Skip to main content

Where Do We Stand in the Genomics of Lymphomas?

  • Chapter
  • First Online:
Cancer Genomics

Abstract

Malignant lymphomas comprise over 60 different neoplastic disorders that originate from lymphoid cells. The different lymphoma subtypes can be distinguished based on a combination of histological, immunophenotypic, genetic and clinical features. Malignant lymphomas are among the malignancies with the highest success rate of cure, although there are still large differences among the different subtypes and the need for therapeutic improvements. A series of recurrent chromosomal translocations, DNA losses and gains, and somatic mutations are now known, and in this chapter, we will summarize the current knowledge on the genomics of the most common lymphomas, with particular emphasis on the recent findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri A, Stein H, Thiele J, Vardiman JW (eds) (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

    Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300. doi:10.3322/caac.20073

    PubMed  Google Scholar 

  3. Zucca E, Rohatiner A, Magrath I, Cavalli F (2011) Epidemiology and management of lymphoma in low-income countries. Hematol Oncol 29(1):1–4. doi:10.1002/hon.945

    PubMed  Google Scholar 

  4. Rodriguez-Abreu D, Bordoni A, Zucca E (2007) Epidemiology of hematological malignancies. Ann Oncol 18(Suppl 1):i3–i8. doi:10.1093/annonc/mdl443

    PubMed  Google Scholar 

  5. Armitage JO (2007) How I treat patients with diffuse large B-cell lymphoma. Blood 110(1):29–36

    PubMed  CAS  Google Scholar 

  6. Magrath IT (ed) (2010) The lymphoid neoplasms, 3rd edn. Hodder Arnold, London

    Google Scholar 

  7. Armitage JO, Coiffier B, Dalla Favera R, Harris NL, Mauch PM (eds) (2010) Non-hodgkin lymphomas, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  8. Lenz G, Staudt LM (2010) Aggressive lymphomas. N Engl J Med 362(15):1417–1429. doi:362/15/1417 [pii] 10.1056/NEJMra0807082

    PubMed  CAS  Google Scholar 

  9. (1993) A predictive model for aggressive non-Hodgkin’s lymphoma. The international non-hodgkin’s lymphoma prognostic factors project. N Engl J Med 329(14):987–994. doi:10.1056/NEJM199309303291402

  10. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511

    PubMed  CAS  Google Scholar 

  11. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM, Hurt EM, Zhao H, Averett L, Yang L, Wilson WH, Jaffe ES, Simon R, Klausner RD, Powell J, Duffey PL, Longo DL, Greiner TC, Weisenburger DD, Sanger WG, Dave BJ, Lynch JC, Vose J, Armitage JO, Montserrat E, Lopez-Guillermo A, Grogan TM, Miller TP, LeBlanc M, Ott G, Kvaloy S, Delabie J, Holte H, Krajci P, Stokke T, Staudt LM (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346(25):1937–1947

    PubMed  Google Scholar 

  12. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8(1):68–74

    PubMed  CAS  Google Scholar 

  13. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M, Wu B, Pasqualucci L, Neuberg D, Aguiar RC, Dal Cin P, Ladd C, Pinkus GS, Salles G, Harris NL, Dalla-Favera R, Habermann TM, Aster JC, Golub TR, Shipp MA (2005) Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105(5):1851–1861

    PubMed  CAS  Google Scholar 

  14. Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE, Carty S, Lam LT, Shaffer AL, Xiao W, Powell J, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Campo E, Jaffe ES, Delabie J, Smeland EB, Rimsza LM, Fisher RI, Weisenburger DD, Chan WC, Staudt LM (2008) Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105(36):13520–13525. doi:10.1073/pnas.0804295105

    PubMed  CAS  Google Scholar 

  15. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, Xu W, Tan B, Goldschmidt N, Iqbal J, Vose J, Bast M, Fu K, Weisenburger DD, Greiner TC, Armitage JO, Kyle A, May L, Gascoyne RD, Connors JM, Troen G, Holte H, Kvaloy S, Dierickx D, Verhoef G, Delabie J, Smeland EB, Jares P, Martinez A, Lopez-Guillermo A, Montserrat E, Campo E, Braziel RM, Miller TP, Rimsza LM, Cook JR, Pohlman B, Sweetenham J, Tubbs RR, Fisher RI, Hartmann E, Rosenwald A, Ott G, Muller-Hermelink HK, Wrench D, Lister TA, Jaffe ES, Wilson WH, Chan WC, Staudt LM (2008) Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359(22):2313–2323. doi:359/22/2313 [pii]10.1056/NEJMoa0802885

