Skip to main content

Kidney Cancer Genomics: Paving the Road to a New Paradigm of Personalized Medicine

  • Chapter
  • First Online:
Cancer Genomics

Abstract

Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. Unlike other cancers, its incidence has risen in the past 20 years. The most common subtype of RCC is clear cell RCC (ccRCC) which accounts for approximately 70–80% of cases. A number of genetic aberrations have been reported to be associated with RCC. These include mutations of the von-Hippel Lindau tumor suppressor (VHL) gene which can be associated with a hereditary form of RCC. Inactivation of VHL leads to the stabilization of hypoxia-inducible factors (HIFs) which activates a number of downstream target proteins and contributes to cell proliferation and migration. Currently, there are no established tumor markers for RCC in clinical practice. Recently, a number of molecular markers have been examined as potential diagnostic and prognostic markers for RCC but none have gained clinical application. The new era of molecular profiling has broadened the potential discovery of biomarkers for RCC. This approach allows simultaneous comparison of thousands of molecules in one experiment which will lead to a better understanding of the pathways that are involved in RCC pathogenesis. Molecular profiling can benefit RCC patients at multiple levels including the improvement of early diagnosis, accurate tumor subclassification, prognosis, and prediction of treatment response. In this chapter, we provide a comprehensive review of the genomics of renal cell carcinoma and describe known genetic alterations that are associated with each RCC subtype. We present the current status of tumor markers in RCC and discuss the use of molecular profiling in RCC through different approaches. We also describe the clinical applications of molecular profiling in RCC and how this approach may improve personalized medicine for RCC patients. Finally, we discuss the concept of“integrated genomics” and how this can be applied to further the understanding of the pathogenesis of RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

AMP-activated protein kinase

BHD:

Birt-Hogg-Dubé

CAIX:

Carbonic anhydrase IX

CAV1:

Caveolin-1

ccRCC:

Clear cell renal cell carcinoma

CGP:

Cancer Genome Project

chRCC:

Chromophobe renal cell carcinoma

CNA:

Copy-number alteration

EPAS1:

Endothelial PAS domain protein 1

FH:

Fumarate hydratase

FLCN:

Folliculin

GWAS:

Genome-wide association study

HIF:

Hypoxia-inducible factors

HIF2α:

Hypoxia-inducible factor-2 alpha

HLRCC:

Hereditary leiomyomatosis renal cell carcinoma

HRPCC:

Hereditary papillary renal cell carcinoma

LOH:

Loss of heterozygosity

MHC:

Major histocompatibility complex

mTOR:

Mammalian target of rapamycin

NF2:

Neurofibromin 2

PDGF:

Platelet-derived growth factor

Phos-S6:

Phosphorylated ribosomal protein S6 kinase

pRCC:

Papillary renal cell carcinoma

pVHL:

VHL protein

RCC:

Renal cell carcinoma

TFE3:

Transcription factor E3

TGFα:

Transforming growth factor-alpha

TGFβ:

Transforming growth factor-beta

UMPP:

Ubiquitin-mediated proteolysis pathway

VEGF:

Vascular endothelial growth factor

VHL:

Von-Hippel Lindau tumor suppressor

References

  1. Eble JN, Sauter G, Epstein JI, Sesterhenn IA (ed) (2004) Tumours of the kidney. In: Pathology and genetics of tumours of the urinary system and male genital organs, World Health Organization Classification of Tumours.IARC Press, Lyon. ISBN: 92 832 2412 4

    Google Scholar 

  2. Bostwick DG, Cheng L (2008) Urologic surgical pathology. Mosby Elsevier, New York

    Google Scholar 

  3. Clague J, Lin J, Cassidy A, Matin S, Tannir NM, Tamboli P, Wood CG, Wu X (2009) Family history and risk of renal cell carcinoma: results from a case-control study and systematic meta-analysis. Cancer Epidemiol Biomarkers Prev 18:801–807. doi: 1055-9965.EPI-08-0601[pii];10.1158/1055-9965.EPI-08-0601[doi]

    PubMed  Google Scholar 

  4. Pavlovich CP, Schmidt LS (2004) Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer 4:381–393

    PubMed  CAS  Google Scholar 

  5. Ghosh AK, Shanafelt TD, Cimmino A, Taccioli C, Volinia S, Liu CG, Calin GA, Croce CM, Chan DA, Giaccia AJ, Secreto C, Wellik LE, Lee YK, Mukhopadhyay D, Kay NE (2009) Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood 113:5568–5574

    PubMed  CAS  Google Scholar 

  6. Gossage L, Eisen T (2010) Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nat Rev Clin Oncol 7:277–288. doi: nrclinonc.2010.42[pii];10.1038/nrclinonc.2010.42[doi]

    PubMed  CAS  Google Scholar 

  7. Lichner Z, Mejia-Guerrero S, Ignacak ML, Krizova A, Bao TT, Girgis A et al (2012) Pleiotropic action of renal cell carcinoma-dysregulated miRNAs on hypoxia related signaling pathways. A J Path 180(4):1675–1687. doi: 10.1016/j.ajpath.2011.12.030

    CAS  Google Scholar 

  8. Young AC, Craven RA, Cohen D, Taylor C, Booth C, Harnden P, Cairns DA, Astuti D, Gregory W, Maher ER, Knowles MA, Joyce A, Selby PJ, Banks RE (2009) Analysis of VHL gene alterations and their relationship to clinical parameters in sporadic conventional renal cell carcinoma. Clin Cancer Res 15:7582–7592. doi: 1078-0432.CCR-09-2131[pii];10.1158/1078-0432.CCR-09-2131[doi]

    PubMed  CAS  Google Scholar 

  9. Murphy WM, Grignon DJ, Perlman EJ (2004) AFIP atlas of tumor pathology, series 4, tumors of the kidney, bladder, and related urinary structures. American Registry of Pathology, Washington DC

    Google Scholar 

  10. Argani P, Antonescu CR, Couturier J, Fournet JC, Sciot R, Debiec-Rychter M, Hutchinson B, Reuter VE, Boccon-Gibod L, Timmons C, Hafez N, Ladanyi M (2002) PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Am J Surg Pathol 26:1553–1566

    PubMed  Google Scholar 

  11. Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, Hamoudi R, Linehan WM, Shipley J, Cooper CS (1997) Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 15:2233–2239. doi: 10.1038/sj.onc.1201394[doi]

    PubMed  CAS  Google Scholar 

  12. Weterman MA, Wilbrink M, van Geurts KA (1996) Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1)(p11;q21)-positive papillary renal cell carcinomas. Proc Natl Acad Sci U S A 93:15294–15298

    PubMed  CAS  Google Scholar 

  13. Argani P, Antonescu CR, Illei PB, Lui MY, Timmons CF, Newbury R, Reuter VE, Garvin AJ, Perez-Atayde AR, Fletcher JA, Beckwith JB, Bridge JA, Ladanyi M (2001) Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol 159:179–192. doi: S0002-9440(10)61684-7[pii];10.1016/S0002-9440(10)61684-7[doi]

    PubMed  CAS  Google Scholar 

  14. Srigley JR, Delahunt B (2009) Uncommon and recently described renal carcinomas. Mod Pathol 22(Suppl 2):S2–S23. doi: modpathol200970[pii];10.1038/modpathol.2009.70[doi]

    PubMed  Google Scholar 

  15. Morrison PJ, Donnelly DE, Atkinson AB, Maxwell AP (2010) Advances in the genetics of familial renal cancer. Oncologist 15:532–538. doi: theoncologist.2010-0023[pii];10.1634/theoncologist.2010-0023[doi]

    PubMed  CAS  Google Scholar 

  16. Richard S, Lidereau R, Giraud S (2004) The growing family of hereditary renal cell carcinoma. Nephrol Dial Transplant 19:2954–2958. doi: gfh535[pii];10.1093/ndt/gfh535[doi]

    PubMed  Google Scholar 

  17. Maher ER, Neumann HP, Richard S (2011) von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet 19:617–623. doi: ejhg2010175[pii];10.1038/ejhg.2010.175[doi]

    PubMed  CAS  Google Scholar 

  18. Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22:4991–5004. doi: 22/24/4991[pii];10.1200/JCO.2004.05.061[doi]

    PubMed  CAS  Google Scholar 

  19. Franke G, Bausch B, Hoffmann MM, Cybulla M, Wilhelm C, Kohlhase J, Scherer G, Neumann HP (2009) Alu-Alu recombination underlies the vast majority of large VHL germline deletions: molecular characterization and genotype-phenotype correlations in VHL patients. Hum Mutat 30:776–786. doi: 10.1002/humu.20948[doi]

    PubMed  CAS  Google Scholar 

  20. Cascon A, Escobar B, Montero-Conde C, Rodriguez-Antona C, Ruiz-Llorente S, Osorio A, Mercadillo F, Leton R, Campos JM, Garcia-Sagredo JM, Benitez J, Malumbres M, Robledo M (2007) Loss of the actin regulator HSPC300 results in clear cell renal cell carcinoma protection in Von Hippel-Lindau patients. Hum Mutat 28:613–621. doi: 10.1002/humu.20496[doi]

