H.: Artifact and noise stripping on low-field brain MRI. Int. J. Biology Biomed. Eng. 2(2), 59–68 (2008)Google Scholar
  10. 10.
    Shen, S., Snadham, W., Granat, M, Sterr A.: MRI Fuzzy Segmentation of brain tissue using neighborhood attraction with neural network optimization. IEEE Trans. Inf. Technol. Biomed. 9(3), 459–467 (2005)Google Scholar
  11. 11.
    Park, J.G., Lee, C.: Skull stripping based on region growing for magnetic resonance brain images. NeuroImage. 47(4), 1394–1407 (2009)Google Scholar
  12. 12.
    Rex, D.E., Shattuck, D.W., Woods, R.P., Narr, K.L., Luders, E., Rehm, K., Stolzner S.E., Rottenberg, D.A., Toga, A.W.: A meta-algorithm for brain extraction in MRI. NeuroImage 23, 625–627 (2004)Google Scholar
  13. 13.
    Souplet, J.C., Lebrun, C., Clavelou, P., Camu, W., Chanalet, S., Ayache, N., Malandain, G.: A Comparative Study of Atrophy Measurements in Multiple Sclerosis. In: 17th Franco-UK scientific meeting of ARSEP (Francois Lhermitte Conferences), (2008)Google Scholar
  14. 14.
    Gouttard, S., Styner, M., Joshi, S., Smith, R.G., Hazlett, H.C., Gerig, G.: Subcortical structure segmentation using probabilistic atlas priors. In: Proceedings of the SPIE, vol. 6512, pp. 65122 J (2007)Google Scholar
  15. 15.
    Lin, X., Qiu, T., Nicolier, F., Ruan, S.: Automatic hippocampus segmentation from brain MRI images. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 2, 1–10 (2010)Google Scholar
  16. 16.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation, IEEE Trans. Med. Imaging 23(7), 903–921 (2004)Google Scholar
  17. 17.
    Hai, O.T., Ngah, U.K., Khalid, N.E.A., Venkatachalam, P.A.: 2000(b), Mammographic calcification clusters using the region growing technique. In: New millennium international conference on pattern recognition, image processing and robot vision, TATI, Malaysia, pp. 157–163 May 2000Google Scholar
  18. 18.
    Mat-Isa, N.A., Mashor, M.Y., Othman, N.H.: Seeded region growing features extraction algorithm; its potential use in improving screening for cervical cancer. Int. J. Comput. Internet Manage. 13(1), 61–70 Jan–April (2005)Google Scholar
  19. 19.
    Sim, J., Wright, C.C: The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys. Therapy 85(3), 257–268 (2005)Google Scholar
  20. 20.
    Richard, L.J., Gary, G.K.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Shafaf Ibrahim
    • 1
  • Noor Elaiza Abdul Khalid
    • 1
  • Mazani Manaf
    • 1
  • Mohd Ezane Aziz
    • 2
  1. 1.Faculty of Computer and Mathematical SciencesUniversiti Teknologi MARASelangorMalaysia
  2. 2.Department of Radiology, Health CampusUniversiti Sains MalaysiaKelantanMalaysia

Personalised recommendations