    PubMed  CAS  Google Scholar 

  16. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Chan WC, Staudt LM (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319(5870):1676–1679. doi:10.1126/science.1153629

    PubMed  CAS  Google Scholar 

  17. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A, Bhagat G, Chadburn A, Dalla-Favera R, Pasqualucci L (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459(7247):717–721. doi:nature07968 [pii] 10.1038/nature07968

    PubMed  CAS  Google Scholar 

  18. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W, Shaffer AL, Wright G, Xiao W, Powell J, Jiang JK, Thomas CJ, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Johnson NA, Rimsza LM, Campo E, Jaffe ES, Wilson WH, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pierce SK, Staudt LM (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463(7277):88–92. doi:nature08638 [pii] 10.1038/nature08638

    PubMed  CAS  Google Scholar 

  19. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, Holt R, Horsman DE, Connors JM, Jones S, Aparicio S, Hirst M, Gascoyne RD, Marra MA (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185. doi:ng.518 [pii] 10.1038/ng.518

    PubMed  CAS  Google Scholar 

  20. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, Shaffer AL, Romesser P, Wright G, Powell J, Rosenwald A, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Staudt LM (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470(7332):115–119. doi:nature09671 [pii] 10.1038/nature09671

    PubMed  CAS  Google Scholar 

  21. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M, Jackman S, Krzywinski M, Scott DW, Trinh DL, Tamura-Wells J, Li S, Firme MR, Rogic S, Griffith M, Chan S, Yakovenko O, Meyer IM, Zhao EY, Smailus D, Moksa M, Chittaranjan S, Rimsza L, Brooks-Wilson A, Spinelli JJ, Ben-Neriah S, Meissner B, Woolcock B, Boyle M, McDonald H, Tam A, Zhao Y, Delaney A, Zeng T, Tse K, Butterfield Y, Birol I, Holt R, Schein J, Horsman DE, Moore R, Jones SJ, Connors JM, Hirst M, Gascoyne RD, Marra MA (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476(7360):298–303. doi:10.1038/nature10351

    PubMed  CAS  Google Scholar 

  22. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, Wells VA, Grunn A, Messina M, Elliot O, Chan J, Bhagat G, Chadburn A, Gaidano G, Mullighan CG, Rabadan R, Dalla-Favera R (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43(9):830–837. doi:10.1038/ng.892

    PubMed  CAS  Google Scholar 

  23. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty VV, Mullighan CG, Gaidano G, Rabadan R, Brindle PK, Dalla-Favera R (2011) Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471(7337):189–195. doi:10.1038/nature09730

    PubMed  CAS  Google Scholar 

  24. Rui L, Schmitz R, Ceribelli M, Staudt LM (2011) Malignant pirates of the immune system. Nat Immunol 12(10):933–940. doi:10.1038/ni.2094

    PubMed  CAS  Google Scholar 

  25. Link BK, Zou L, Gould J, Saksena G, Stransky N, Rangel-Escareno C, Hidalgo-Miranda A, Melendez-Zajgla J, Hernandez-Lemus E, Schwarz-Cruzy Celis A, Imaz-Rosshandler I, Ojesina AI, Jung J, Pedamallu CS, Lander ES, Habermann TM, Cerhan JR, Shipp MA, Getz G, Golub TR (2012) Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A 109(10):3879–3884. doi:10.1073/pnas.1121343109

    PubMed  Google Scholar 

  26. Shaffer AL 3rd, Young RM, Staudt LM (2012) Pathogenesis of human B cell lymphomas. Annu Rev Immunol 30:565–610. doi:10.1146/annurev-immunol-020711-075027

    PubMed  CAS  Google Scholar 

  27. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, Muller-Hermelink HK, Campo E, Braziel RM, Jaffe ES, Pan Z, Farinha P, Smith LM, Falini B, Banham AH, Rosenwald A, Staudt LM, Connors JM, Armitage JO, Chan WC (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103(1):275–282