    PubMed  CAS  Google Scholar 

  21. McNeill A, Rattenberry E, Barber R, Killick P, Macdonald F, Maher ER (2009) Genotype-phenotype correlations in VHL exon deletions. Am J Med Genet A 149A:2147–2151. doi: 10.1002/ajmg.a.33023[doi]

    PubMed  CAS  Google Scholar 

  22. Rechsteiner MP, von Teichman A, Nowicka A, Sulser T, Schraml P, Moch H (2011) VHL gene mutations and their effects on hypoxia inducible factor HIFalpha: identification of potential driver and passenger mutations. Cancer Res 71:5500–5511. doi: 0008-5472.CAN-11-0757[pii];10.1158/0008-5472.CAN-11-0757[doi]

    PubMed  CAS  Google Scholar 

  23. Li L, Zhang L, Zhang X, Yan Q, Minamishima YA, Olumi AF, Mao M, Bartz S, Kaelin WG Jr (2007) Hypoxia-inducible factor linked to differential kidney cancer risk seen with type 2A and type 2B VHL mutations. Mol Cell Biol 27:5381–5392

    PubMed  CAS  Google Scholar 

  24. Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Cohen D, Maher ER, Stanley AJ, Harnden P, Joyce A, Knowles M, Selby PJ (2006) Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res 66:2000–2011. doi: 66/4/2000[pii];10.1158/0008-5472.CAN-05-3074[doi]

    PubMed  CAS  Google Scholar 

  25. Linehan WM, Pinto PA, Bratslavsky G, Pfaffenroth E, Merino M, Vocke CD, Toro JR, Bottaro D, Neckers L, Schmidt LS, Srinivasan R (2009) Hereditary kidney cancer: unique opportunity for disease-based therapy. Cancer 115:2252–2261. doi: 10.1002/cncr.24230[doi]

    PubMed  CAS  Google Scholar 

  26. Woodward ER, Ricketts C, Killick P, Gad S, Morris MR, Kavalier F, Hodgson SV, Giraud S, Bressac-de PB, Chapman C, Escudier B, Latif F, Richard S, Maher ER (2008) Familial non-VHL clear cell (conventional) renal cell carcinoma: clinical features, segregation analysis, and mutation analysis of FLCN. Clin Cancer Res 14:5925–5930. doi: 14/18/5925[pii];10.1158/1078-0432.CCR-08-0608[doi]

    PubMed  CAS  Google Scholar 

  27. Choyke PL, Walther MM, Glenn GM, Wagner JR, Venzon DJ, Lubensky IA, Zbar B, Linehan WM (1997) Imaging features of hereditary papillary renal cancers. J Comput Assist Tomogr 21:737–741

    PubMed  CAS  Google Scholar 

  28. Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M, Lubensky I, Neumann HP, Brauch H, Decker J, Vocke C, Brown JA, Jenkins R, Richard S, Bergerheim U, Gerrard B, Dean M, Linehan WM, Zbar B (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18:2343–2350. doi: 10.1038/sj.onc.1202547[doi]

    PubMed  CAS  Google Scholar 

  29. Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S, Pukkala E, Sistonen P, Herva R, Aaltonen LA (2001) Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A 98:3387–3392. doi: 10.1073/pnas.051633798[doi];051633798[pii]

    PubMed  CAS  Google Scholar 

  30. Sudarshan S, Pinto PA, Neckers L, Linehan WM (2007) Mechanisms of disease: hereditary leiomyomatosis and renal cell cancer–a distinct form of hereditary kidney cancer. Nat Clin Pract Urol 4:104–110. doi: ncpuro0711[pii];10.1038/ncpuro0711[doi]

    PubMed  CAS  Google Scholar 

  31. Metias SM, lianidou E, Yousef GM (2009) MicroRNAs in clinical oncology: at the crossroads between promises and problems. J Clin Pathol 62:771–776. doi: 62/9/771[pii];10.1136/jcp.2009.064717[doi]

    PubMed  CAS  Google Scholar 

  32. Eichelberg C, Junker K, Ljungberg B, Moch H (2009) Diagnostic and prognostic molecular markers for renal cell carcinoma: a critical appraisal of the current state of research and clinical applicability. Eur Urol 55:851–863. doi: S0302-2838(09)00005-0[pii];10.1016/j.eururo.2009.01.003[doi]

    PubMed  CAS  Google Scholar 

  33. Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J (1999) Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 17:2530–2540

    PubMed  CAS  Google Scholar 

  34. Mekhail TM, Abou-Jawde RM, Boumerhi G, Malhi S, Wood L, Elson P, Bukowski R (2005) Validation and extension of the Memorial Sloan-Kettering prognostic factors model for survival in patients with previously untreated metastatic renal cell carcinoma. J Clin Oncol 23:832–841

    PubMed  Google Scholar 

  35. Lam JS, Pantuck AJ, Belldegrun AS, Figlin RA (2007) Protein expression profiles in renal cell carcinoma: staging, prognosis, and patient selection for clinical trials. Clin Cancer Res 13:703s–708s

    PubMed  CAS  Google Scholar 

  36. Upton MP, Parker RA, Youmans A, McDermott DF, Atkins MB (2005) Histologic predictors of renal cell carcinoma response to interleukin-2-based therapy. J Immunother 28:488–495

    PubMed  CAS  Google Scholar 

  37. Atkins M, Regan M, McDermott D, Mier J, Stanbridge E, Youmans A, Febbo P, Upton M, Lechpammer M, Signoretti S (2005) Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin Cancer Res 11:3714–3721

    PubMed  CAS  Google Scholar 

  38. Arsanious A, Bjarnason GA, Yousef GM (2009) From bench to bedside: current and future applications of molecular profiling in renal cell carcinoma. Mol Cancer 8:20. doi: 1476-4598-8-20[pii];10.1186/1476-4598-8-20[doi]

    PubMed  Google Scholar 

  39. Netto GJ (2011) Molecular diagnostics in urologic malignancies: a work in progress. Arch Pathol Lab Med 135:610–621. doi: 10.1043/2010-0727-RAIR.1[pii];10.1043/2010-0727-RAIR.1[doi]

    PubMed  CAS  Google Scholar 

  40. White NM, Yousef GM (2011) Translating molecular signatures of renal cell carcinoma into clinical practice. J Urol 186:9–11. doi: S0022-5347(11)03584-1[pii];10.1016/j.juro.2011.04.003[doi]

    PubMed  Google Scholar 

  41. Diamandis M, White NM, Yousef GM (2010) Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res 8:1175–1187. doi: 1541-7786.MCR-10-0264[pii];10.1158/1541-7786.MCR-10-0264[doi]

    PubMed  CAS  Google Scholar 

  42. Chung CC, Chanock SJ (2011) Current status of genome-wide association studies in cancer. Hum Genet 130:59–78. doi: 10.1007/s00439-011-1030-9[doi]

    PubMed  Google Scholar 

  43. Han SS, Yeager M, Moore LE, Wei MH, Pfeiffer R, Toure O, Purdue MP, Johansson M, Scelo G, Chung CC, Gaborieau V, Zaridze D, Schwartz K, Szeszenia-Dabrowska N, Davis F, Bencko V, Colt JS, Janout V, Matveev V, Foretova L, Mates D, Navratilova M, Boffetta P, Berg CD, Grubb RL III, Stevens VL, Thun MJ, Diver WR, Gapstur SM, Albanes D, Weinstein SJ, Virtamo J, Burdett L, Brisuda A, McKay JD, Fraumeni JF Jr, Chatterjee N, Rosenberg PS, Rothman N, Brennan P, Chow WH, Tucker MA, Chanock SJ, Toro JR (2011) The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma. Hum Mol Genet. doi: ddr551[pii];10.1093/hmg/ddr551[doi]

    Google Scholar 

  44. Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, Prokhortchouk E, Wu X, Kiemeney LA, Gaborieau V, Jacobs KB, Chow WH, Zaridze D, Matveev V, Lubinski J, Trubicka J, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Bucur A, Bencko V, Foretova L, Janout V, Boffetta P, Colt JS, Davis FG, Schwartz KL, Banks RE, Selby PJ, Harnden P, Berg CD, Hsing AW, Grubb RL III, Boeing H, Vineis P, Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, Duell EJ, Quiros JR, Sanchez MJ, Navarro C, Ardanaz E, Dorronsoro M, Khaw KT, Allen NE, Bueno-de-Mesquita HB, Peeters PH, Trichopoulos D, Linseisen J, Ljungberg B, Overvad K, Tjonneland A, Romieu I, Riboli E, Mukeria A, Shangina O, Stevens VL, Thun MJ, Diver WR, Gapstur SM, Pharoah PD, Easton DF, Albanes D, Weinstein SJ, Virtamo J, Vatten L, Hveem K, Njolstad I, Tell GS, Stoltenberg C, Kumar R, Koppova K, Cussenot O, Benhamou S, Oosterwijk E, Vermeulen SH, Aben KK, van der Marel SL, Ye Y, Wood CG, Pu X, Mazur AM, Boulygina ES, Chekanov NN, Foglio M, Lechner D, Gut I, Heath S, Blanche H, Hutchinson A, Thomas G, Wang Z, Yeager M, Fraumeni JF Jr, Skryabin KG, McKay JD, Rothman N, Chanock SJ, Lathrop M, Brennan P (2011) Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet 43:60–65. doi: ng.723[pii];10.1038/ng.723[doi]

    PubMed  CAS  Google Scholar 

  45. Wu X, Scelo G, Purdue MP, Rothman N, Johansson M, Ye Y, Wang Z, Zelenika D, Moore LE, Wood CG, Prokhortchouk E, Gaborieau V, Jacobs KB, Chow WH, Toro JR, Zaridze D, Lin J, Lubinski J, Trubicka J, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Jinga V, Bencko V, Slamova A, Holcatova I, Navratilova M, Janout V, Boffetta P, Colt JS, Davis FG, Schwartz KL, Banks RE, Selby PJ, Harnden P, Berg CD, Hsing AW, Grubb RL III, Boeing H, Vineis P, Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, Duell EJ, Quiros JR, Sanchez MJ, Navarro C, Ardanaz E, Dorronsoro M, Khaw KT, Allen NE, Bueno-de-Mesquita HB, Peeters PH, Trichopoulos D, Linseisen J, Ljungberg B, Overvad K, Tjonneland A, Romieu I, Riboli E, Stevens VL, Thun MJ, Diver WR, Gapstur SM, Pharoah PD, Easton DF, Albanes D, Virtamo J, Vatten L, Hveem K, Fletcher T, Koppova K, Cussenot O, Cancel-Tassin G, Benhamou S, Hildebrandt MA, Pu X, Foglio M, Lechner D, Hutchinson A, Yeager M, Fraumeni JF Jr, Lathrop M, Skryabin KG, McKay JD, Gu J, Brennan P, Chanock SJ (2012) A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum Mol Genet 21:456–462. doi: ddr479[pii];10.1093/hmg/ddr479[doi]

    PubMed  CAS  Google Scholar 

  46. Cao Q, Qin C, Ju X, Meng X, Wang M, Zhu J, Li P, Chen J, Zhang Z, Yin C (2012) Chromosome 11q13.3 variant modifies renal cell cancer risk in a Chinese population. Mutagenesis 27(3):345–350. doi: ger085[pii];10.1093/mutage/ger085[doi]

    PubMed  CAS  Google Scholar 

  47. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, Thorleifsson G, Zillikens MC, Speliotes EK, Magi R, Workalemahu T, White CC, Bouatia-Naji N, Harris TB, Berndt SI, Ingelsson E, Willer CJ, Weedon MN, Luan J, Vedantam S, Esko T, Kilpelainen TO, Kutalik Z, Li S, Monda KL, Dixon AL, Holmes CC, Kaplan LM, Liang L, Min JL, Moffatt MF, Molony C, Nicholson G, Schadt EE, Zondervan KT, Feitosa MF, Ferreira T, Allen HL, Weyant RJ, Wheeler E, Wood AR, Estrada K, Goddard ME, Lettre G, Mangino M, Nyholt DR, Purcell S, Smith AV, Visscher PM, Yang J, McCarroll SA, Nemesh J, Voight BF, Absher D, Amin N, Aspelund T, Coin L, Glazer NL, Hayward C, Heard-Costa NL, Hottenga JJ, Johansson A, Johnson T, Kaakinen M, Kapur K, Ketkar S, Knowles JW, Kraft P, Kraja AT, Lamina C, Leitzmann MF, McKnight B, Morris AP, Ong KK, Perry JR, Peters MJ, Polasek O, Prokopenko I, Rayner NW, Ripatti S, Rivadeneira F, Robertson NR, Sanna S, Sovio U, Surakka I, Teumer A, van Wingerden S, Vitart V, Zhao JH, Cavalcanti-Proenca C, Chines PS, Fisher E, Kulzer JR, Lecoeur C, Narisu N, Sandholt C, Scott LJ, Silander K, Stark K, Tammesoo ML, Teslovich TM, Timpson NJ, Watanabe RM, Welch R, Chasman DI, Cooper MN, Jansson JO, Kettunen J, Lawrence RW, Pellikka N, Perola M, Vandenput L, Alavere H, Almgren P, Atwood LD, Bennett AJ, Biffar R, Bonnycastle LL, Bornstein SR, Buchanan TA, Campbell H, Day IN, Dei M, Dorr M, Elliott P, Erdos MR, Eriksson JG, Freimer NB, Fu M, Gaget S, Geus EJ, Gjesing AP, Grallert H, Grassler J, Groves CJ, Guiducci C, Hartikainen AL, Hassanali N, Havulinna AS, Herzig KH, Hicks AA, Hui J, Igl W, Jousilahti P, Jula A, Kajantie E, Kinnunen L, Kolcic I, Koskinen S, Kovacs P, Kroemer HK, Krzelj V, Kuusisto J, Kvaloy K, Laitinen J, Lantieri O, Lathrop GM, Lokki ML, Luben RN, Ludwig B, McArdle WL, McCarthy A, Morken MA, Nelis M, Neville MJ, Pare G, Parker AN, Peden JF, Pichler I, Pietilainen KH, Platou CG, Pouta A, Ridderstrale M, Samani NJ, Saramies J, Sinisalo J, Smit JH, Strawbridge RJ, Stringham HM, Swift AJ, Teder-Laving M, Thomson B, Usala G, van Meurs JB, van Ommen GJ, Vatin V, Volpato CB, Wallaschofski H, Walters GB, Widen E, Wild SH, Willemsen G, Witte DR, Zgaga L, Zitting P, Beilby JP, James AL, Kahonen M, Lehtimaki T, Nieminen MS, Ohlsson C, Palmer LJ, Raitakari O, Ridker PM, Stumvoll M, Tonjes A, Viikari J, Balkau B, Ben-Shlomo Y, Bergman RN, Boeing H, Smith GD, Ebrahim S, Froguel P, Hansen T, Hengstenberg C, Hveem K, Isomaa B, Jorgensen T, Karpe F, Khaw KT, Laakso M, Lawlor DA, Marre M, Meitinger T, Metspalu A, Midthjell K, Pedersen O, Salomaa V, Schwarz PE, Tuomi T, Tuomilehto J, Valle TT, Wareham NJ, Arnold AM, Beckmann JS, Bergmann S, Boerwinkle E, Boomsma DI, Caulfield MJ, Collins FS, Eiriksdottir G, Gudnason V, Gyllensten U, Hamsten A, Hattersley AT, Hofman A, Hu FB, Illig T, Iribarren C, Jarvelin MR, Kao WH, Kaprio J, Launer LJ, Munroe PB (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42:949–960. doi: ng.685[pii];10.1038/ng.685[doi]

    PubMed  CAS  Google Scholar 

  48. Chow WH, Dong LM, Devesa SS (2010) Epidemiology and risk factors for kidney cancer. Nat Rev Urol 7:245–257. doi: nrurol.2010.46[pii];10.1038/nrurol.2010.46[doi]

    PubMed  Google Scholar 

  49. Chow WH, Devesa SS (2008) Contemporary epidemiology of renal cell cancer. Cancer J 14:288–301. doi: 10.1097/PPO.0b013e3181867628[doi];00130404-200809000-00003[pii]

    PubMed  CAS  Google Scholar 

  50. Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, Han SS, Zaridze D, Matveev V, Janout V, Kollarova H, Bencko V, Navratilova M, Szeszenia-Dabrowska N, Mates D, Schmidt LS, Lenz P, Karami S, Linehan WM, Merino M, Chanock S, Boffetta P, Chow WH, Waldman FM, Rothman N (2011) Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 7:e1002312. doi: 10.1371/journal.pgen.1002312[doi];PGENETICS-D-11-00136[pii]

    PubMed  CAS  Google Scholar 

  51. Scelo G, Brennan P (2007) The epidemiology of bladder and kidney cancer. Nat Clin Pract Urol 4:205–217. doi: ncpuro0760[pii];10.1038/ncpuro0760[doi]

    PubMed  Google Scholar 

  52. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755. doi: nrg3031[pii];10.1038/nrg3031[doi]

    PubMed  CAS  Google Scholar 

  53. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J, Bignell G, Butler A, Cho J, Dalgliesh GL, Galappaththige D, Greenman C, Hardy C, Jia M, Latimer C, Lau KW, Marshall J, McLaren S, Menzies A, Mudie L, Stebbings L, Largaespada DA, Wessels LF, Richard S, Kahnoski RJ, Anema J, Tuveson DA, Perez-Mancera PA, Mustonen V, Fischer A, Adams DJ, Rust A, Chan-on W, Subimerb C, Dykema K, Furge K, Campbell PJ, Teh BT, Stratton MR, Futreal PA (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469:539–542. doi: nature09639[pii];10.1038/nature09639[doi]