    PubMed  CAS  Google Scholar 

  28. Choi WWL, Weisenberger DD, Greiner TC, Piris MA, Banham AH, Delabie J, Braziel RM, Geng H, Iqbal J, Lenz G, Vose JM, Hans CP, Fu K, Smith LM, Li M, Liu Z, Gascoyne R, Rosenwald A, Ott G, Rimsza LM, Campo E, Jaffe ES, Jaye DL, Staudt LM, Chan WC (2009) A new immunostaing algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res 15(17):5494–5502

    PubMed  CAS  Google Scholar 

  29. Meyer PN, Fu K, Greiner TC, Smith LM, Delabie J, Gascoyne RD, Ott G, Rosenwald A, Braziel RM, Campo E, Vose JM, Lenz G, Staudt LM, Chan WC, Weisenburger DD (2011) Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol 29(2):200–207. doi:JCO.2010.30.0368 [pii] 10.1200/JCO.2010.30.0368

    PubMed  Google Scholar 

  30. Gutierrez-Garcia G, Cardesa-Salzmann T, Climent F, Gonzalez-Barca E, Mercadal S, Mate JL, Sancho JM, Arenillas L, Serrano S, Escoda L, Martinez S, Valera A, Martinez A, Jares P, Pinyol M, Garcia-Herrera A, Martinez-Trillos A, Gine E, Villamor N, Campo E, Colomo L, Lopez-Guillermo A (2011) Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Blood 117(18):4836–4843. doi:blood-2010-12-322362 [pii] 10.1182/blood-2010-12-322362

    PubMed  CAS  Google Scholar 

  31. Huang JZ, Sanger WG, Greiner TC, Staudt LM, Weisenburger DD, Pickering DL, Lynch JC, Armitage JO, Warnke RA, Alizadeh AA, Lossos IS, Levy R, Chan WC (2002) The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood 99(7):2285–2290

    PubMed  CAS  Google Scholar 

  32. Rosenwald A, Staudt LM (2003) Gene expression profiling of diffuse large B-cell lymphoma. Leuk Lymphoma 44(Suppl 3):S41–S47

    PubMed  CAS  Google Scholar 

  33. Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M, Nong Y, Wen D, Adams J, Dang L, Staudt LM (2005) Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 11(1):28–40

    PubMed  CAS  Google Scholar 

  34. Pasqualucci L, Compagno M, Houldsworth J, Monti S, Grunn A, Nandula SV, Aster JC, Murty VV, Shipp MA, Dalla-Favera R (2006) Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 203(2):311–317

    PubMed  CAS  Google Scholar 

  35. Iqbal J, Greiner TC, Patel K, Dave BJ, Smith L, Ji J, Wright G, Sanger WG, Pickering DL, Jain S, Horsman DE, Shen Y, Fu K, Weisenburger DD, Hans CP, Campo E, Gascoyne RD, Rosenwald A, Jaffe ES, Delabie J, Rimsza L, Ott G, Muller-Hermelink HK, Connors JM, Vose JM, McKeithan T, Staudt LM, Chan WC (2007) Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia 21(11):2332–2343. doi:2404856 [pii] 10.1038/sj.leu.2404856

    PubMed  CAS  Google Scholar 

  36. Staudt LM (2010) Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2(6):a000109. doi:cshperspect.a000109 [pii] 10.1101/cshperspect.a000109

    PubMed  Google Scholar 

  37. Mandelbaum J, Bhagat G, Tang H, Mo T, Brahmachary M, Shen Q, Chadburn A, Rajewsky K, Tarakhovsky A, Pasqualucci L, Dalla-Favera R (2010) BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 18(6):568–579. doi:10.1016/j.ccr.2010.10.030

    PubMed  CAS  Google Scholar 

  38. Yang Y, Shaffer AL 3rd, Emre NC, Ceribelli M, Zhang M, Wright G, Xiao W, Powell J, Platig J, Kohlhammer H, Young RM, Zhao H, Yang Y, Xu W, Buggy JJ, Balasubramanian S, Mathews LA, Shinn P, Guha R, Ferrer M, Thomas C, Waldmann TA, Staudt LM (2012) Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 21(6):723–737. doi:10.1016/j.ccr.2012.05.024

    PubMed  CAS  Google Scholar 

  39. Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N, Shovlin M, Jaffe ES, Janik JE, Staudt LM, Wilson WH (2009) Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 113(24):6069–6076. doi:blood-2009-01-199679 [pii] 10.1182/blood-2009-01-199679