    PubMed  CAS  Google Scholar 

  54. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C, Teague J, Andrews J, Barthorpe S, Beare D, Buck G, Campbell PJ, Forbes S, Jia M, Jones D, Knott H, Kok CY, Lau KW, Leroy C, Lin ML, McBride DJ, Maddison M, Maguire S, McLay K, Menzies A, Mironenko T, Mulderrig L, Mudie L, O’Meara S, Pleasance E, Rajasingham A, Shepherd R, Smith R, Stebbings L, Stephens P, Tang G, Tarpey PS, Turrell K, Dykema KJ, Khoo SK, Petillo D, Wondergem B, Anema J, Kahnoski RJ, Teh BT, Stratton MR, Futreal PA (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463:360–363. doi: nature08672[pii];10.1038/nature08672[doi]

    PubMed  CAS  Google Scholar 

  55. New gene mutation implicated in renal cancer. Study findings could shed light on the intricate biology of kidney cancer (2011) Duke Med Health News 17:6–7

    Google Scholar 

  56. Niu X, Zhang T, Liao L, Zhou L, Lindner DJ, Zhou M, Rini B, Yan Q, Yang H (2011) The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene. doi: onc2011266[pii];10.1038/onc.2011.266[doi]

    Google Scholar 

  57. Guo G, Gui Y, Gao S, Tang A, Hu X, Huang Y, Jia W, Li Z, He M, Sun L, Song P, Sun X, Zhao X, Yang S, Liang C, Wan S, Zhou F, Chen C, Zhu J, Li X, Jian M, Zhou L, Ye R, Huang P, Chen J, Jiang T, Liu X, Wang Y, Zou J, Jiang Z, Wu R, Wu S, Fan F, Zhang Z, Liu L, Yang R, Liu X, Wu H, Yin W, Zhao X, Liu Y, Peng H, Jiang B, Feng Q, Li C, Xie J, Lu J, Kristiansen K, Li Y, Zhang X, Li S, Wang J, Yang H, Cai Z, Wang J (2011) Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 44:17–19. doi: ng.1014[pii];10.1038/ng.1014[doi]

    PubMed  Google Scholar 

  58. Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RM, Kok K (2010) Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 70:4287–4291. doi: 0008-5472.CAN-10-0120[pii];10.1158/0008-5472.CAN-10-0120[doi]

    PubMed  CAS  Google Scholar 

  59. Beroukhim R, Brunet JP, Di NA, Mertz KD, Seeley A, Pires MM, Linhart D, Worrell RA, Moch H, Rubin MA, Sellers WR, Meyerson M, Linehan WM, Kaelin WG Jr, Signoretti S (2009) Patterns of gene expression and copy-number alterations in von-Hippel Lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res 69:4674–4681. doi: 0008-5472.CAN-09-0146[pii];10.1158/0008-5472.CAN-09-0146[doi]

    PubMed  CAS  Google Scholar 

  60. Bissig H, Richter J, Desper R, Meier V, Schraml P, Schaffer AA, Sauter G, Mihatsch MJ, Moch H (1999) Evaluation of the clonal relationship between primary and metastatic renal cell carcinoma by comparative genomic hybridization. Am J Pathol 155:267–274. doi: S0002-9440(10)65120-6[pii];10.1016/S0002-9440(10)65120-6[doi]

    PubMed  CAS  Google Scholar 

  61. Gronwald J, Storkel S, Holtgreve-Grez H, Hadaczek P, Brinkschmidt C, Jauch A, Lubinski J, Cremer T (1997) Comparison of DNA gains and losses in primary renal clear cell carcinomas and metastatic sites: importance of 1q and 3p copy number changes in metastatic events. Cancer Res 57:481–487

    PubMed  CAS  Google Scholar 

  62. Jiang F, Desper R, Papadimitriou CH, Schaffer AA, Kallioniemi OP, Richter J, Schraml P, Sauter G, Mihatsch MJ, Moch H (2000) Construction of evolutionary tree models for renal cell carcinoma from comparative genomic hybridization data. Cancer Res 60:6503–6509

    PubMed  CAS  Google Scholar 

  63. Moch H, Presti JC Jr, Sauter G, Buchholz N, Jordan P, Mihatsch MJ, Waldman FM (1996) Genetic aberrations detected by comparative genomic hybridization are associated with clinical outcome in renal cell carcinoma. Cancer Res 56:27–30

    PubMed  CAS  Google Scholar 

  64. Schullerus D, Herbers J, Chudek J, Kanamaru H, Kovacs G (1997) Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. J Pathol 183:151–155. doi:10.1002/(SICI)1096-9896(199710)183:2<151::AID-PATH928>3.0.CO;2-R [pii];10.1002/(SICI)1096-9896(199710)183:2<151::AID-PATH928>3.0.CO;2-R [doi]

    PubMed  CAS  Google Scholar 

  65. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. doi: 10.1038/nature02871[doi];nature02871[pii]

    PubMed  CAS  Google Scholar 

  66. White NM, Fatoohi E, Metias M, Jung K, Stephan C, Yousef GM (2011) Metastamirs: a stepping stone towards improved cancer management. Nat Rev Clin Oncol 8:75–84

    PubMed  CAS  Google Scholar 

  67. Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47:1127–1137. doi: S0959-8049(11)00107-9[pii];10.1016/j.ejca.2011.02.008[doi]

    PubMed  CAS  Google Scholar 

  68. Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ (2010) MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 29:5761–5771. doi: onc2010352[pii];10.1038/onc.2010.352[doi]

    PubMed  CAS  Google Scholar 

  69. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    PubMed  CAS  Google Scholar 

  70. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, Sevignani C, Byrne D, Negrini M, Pagano F, Gomella LG, Croce CM, Baffa R (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25:387–392

    PubMed  CAS  Google Scholar 

  71. White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, Fatoohi E, Metias M, Honey RJ, Stewart R, Pace K, Bjarnason GA, Yousef GM (2011) MiRNA profiling in clear cell renal cell carcinoma: biomarker discovery and the identification of potential controls and consequences of miRNA dysregulation. J Urol 186:1077–1083. doi: S0022-5347(11)03891-2[pii];10.1016/j.juro.2011.04.110[doi]

    PubMed  CAS  Google Scholar 

  72. Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, Pace KT, Yousef GM (2009) Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem 43:150–158. doi: S0009-9120(09)00319-1[pii];10.1016/j.clinbiochem.2009.07.020[doi]

    PubMed  Google Scholar 

  73. Huang Y, Dai Y, Yang J, Chen T, Yin Y, Tang M, Hu C, Zhang L (2009) Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol 35:1119–1123. doi: S0748-7983(09)00140-1[pii];10.1016/j.ejso.2009.04.010[doi]

    PubMed  CAS  Google Scholar 

  74. Juan D, Alexe G, Antes T, Liu H, Madabhushi A, Delisi C, Ganesan S, Bhanot G, Liou LS (2010) Identification of a MicroRNA panel for clear-cell kidney cancer. Urology 75:835–841. doi: S0090-4295(09)02809-X[pii];10.1016/j.urology.2009.10.033[doi]

    PubMed  Google Scholar 

  75. Jung M, Mollenkopf H-J, Grimm C, Wagner I, Albrecht M, Waller T, Pilarsky C, Johannsen M, Stephan C, Lehrach H, Nietfeld W, Rudel T, Jung K, Kristiansen G (2009) MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med 19:3918–3928

    Google Scholar 

  76. Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, Nguyen LT, Hijiya N, Uchida T, Sato F, Mimata H, Seto M, Moriyama M (2008) Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol 216:418–427

    PubMed  CAS  Google Scholar 

  77. Yi Z, Fu Y, Zhao S, Zhang X, Ma C (2010) Differential expression of miRNA patterns in renal cell carcinoma and nontumorous tissues. J Cancer Res Clin Oncol 136:855–862. doi: 10.1007/s00432-009-0726-x[doi]

    PubMed  CAS  Google Scholar 

  78. Chow TF, Mankaruos M, Scorilas A, Youssef Y, Girgis A, Mossad S, Metias S, Rofael Y, Honey RJ, Stewart R, Pace KT, Yousef GM (2010) The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol 183:743–751. doi: S0022-5347(09)02627-5[pii];10.1016/j.juro.2009.09.086[doi]

    PubMed  CAS  Google Scholar 

  79. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A, Hermeking H (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458:313–322. doi: 10.1007/s00428-010-1030-5[doi]

    PubMed  Google Scholar 

  80. White NM, Yousef GM (2010) MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med 8:65. doi: 1741-7015-8-65[pii];10.1186/1741-7015-8-65[doi]

    PubMed  Google Scholar 

  81. Bracken CP, Whitelaw ML, Peet DJ (2003) The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci 60:1376–1393. doi: 10.1007/s00018-003-2370-y[doi]

    PubMed  CAS  Google Scholar 

  82. Arjumand W, Sultana S (2011) Role of VHL gene mutation in human renal cell carcinoma. Tumour Biol. doi: 10.1007/s13277-011-0257-3[doi]

    Google Scholar 

  83. Turner KJ, Moore JW, Jones A, Taylor CF, Cuthbert-Heavens D, Han C, Leek RD, Gatter KC, Maxwell PH, Ratcliffe PJ, Cranston D, Harris AL (2002) Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res 62:2957–2961

    PubMed  CAS  Google Scholar 

  84. Biswas S, Troy H, Leek R, Chung YL, Li JL, Raval RR, Turley H, Gatter K, Pezzella F, Griffiths JR, Stubbs M, Harris AL (2010) Effects of HIF-1alpha and HIF2alpha on growth and metabolism of clear-cell renal cell carcinoma 786–0 xenografts. J Oncol 2010:757908. doi: 10.1155/2010/757908[doi]

    PubMed  Google Scholar 

  85. Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE, Greenberg RA, Flaherty KT, Rathmell WK, Keith B, Simon MC, Nathanson KL (2008) HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14:435–446. doi: S1535-6108(08)00366-8[pii];10.1016/j.ccr.2008.10.016[doi]

    PubMed  CAS  Google Scholar 

  86. Kaelin WG Jr (2008) Kidney cancer: now available in a new flavor. Cancer Cell 14(6):423–424. doi: S1535-6108(08)00372-3[pii];10.1016/j.ccr.2008.11.005[doi]

    PubMed  CAS  Google Scholar 

  87. Dondeti VR, Wubbenhorst B, Lal P, Gordan JD, D’Andrea K, Attiyeh EF, Simon MC, Nathanson KL (2011) Integrative genomic analyses of sporadic clear cell renal cell carcinoma define disease subtypes and potential new therapeutic targets. Cancer Res. doi: 0008-5472.CAN-11-1698[pii];10.1158/0008-5472.CAN-11-1698[doi]

    Google Scholar 

  88. Brannon AR, Reddy A, Seiler M, Arreola A, Moore DT, Pruthi RS, Wallen EM, Nielsen ME, Liu H, Nathanson KL, Ljungberg B, Zhao H, Brooks JD, Ganesan S, Bhanot G, Rathmell WK (2010) Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 1:152–163. doi: 10.1177/1947601909359929[doi]

    PubMed  CAS  Google Scholar 

  89. Klatte T, Pantuck AJ, Said JW, Seligson DB, Rao NP, LaRochelle JC, Shuch B, Zisman A, Kabbinavar FF, Belldegrun AS (2009) Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin Cancer Res 15:1162–1169. doi: 15/4/1162[pii];10.1158/1078-0432.CCR-08-1229[doi]

    PubMed  CAS  Google Scholar 

  90. Brannon AR, Rathmell WK (2010) Renal cell carcinoma: where will the state-of-the-art lead us? Curr Oncol Rep 12:193–201. doi: 10.1007/s11912-010-0093-4[doi]

    PubMed  Google Scholar 

  91. Boer JM, Huber WK, Sultmann H, Wilmer F, von Heydebreck A, Haas S, Korn B, Gunawan B, Vente A, Fuzesi L, Vingron M, Poustka A (2001) Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res 11:1861–1870

    PubMed  CAS  Google Scholar 

  92. Gieseg MA, Cody T, Man MZ, Madore SJ, Rubin MA, Kaldjian EP (2002) Expression profiling of human renal carcinomas with functional taxonomic analysis. BMC Bioinformatics 3:26

    PubMed  Google Scholar 

  93. Lenburg ME, Liou LS, Gerry NP, Frampton GM, Cohen HT, Christman MF (2003) Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer 3:31–49

    PubMed  Google Scholar 

  94. Rae FK, Stephenson SA, Nicol DL, Clements JA (2000) Novel association of a diverse range of genes with renal cell carcinoma as identified by differential display. Int J Cancer 88:726–732

    PubMed  CAS  Google Scholar 

  95. Craven RA, Stanley AJ, Hanrahan S, Dods J, Unwin R, Totty N, Harnden P, Eardley I, Selby PJ, Banks RE (2006) Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics 6:2853–2864

    PubMed  CAS  Google Scholar 

  96. Siu KW, DeSouza LV, Scorilas A, Romaschin AD, Honey RJ, Stewart R, Pace K, Youssef Y, Chow TF, Yousef GM (2009) Differential protein expressions in renal cell carcinoma: new biomarker discovery by mass spectrometry. J Proteome Res 8:3797–3807. doi: 10.1021/pr800389e[doi]

    PubMed  CAS  Google Scholar 

  97. Romaschin AD, Youssef Y, Chow T, Siu KW, DeSouza L, Honey RJ, Steward R, Pace KT, Yousef GM (2009) Exploring the pathogenesis of renal cell carcinoma: pathway and bioinformatics analysis of dysregulated genes and proteins. Biol Chem 390:125–135

    PubMed  CAS  Google Scholar 

  98. Hwa JS, Park HJ, Jung JH, Kam SC, Park HC, Kim CW, Kang KR, Hyun JS, Chung KH (2005) Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis. J Korean Med Sci 20:450–455

    PubMed  CAS  Google Scholar 

  99. Perego RA, Bianchi C, Corizzato M, Eroini B, Torsello B, Valsecchi C, Di Fonzo A, Cordani N, Favini P, Ferrero S, Pitto M, Sarto C, Magni F, Rocco F, Mocarelli P (2005) Primary cell cultures arising from normal kidney and renal cell carcinoma retain the proteomic profile of corresponding tissues. J Proteome Res 4:1503–1510

    PubMed  CAS  Google Scholar 

  100. Sarto C, Marocchi A, Sanchez JC, Giannone D, Frutiger S, Golaz O, Wilkins MR, Doro G, Cappellano F, Hughes G, Hochstrasser DF, Mocarelli P (1997) Renal cell carcinoma and normal kidney protein expression. Electrophoresis 18:599–604

    PubMed  CAS  Google Scholar 

  101. Shi T, Dong F, Liou LS, Duan ZH, Novick AC, DiDonato JA (2004) Differential protein profiling in renal-cell carcinoma. Mol Carcinog 40:47–61

    PubMed  CAS  Google Scholar 

  102. Han WK, Alinani A, Wu CL, Michaelson D, Loda M, McGovern FJ, Thadhani R, Bonventre JV (2005) Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. J Am Soc Nephrol 16:1126–1134

    PubMed  CAS  Google Scholar 

  103. Hwa JS, Kim HJ, Goo BM, Park HJ, Kim CW, Chung KH, Park HC, Chang SH, Kim YW, Kim DR, Cho GJ, Choi WS, Kang KR (2006) The expression of ketohexokinase is diminished in human clear cell type of renal cell carcinoma. Proteomics 6:1077–1084

    PubMed  CAS  Google Scholar 

  104. Minamida S, Iwamura M, Kodera Y, Kawashima Y, Tabata K, Matsumoto K, Fujita T, Satoh T, Maeda T, Baba S (2011) 14-3-3 protein beta/alpha as a urinary biomarker for renal cell carcinoma: proteomic analysis of cyst fluid. Anal Bioanal Chem 401:245–252. doi: 10.1007/s00216-011-5057-5[doi]

    PubMed  CAS  Google Scholar 

  105. Bex A, Larkin J, Blank C (2011) Non-clear cell renal cell carcinoma: how new biological insight may lead to new therapeutic modalities. Curr Oncol Rep 13(3):240–248. doi: 10.1007/s11912-011-0159-y[doi]

    PubMed  Google Scholar 

  106. Kummerlin I, ten Kate F, Smedts F, Horn T, Algaba F, Trias I, de la Rosette J, Laguna MP (2008) Core biopsies of renal tumors: a study on diagnostic accuracy, interobserver, and intraobserver variability. Eur Urol 53:1219–1225. doi: S0302-2838(07)01529-1[pii];10.1016/j.eururo.2007.11.054[doi]

    PubMed  Google Scholar 

  107. Kummerlin I, ten Kate F, Smedts F, Horn T, Algaba F, Trias I, de la Rosette J, Laguna MP (2009) Diagnostic problems in the subtyping of renal tumors encountered by five pathologists. Pathol Res Pract 205:27–34. doi: S0344-0338(08)00172-6[pii];10.1016/j.prp.2008.07.014[doi]

    PubMed  Google Scholar 

  108. Higgins JP, Shinghal R, Gill H, Reese JH, Terris M, Cohen RJ, Fero M, Pollack JR, van de Rijn M, Brooks JD (2003) Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol 162:925–932

    PubMed  CAS  Google Scholar 

  109. Takahashi M, Rhodes DR, Furge KA, Kanayama H, Kagawa S, Haab BB, Teh BT (2001) Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A 98:9754–9759

    PubMed  CAS  Google Scholar 

  110. Yao M, Tabuchi H, Nagashima Y, Baba M, Nakaigawa N, Ishiguro H, Hamada K, Inayama Y, Kishida T, Hattori K, Yamada-Okabe H, Kubota Y (2005) Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol 205:377–387

    PubMed  CAS  Google Scholar 

  111. Young AN, Amin MB, Moreno CS, Lim SD, Cohen C, Petros JA, Marshall FF, Neish AS (2001) Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol 158:1639–1651

    PubMed  CAS  Google Scholar 

  112. Chuang ST, Chu P, Sugimura J, Tretiakova MS, Papavero V, Wang K, Tan MH, Lin F, Teh BT, Yang XJ (2005) Overexpression of glutathione s-transferase alpha in clear cell renal cell carcinoma. Am J Clin Pathol 123:421–429. doi: AQXR6B2QPUGD638C[pii];10.1309/AQXR-6B2Q-PUGD-638C[doi]