    PubMed  CAS  Google Scholar 

  40. Ruan J, Martin P, Furman RR, Lee SM, Cheung K, Vose JM, Lacasce A, Morrison J, Elstrom R, Ely S, Chadburn A, Cesarman E, Coleman M, Leonard JP (2011) Bortezomib plus CHOP-rituximab for previously untreated diffuse large B-cell lymphoma and mantle cell lymphoma. J Clin Oncol 29(6):690–697. doi:10.1200/JCO.2010.31.1142

    PubMed  CAS  Google Scholar 

  41. Hernandez-Ilizaliturri FJ, Deeb G, Zinzani PL, Pileri SA, Malik F, Macon WR, Goy A, Witzig TE, Czuczman MS (2011) Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminal center B-cell-like than in germinal center B-cell-like phenotype. Cancer 117(22):5058–5066. doi:10.1002/cncr.26135

    PubMed  CAS  Google Scholar 

  42. Smith PG, Wang F, Wilkinson KN, Savage KJ, Klein U, Neuberg DS, Bollag G, Shipp MA, Aguiar RC (2005) The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma. Blood 105(1):308–316

    PubMed  CAS  Google Scholar 

  43. Robertson MJ, Kahl BS, Vose JM, de Vos S, Laughlin M, Flynn PJ, Rowland K, Cruz JC, Goldberg SL, Musib L, Darstein C, Enas N, Kutok JL, Aster JC, Neuberg D, Savage KJ, LaCasce A, Thornton D, Slapak CA, Shipp MA (2007) Phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 25(13):1741–1746. doi:10.1200/JCO.2006.09.3146

    PubMed  CAS  Google Scholar 

  44. Hainsworth JD, Arrowsmith ER, McLeod M, Fayad LE, Hamid O, Davis L, Lin B (2011) Randomized phase ii study of R-CHOP plus enzastaurin versus R-CHOP in the first-line treatment of patients with intermediate and high-risk diffuse large b-cell lymphoma (DLBCL) – preliminary analysis. Ann Oncol 22(suppl4):iv107

    Google Scholar 

  45. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE, Habermann TM, Kutok JL, Shipp MA (2008) SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 111(4):2230–2237

    PubMed  CAS  Google Scholar 

  46. Thieblemont C, Briere J, Mounier N, Voelker HU, Cuccuini W, Hirchaud E, Rosenwald A, Jack A, Sundstrom C, Cogliatti S, Trougouboff P, Boudova L, Ysebaert L, Soulier J, Chevalier C, Bron D, Schmitz N, Gaulard P, Houlgatte R, Gisselbrecht C (2011) The germinal center/activated B-cell subclassification has a prognostic impact for response to salvage therapy in relapsed/refractory diffuse large B-cell lymphoma: a bio-CORAL study. J Clin Oncol 29(31):4079–4087. doi:10.1200/jco.2011.35.4423

    PubMed  Google Scholar 

  47. Young KH, Leroy K, Moller MB, Colleoni GW, Sanchez-Beato M, Kerbauy FR, Haioun C, Eickhoff JC, Young AH, Gaulard P, Piris MA, Oberley TD, Rehrauer WM, Kahl BS, Malter JS, Campo E, Delabie J, Gascoyne RD, Rosenwald A, Rimsza L, Huang J, Braziel RM, Jaffe ES, Wilson WH, Staudt LM, Vose JM, Chan WC, Weisenburger DD, Greiner TC (2008) Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood 112(8):3088–3098. doi:10.1182/blood-2008-01-129783

    PubMed  CAS  Google Scholar 

  48. Jardin F, Ruminy P, Kerckaert JP, Parmentier F, Picquenot JM, Quief S, Villenet C, Buchonnet G, Tosi M, Frebourg T, Bastard C, Tilly H (2008) Detection of somatic quantitative genetic alterations by multiplex polymerase chain reaction for the prediction of outcome in diffuse large B-cell lymphomas. Haematologica 93(4):543–550. doi:10.3324/haematol.12251

    PubMed  CAS  Google Scholar 

  49. Johnson NA, Savage KJ, Ludkovski O, Ben-Neriah S, Woods R, Steidl C, Dyer MJ, Siebert R, Kuruvilla J, Klasa R, Connors JM, Gascoyne RD, Horsman DE (2009) Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood 114(11):2273–2279. doi:blood-2009-03-212191 [pii] 10.1182/blood-2009-03-212191