    PubMed  CAS  Google Scholar 

  113. Yang XJ, Sugimura J, Schafernak KT, Tretiakova MS, Han M, Vogelzang NJ, Furge K, Teh BT (2006) Classification of renal neoplasms based on molecular signatures. J Urol 175:2302–2306

    PubMed  CAS  Google Scholar 

  114. Youssef Y, White NM, Grigull J, Krizova A, Samy C, Mejia-Guerrero S, Evans A, Jewett M, Yousef GM (2011) MiRNA profiling in kidney cancer subtypes: accurate molecular classification and correlation with cytogenetic and mRNA data identifies unique and shared biological pathways. Eur Urol 59:721–730

    PubMed  CAS  Google Scholar 

  115. Fridman E, Dotan Z, Barshack I, David MB, Dov A, Tabak S, Zion O, Benjamin S, Benjamin H, Kuker H, Avivi C, Rosenblatt K, Polak-Charcon S, Ramon J, Rosenfeld N, Spector Y (2010) Accurate molecular classification of renal tumors using MicroRNA expression. J Mol Diagn 12:687–696. doi: jmoldx.2010.090187[pii];10.2353/jmoldx.2010.090187[doi]

    PubMed  CAS  Google Scholar 

  116. Petillo D, Kort EJ, Anema J, Furge KA, Yang XJ, Teh BT (2009) MicroRNA profiling of human kidney cancer subtypes. Int J Oncol 35:109–114

    PubMed  CAS  Google Scholar 

  117. Powers MP, Alvarez K, Kim HJ, Monzon FA (2011) Molecular classification of adult renal epithelial neoplasms using microRNA expression and virtual karyotyping. Diagn Mol Pathol 20:63–70. doi: 10.1097/PDM.0b013e3181efe2a9[doi]

    PubMed  Google Scholar 

  118. Faragalla H, Youssef YM, Khalil B, White NM, Mejia-Guerrero S, Jewett MA et al (2012) The clinical utility of miR-21 as a diagnostic and prognostic marker for renal cell carcinoma. J Mol Diagn 14(4):385–392

    PubMed  Google Scholar 

  119. Arai E, Wakai-Ushijima S, Fujimoto H, Hosoda F, Shibata T, Kondo T, Yokoi S, Imoto I, Inazawa J, Hirohashi S, Kanai Y (2011) Genome-wide DNA methylation profiles in renal tumors of various histological subtypes and non-tumorous renal tissues. Pathobiology 78:1–9. doi: 000322072[pii];10.1159/000322072[doi]

    PubMed  CAS  Google Scholar 

  120. Kopper L, Timar J (2006) Genomics of renal cell cancer– does it provide breakthrough? Pathol Oncol Res 12:5–11. doi: PAOR.2006.12.1.0005[doi]

    PubMed  CAS  Google Scholar 

  121. Gunawan B, Huber W, Holtrup M, von Heydebreck A, Efferth T, Poustka A, Ringert RH, Jakse G, Fuzesi L (2001) Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res 61:7731–7738

    PubMed  CAS  Google Scholar 

  122. Chen M, Ye Y, Yang H, Tamboli P, Matin S, Tannir NM, Wood CG, Gu J, Wu X (2009) Genome-wide profiling of chromosomal alterations in renal cell carcinoma using high-density single nucleotide polymorphism arrays. Int J Cancer 125:2342–2348. doi: 10.1002/ijc.24642[doi]

    PubMed  CAS  Google Scholar 

  123. Klatte T, Rao PN, de Martino M, LaRochelle J, Shuch B, Zomorodian N, Said J, Kabbinavar FF, Belldegrun AS, Pantuck AJ (2009) Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma. J Clin Oncol 27:746–753. doi: JCO.2007.15.8345[pii];10.1200/JCO.2007.15.8345[doi]

    PubMed  Google Scholar 

  124. La RJ, Klatte T, Dastane A, Rao N, Seligson D, Said J, Shuch B, Zomorodian N, Kabbinavar F, Belldegrun A, Pantuck AJ (2010) Chromosome 9p deletions identify an aggressive phenotype of clear cell renal cell carcinoma. Cancer 116:4696–4702. doi: 10.1002/cncr.25279[doi]

    Google Scholar 

  125. Monzon FA, Alvarez K, Peterson L, Truong L, Amato RJ, Hernandez-McClain J, Tannir N, Parwani AV, Jonasch E (2011) Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. Mod Pathol. doi: modpathol2011107[pii];10.1038/modpathol.2011.107[doi]

    Google Scholar 

  126. Sanjmyatav J, Junker K, Matthes S, Muehr M, Sava D, Sternal M, Wessendorf S, Kreuz M, Gajda M, Wunderlich H, Schwaenen C (2011) Identification of genomic alterations associated with metastasis and cancer specific survival in clear cell renal cell carcinoma. J Urol. doi: S0022-5347(11)04325-4[pii];10.1016/j.juro.2011.06.050[doi]

    Google Scholar 

  127. Yoshimoto T, Matsuura K, Karnan S, Tagawa H, Nakada C, Tanigawa M, Tsukamoto Y, Uchida T, Kashima K, Akizuki S, Takeuchi I, Sato F, Mimata H, Seto M, Moriyama M (2007) High-resolution analysis of DNA copy number alterations and gene expression in renal clear cell carcinoma. J Pathol 213:392–401. doi: 10.1002/path.2239[doi]

    PubMed  CAS  Google Scholar 

  128. Hagenkord JM, Gatalica Z, Jonasch E, Monzon FA (2011) Clinical genomics of renal epithelial tumors. Cancer Genet 204:285–297. doi: S2210-7762(11)00151-7[pii];10.1016/j.cancergen.2011.06.001[doi]

    PubMed  CAS  Google Scholar 

  129. Presti JC Jr, Wilhelm M, Reuter V, Russo P, Motzer R, Waldman F (2002) Allelic loss on chromosomes 8 and 9 correlates with clinical outcome in locally advanced clear cell carcinoma of the kidney. J Urol 167:1464–1468. doi: S0022-5347(05)65346-3[pii]

    PubMed  CAS  Google Scholar 

  130. Szponar A, Zubakov D, Pawlak J, Jauch A, Kovacs G (2009) Three genetic developmental stages of papillary renal cell tumors: duplication of chromosome 1q marks fatal progression. Int J Cancer 124:2071–2076. doi: 10.1002/ijc.24180[doi]

    PubMed  CAS  Google Scholar 

  131. Furge KA, Chen J, Koeman J, Swiatek P, Dykema K, Lucin K, Kahnoski R, Yang XJ, Teh BT (2007) Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res 67:3171–3176. doi: 67/7/3171[pii];10.1158/0008-5472.CAN-06-4571[doi]

    PubMed  CAS  Google Scholar 

  132. Bui MH, Seligson D, Han KR, Pantuck AJ, Dorey FJ, Huang Y, Horvath S, Leibovich BC, Chopra S, Liao SY, Stanbridge E, Lerman MI, Palotie A, Figlin RA, Belldegrun AS (2003) Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 9:802–811

    PubMed  CAS  Google Scholar 

  133. Sandlund J, Oosterwijk E, Grankvist K, Oosterwijk-Wakka J, Ljungberg B, Rasmuson T (2007) Prognostic impact of carbonic anhydrase IX expression in human renal cell carcinoma. BJU Int 100:556–560. doi: BJU7006[pii];10.1111/j.1464-410X.2007.07006.x[doi]

    PubMed  Google Scholar 

  134. Patard JJ, Fergelot P, Karakiewicz PI, Klatte T, Trinh QD, Rioux-Leclercq N, Said JW, Belldegrun AS, Pantuck AJ (2008) Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int J Cancer 123:395–400. doi: 10.1002/ijc.23496[doi]

    PubMed  CAS  Google Scholar 

  135. Leibovich BC, Sheinin Y, Lohse CM, Thompson RH, Cheville JC, Zavada J, Kwon ED (2007) Carbonic anhydrase IX is not an independent predictor of outcome for patients with clear cell renal cell carcinoma. J Clin Oncol 25:4757–4764. doi: 25/30/4757[pii];10.1200/JCO.2007.12.1087[doi]

    PubMed  Google Scholar 

  136. Stillebroer AB, Mulders PF, Boerman OC, Oyen WJ, Oosterwijk E (2010) Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur Urol 58:75–83. doi: S0302-2838(10)00268-X[pii];10.1016/j.eururo.2010.03.015[doi]

    PubMed  CAS  Google Scholar 

  137. Thompson RH, Kwon ED (2006) Significance of B7-H1 overexpression in kidney cancer. Clin Genitourin Cancer 5:206–211

    PubMed  CAS  Google Scholar 

  138. Yao M, Yoshida M, Kishida T, Nakaigawa N, Baba M, Kobayashi K, Miura T, Moriyama M, Nagashima Y, Nakatani Y, Kubota Y, Kondo K (2002) VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst 94:1569–1575

    PubMed  CAS  Google Scholar 

  139. Hoffmann NE, Sheinin Y, Lohse CM, Parker AS, Leibovich BC, Jiang Z, Kwon ED (2008) External validation of IMP3 expression as an independent prognostic marker for metastatic progression and death for patients with clear cell renal cell carcinoma. Cancer 112:1471–1479

    PubMed  Google Scholar 

  140. Jiang Z, Chu PG, Woda BA, Rock KL, Liu Q, Hsieh CC, Li C, Chen W, Duan HO, McDougal S, Wu CL (2006) Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol 7:556–564

    PubMed  CAS  Google Scholar 

  141. Uchida T, Wada C, Shitara T, Egawa S, Mashimo S, Koshiba K (1993) Infrequent involvement of p53 mutations and loss of heterozygosity of 17p in the tumorigenesis of renal cell carcinoma. J Urol 150:1298–1301

    PubMed  CAS  Google Scholar 

  142. Reiter RE, Anglard P, Liu S, Gnarra JR, Linehan WM (1993) Chromosome 17p deletions and p53 mutations in renal cell carcinoma. Cancer Res 53:3092–3097

    PubMed  CAS  Google Scholar 

  143. Ogawa O, Habuchi T, Kakehi Y, Koshiba M, Sugiyama T, Yoshida O (1992) Allelic losses at chromosome 17p in human renal cell carcinoma are inversely related to allelic losses at chromosome 3p. Cancer Res 52:1881–1885

    PubMed  CAS  Google Scholar 

  144. Oda H, Nakatsuru Y, Ishikawa T (1995) Mutations of the p53 gene and p53 protein overexpression are associated with sarcomatoid transformation in renal cell carcinomas. Cancer Res 55:658–662

    PubMed  CAS  Google Scholar 

  145. Slaton JW, Inoue K, Perrotte P, El-Naggar AK, Swanson DA, Fidler IJ, Dinney CP (2001) Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 158:735–743. doi: S0002-9440(10)64016-3[pii];10.1016/S0002-9440(10)64016-3[doi]

    PubMed  CAS  Google Scholar 

  146. Shimazui T, Giroldi LA, Bringuier PP, Oosterwijk E, Schalken JA (1996) Complex cadherin expression in renal cell carcinoma. Cancer Res 56:3234–3237

    PubMed  CAS  Google Scholar 

  147. Nicol D, Hii SI, Walsh M, Teh B, Thompson L, Kennett C, Gotley D (1997) Vascular endothelial growth factor expression is increased in renal cell carcinoma. J Urol 157:1482–1486. doi: S0022-5347(01)65028-6[pii]

    PubMed  CAS  Google Scholar 

  148. Lein M, Jung K, Laube C, Hubner T, Winkelmann B, Stephan C, Hauptmann S, Rudolph B, Schnorr D, Loening SA (2000) Matrix-metalloproteinases and their inhibitors in plasma and tumor tissue of patients with renal cell carcinoma. Int J Cancer 85:801–804. doi:10.1002/(SICI)1097-0215(20000315)85:6<801::AID-IJC11>3.0.CO;2-C [pii]

    PubMed  CAS  Google Scholar 

  149. Brieger J, Weidt EJ, Schirmacher P, Storkel S, Huber C, Decker HJ (1999) Inverse regulation of vascular endothelial growth factor and VHL tumor suppressor gene in sporadic renal cell carcinomas is correlated with vascular growth: an in vivo study on 29 tumors. J Mol Med (Berl) 77:505–510

    CAS  Google Scholar 

  150. Moch H, Sauter G, Buchholz N, Gasser TC, Bubendorf L, Waldman FM, Mihatsch MJ (1997) Epidermal growth factor receptor expression is associated with rapid tumor cell proliferation in renal cell carcinoma. Hum Pathol 28:1255–1259

    PubMed  CAS  Google Scholar 

  151. Vasselli JR, Shih JH, Iyengar SR, Maranchie J, Riss J, Worrell R, Torres-Cabala C, Tabios R, Mariotti A, Stearman R, Merino M, Walther MM, Simon R, Klausner RD, Linehan WM (2003) Predicting survival in patients with metastatic kidney cancer by gene-expression profiling in the primary tumor. Proc Natl Acad Sci U S A 100:6958–6963. doi: 10.1073/pnas.1131754100[doi];1131754100[pii]

    PubMed  CAS  Google Scholar 

  152. Yao M, Huang Y, Shioi K, Hattori K, Murakami T, Nakaigawa N, Kishida T, Nagashima Y, Kubota Y (2007) Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clin Cancer Res 13:152–160

    PubMed  CAS  Google Scholar 

  153. Skubitz KM, Zimmermann W, Kammerer R, Pambuccian S, Skubitz AP (2006) Differential gene expression identifies subgroups of renal cell carcinoma. J Lab Clin Med 147:250–267. doi: S0022-2143(06)00138-7[pii];10.1016/j.lab.2006.04.001[doi]

    PubMed  CAS  Google Scholar 

  154. Moch H, Schraml P, Bubendorf L, Mirlacher M, Kononen J, Gasser T, Mihatsch MJ, Kallioniemi OP, Sauter G (1999) High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol 154:981–986. doi: S0002-9440(10)65349-7[pii];10.1016/S0002-9440(10)65349-7[doi]

    PubMed  CAS  Google Scholar 

  155. Kosari F, Parker AS, Kube DM, Lohse CM, Leibovich BC, Blute ML, Cheville JC, Vasmatzis G (2005) Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin Cancer Res 11:5128–5139

    PubMed  CAS  Google Scholar 

  156. Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, Fellbaum C, Gu X, Joseph M, Pantuck AJ, Jonas D, Libermann TA (2005) Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 11:5730–5739

    PubMed  CAS  Google Scholar 

  157. Sultmann H, von Heydebreck A, Huber W, Kuner R, Buness A, Vogt M, Gunawan B, Vingron M, Fuzesi L, Poustka A (2005) Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin Cancer Res 11:646–655. doi: 11/2/646[pii]

    PubMed  Google Scholar 

  158. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54. doi: 10.1038/ng1060[doi];ng1060[pii]

    PubMed  CAS  Google Scholar 

  159. Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, Gajda MR, Junker K (2011) Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol. doi: 10.1007/s00345-010-0633-4[doi]

    Google Scholar 

  160. White NM, Khella HW, Grigull J, Adzovic A, Youssef YM, Honey RJ, Stewart R, Pace KT, Bjarnason GA, Jewett MA, Evans AJ, Gabril M, Yousef GM (2011) MiRNA profiling in metastatic renal cell carcinoma reveals a tumor suppressor effect for miR-215. Br J Cancer 105:1741–1749. doi: bjc2011401[pii];10.1038/bjc.2011.401[doi]

    PubMed  CAS  Google Scholar 

  161. Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P, Kren L, Michalek J, Vyzula R (2010) Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res 29:90. doi: 1756-9966-29-90[pii];10.1186/1756-9966-29-90[doi]

    PubMed  Google Scholar 

  162. Lin J, Horikawa Y, Tamboli P, Clague J, Wood CG, Wu X (2010) Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis 31:1805–1812. doi: bgq168[pii];10.1093/carcin/bgq168[doi]

    PubMed  CAS  Google Scholar 

  163. Steffens S, Schrader AJ, Blasig H, Vetter G, Eggers H, Trankenschuh W, Kuczyk MA, Serth J (2011) Caveolin 1 protein expression in renal cell carcinoma predicts survival. BMC Urol 11:25. doi: 1471-2490-11-25[pii];10.1186/1471-2490-11-25[doi]

    PubMed  Google Scholar 

  164. Schultz L, Chaux A, Albadine R, Hicks J, Kim JJ, De Marzo AM, Allaf ME, Carducci MA, Rodriguez R, Hammers HJ, Argani P, Reuter VE, Netto GJ (2011) Immunoexpression status and prognostic value of mTOR and hypoxia-induced pathway members in primary and metastatic clear cell renal cell carcinomas. Am J Surg Pathol 35:1549–1556. doi: 10.1097/PAS.0b013e31822895e5[doi]

    PubMed  Google Scholar 

  165. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681. doi: S0092-8674(07)00128-6[pii];10.1016/j.cell.2007.01.033[doi]

    PubMed  CAS  Google Scholar 

  166. Callinan PA, Feinberg AP (2006) The emerging science of epigenomics. Hum Mol Genet 15(Spec No 1):R95–R101. doi: 15/suppl_1/R95[pii];10.1093/hmg/ddl095[doi]

    PubMed  CAS  Google Scholar 

  167. Arai E, Ushijima S, Fujimoto H, Hosoda F, Shibata T, Kondo T, Yokoi S, Imoto I, Inazawa J, Hirohashi S, Kanai Y (2009) Genome-wide DNA methylation profiles in both precancerous conditions and clear cell renal cell carcinomas are correlated with malignant potential and patient outcome. Carcinogenesis 30:214–221. doi: bgn268[pii];10.1093/carcin/bgn268[doi]

    PubMed  CAS  Google Scholar 

  168. Minardi D, Lucarini G, Filosa A, Milanese G, Zizzi A, Di PR, Montironi R, Muzzonigro G (2009) Prognostic role of global DNA-methylation and histone acetylation in pT1a clear cell renal carcinoma in partial nephrectomy specimens. J Cell Mol Med 13:2115–2121. doi: JCMM482[pii];10.1111/j.1582-4934.2008.00482.x[doi]

    PubMed  Google Scholar 

  169. Zhang Q, Ying J, Li J, Fan Y, Poon FF, Ng KM, Tao Q, Jin J (2010) Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage. J Urol 184:731–737. doi: S0022-5347(10)03206-4[pii];10.1016/j.juro.2010.03.108[doi]

    PubMed  CAS  Google Scholar 

  170. van Vlodrop IJ, Baldewijns MM, Smits KM, Schouten LJ, van Neste L, van Criekinge W, van Poppel H, Lerut E, Schuebel KE, Ahuja N, Herman JG, de Bruine AP, van Engeland M (2010) Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am J Pathol 176:575–584. doi: S0002-9440(10)60373-2[pii];10.2353/ajpath.2010.090442[doi]

    PubMed  Google Scholar 

  171. Kagara I, Enokida H, Kawakami K, Matsuda R, Toki K, Nishimura H, Chiyomaru T, Tatarano S, Itesako T, Kawamoto K, Nishiyama K, Seki N, Nakagawa M (2008) CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. J Urol 180:343–351. doi: S0022-5347(08)00537-5[pii];10.1016/j.juro.2008.02.044[doi]

    PubMed  CAS  Google Scholar 

  172. Breault JE, Shiina H, Igawa M, Ribeiro-Filho LA, Deguchi M, Enokida H, Urakami S, Terashima M, Nakagawa M, Kane CJ, Carroll PR, Dahiya R (2005) Methylation of the gamma-catenin gene is associated with poor prognosis of renal cell carcinoma. Clin Cancer Res 11:557–564. doi: 11/2/557[pii]

    PubMed  CAS  Google Scholar 

  173. Kawai Y, Sakano S, Suehiro Y, Okada T, Korenaga Y, Hara T, Naito K, Matsuyama H, Hinoda Y (2010) Methylation level of the RASSF1A promoter is an independent prognostic factor for clear-cell renal cell carcinoma. Ann Oncol 21:1612–1617. doi: mdp577[pii];10.1093/annonc/mdp577[doi]

    PubMed  CAS  Google Scholar 

  174. Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T, Yao M, Latif F, Maher ER (2010) Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29:2104–2117. doi: onc2009493[pii];10.1038/onc.2009.493[doi]

    PubMed  CAS  Google Scholar 

  175. Christoph F, Weikert S, Kempkensteffen C, Krause H, Schostak M, Kollermann J, Miller K, Schrader M (2006) Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implications. Clin Cancer Res 12:5040–5046. doi: 12/17/5040[pii];10.1158/1078-0432.CCR-06-0144[doi]

    PubMed  CAS  Google Scholar 

  176. Hildebrandt MA, Gu J, Lin J, Ye Y, Tan W, Tamboli P, Wood CG, Wu X (2010) Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene 29:5724–5728. doi: onc2010305[pii];10.1038/onc.2010.305[doi]

    PubMed  CAS  Google Scholar 

  177. Rogenhofer S, Kahl P, Mertens C, Hauser S, Hartmann W, Buttner R, Muller SC, von Ruecker A, Ellinger J (2011) Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma. BJU Int. doi: 10.1111/j.1464-410X.2011.10278.x[doi]

    Google Scholar 

  178. Ellinger J, Kahl P, Mertens C, Rogenhofer S, Hauser S, Hartmann W, Bastian PJ, Buttner R, Muller SC, von Ruecker A (2010) Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int J Cancer 127:2360–2366. doi: 10.1002/ijc.25250[doi]

    PubMed  CAS  Google Scholar 

  179. Mosashvilli D, Kahl P, Mertens C, Holzapfel S, Rogenhofer S, Hauser S, Buttner R, Ruecker A, Muller SC, Ellinger J (2010) Global histone acetylation levels: prognostic relevance in patients with renal cell carcinoma. Cancer Sci 101:2664–2669. doi: CAS1717[pii];10.1111/j.1349-7006.2010.01717.x[doi]

    PubMed  CAS  Google Scholar 

  180. Yuasa T, Takahashi S, Hatake K, Yonese J, Fukui I (2011) Biomarkers to predict response to sunitinib therapy and prognosis in metastatic renal cell cancer. Cancer Sci 102:1949–1957. doi: 10.1111/j.1349-7006.2011.02054.x[doi]

    PubMed  CAS  Google Scholar 

  181. van der Veldt AA, Eechoute K, Gelderblom H, Gietema J, Guchelaar HJ, van Erp NP, van den Eertwegh AJ, Haanen JB, Mathijssen RH, Wessels JA (2011) Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res 17:620–629. doi: 1078-0432.CCR-10-1828[pii];10.1158/1078-0432.CCR-10-1828[doi]

    PubMed  Google Scholar 

  182. Xu CF, Bing NX, Ball HA, Rajagopalan D, Sternberg CN, Hutson TE, de Souza P, Xue ZG, McCann L, King KS, Ragone LJ, Whittaker JC, Spraggs CF, Cardon LR, Mooser VE, Pandite LN (2011) Pazopanib efficacy in renal cell carcinoma: evidence for predictive genetic markers in angiogenesis-related and exposure-related genes. J Clin Oncol 29:2557–2564. doi: JCO.2010.32.9110[pii];10.1200/JCO.2010.32.9110[doi]

    PubMed  CAS  Google Scholar 

  183. Pena C, Lathia C, Shan M, Escudier B, Bukowski RM (2010) Biomarkers predicting outcome in patients with advanced renal cell carcinoma: results from sorafenib phase III treatment approaches in renal cancer global evaluation trial. Clin Cancer Res 16:4853–4863. doi: 1078-0432.CCR-09-3343[pii];10.1158/1078-0432.CCR-09-3343[doi]

    PubMed  CAS  Google Scholar 

  184. Wu WY, Xue XY, Chen ZJ, Han SL, Huang YP, Zhang LF, Zhu GB, Shen X (2011) Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World J Gastroenterol 17:3645–3651. doi: 10.3748/wjg.v17.i31.3645[doi]

    PubMed  CAS  Google Scholar 

  185. Teo MT, Landi D, Taylor CF, Elliott F, Vaslin L, Cox DG, Hall J, Landi S, Bishop DT, Kiltie AE (2012) The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis. doi: bgr300[pii];10.1093/carcin/bgr300[doi]

    Google Scholar 

  186. Gao W, Lu X, Liu L, Xu J, Feng D, Shu Y (2012) MiRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther 13. doi: 19073[pii]

    Google Scholar 

  187. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, Kalyana-Sundaram S, Sam L, Balbin OA, Quist MJ, Barrette T, Everett J, Siddiqui J, Kunju LP, Navone N, Araujo JC, Troncoso P, Logothetis CJ, Innis JW, Smith DC, Lao CD, Kim SY, Roberts JS, Gruber SB, Pienta KJ, Talpaz M, Chinnaiyan AM (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 3(111):111ra121. doi: 3/111/111ra121[pii];10.1126/scitranslmed.3003161[doi]

    PubMed  Google Scholar 

  188. Lundstrom K (2011) Micro-RNA in disease and gene therapy. Curr Drug Discov Technol 8:76–86. doi: BSP/CDDT/E-Pub/00054[pii]

    PubMed  CAS  Google Scholar 

  189. Chari R, Thu KL, Wilson IM, Lockwood WW, Lonergan KM, Coe BP, Malloff CA, Gazdar AF, Lam S, Garnis C, MacAulay CE, Alvarez CE, Lam WL (2010) Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer. Cancer Metastasis Rev 29:73–93. doi: 10.1007/s10555-010-9199-2[doi]

    PubMed  Google Scholar 

  190. McLendon R et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. doi:nature07385[pii];10.1038/nature07385

    Google Scholar 

  191. Chari R, Coe BP, Vucic EA, Lockwood WW, Lam WL (2010) An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC Syst Biol 4:67. doi: 1752-0509-4-67[pii];10.1186/1752-0509-4-67[doi]

    PubMed  Google Scholar 

  192. Chari R, Coe BP, Wedseltoft C, Benetti M, Wilson IM, Vucic EA, Macaulay C, Ng RT, Lam WL (2008) SIGMA2: a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. BMC Bioinformatics 9:422. doi: 1471-2105-9-422[pii];10.1186/1471-2105-9-422[doi]

    PubMed  Google Scholar 

  193. Youssef YM, White NMA, Joerg G, Krizova A, Samy C, Mejia-Guerrero S, Evans A, Yousef GM (2011) Accurate molecular classification of kidney cancer subtypes using microRNA signature. European Urology 59(5):721–730

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Yousef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yousef, G.M., White, N.M.A., Girgis, A.H. (2013). Kidney Cancer Genomics: Paving the Road to a New Paradigm of Personalized Medicine. In: Pfeffer, U. (eds) Cancer Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5842-1_7

Download citation

Publish with us

Policies and ethics