    PubMed  CAS  Google Scholar 

  50. Savage KJ, Johnson NA, Ben-Neriah S, Connors JM, Sehn LH, Farinha P, Horsman DE, Gascoyne RD (2009) MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood 114(17):3533–3537. doi:blood-2009-05-220095 [pii] 10.1182/blood-2009-05-220095

    PubMed  CAS  Google Scholar 

  51. Scandurra M, Mian M, Greiner TC, Rancoita PMV, de Campos CP, Chan WC, Vose JM, Chigrinova E, Inghirami G, Chiappella A, Baldini L, Ponzoni M, Ferreri AJM, Franceschetti S, Gaidano G, Moreno SM, Piris MA, Facchetti F, Tucci A, Nomdedeu JF, Lazure T, Lambotte O, Uccella S, Pinotti G, Pruneri G, Martinelli G, Young KH, Tibiletti MG, Rinaldi A, Zucca E, Kwee I, Bertoni F (2010) Genomic lesions associated with a different clinical outcome in diffuse large B-cell lymphoma treated with R-CHOP. Br J Haematol 151(3):221–231

    PubMed  Google Scholar 

  52. Jardin F, Jais JP, Molina TJ, Parmentier F, Picquenot JM, Ruminy P, Tilly H, Bastard C, Salles GA, Feugier P, Thieblemont C, Gisselbrecht C, de Reynies A, Coiffier B, Haioun C, Leroy K (2010) Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: a GELA study. Blood 116(7):1092–1104. doi:blood-2009-10-247122 [pii] 10.1182/blood-2009-10-247122

    PubMed  CAS  Google Scholar 

  53. Barrans S, Crouch S, Smith A, Turner K, Owen R, Patmore R, Roman E, Jack A (2010) Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol 28(20):3360–3365. doi:JCO.2009.26.3947 [pii] 10.1200/JCO.2009.26.3947

    PubMed  CAS  Google Scholar 

  54. Aukema SM, Siebert R, Schuuring E, van Imhoff GW, Kluin-Nelemans HC, Boerma EJ, Kluin PM (2011) Double-hit B-cell lymphomas. Blood 117(8):2319–2331. doi:blood-2010-09-297879 [pii] 10.1182/blood-2010-09-297879 [doi]

    PubMed  CAS  Google Scholar 

  55. Zhang HW, Chen ZW, Li SH, Bai W, Cheng NL, Wang JF (2011) Clinical significance and prognosis of MYC translocation in diffuse large B-cell lymphoma. Hematol Oncol 29(4):185–189. doi:10.1002/hon.991

    PubMed  Google Scholar 

  56. Testoni M, Kwee I, Greiner TC, Montes-Moreno S, Vose J, Chan WC, Chiappella A, Baldini L, Ferreri AJ, Gaidano G, Mian M, Zucca E, Bertoni F (2011) Gains of MYC locus and outcome in patients with diffuse large B-cell lymphoma treated with R-CHOP. Br J Haematol 155(2):274–277. doi:10.1111/j.1365-2141.2011.08675.x

    PubMed  CAS  Google Scholar 

  57. Iqbal J, Meyer PN, Smith LM, Johnson NA, Vose JM, Greiner TC, Connors JM, Staudt LM, Rimsza L, Jaffe E, Rosenwald A, Ott G, Delabie J, Campo E, Braziel RM, Cook JR, Tubbs RR, Gascoyne RD, Armitage JO, Weisenburger DD, Chan WC (2011) BCL2 predicts survival in germinal center B-cell-like diffuse large B-cell lymphoma treated with CHOP-like therapy and rituximab. Clin Cancer Res 17(24):7785–7795. doi:10.1158/1078-0432.CCR-11-0267

    PubMed  CAS  Google Scholar 

  58. Wang H-Y, Dunphy CH, Hsi ED, Zhao FX, Go RS, Choi WWL, Zhou F, Czader M, Zhao X, Van Krieken JHJM, Huang Q, Ai W, Etzell JE, Ponzoni M, Ferreri AJM, Piris MA, Moller MB, Bueso-Ramos CE, Medeiros LJ, Young KH (2011) ASH Annual Meeting Abstracts 118(21):949

    Google Scholar 

  59. Kluk MJ, Chapuy B, Sinha P, Roy A, Dal Cin P, Neuberg DS, Monti S, Pinkus GS, Shipp MA, Rodig SJ (2012) Immunohistochemical detection of MYC-driven diffuse large B-cell lymphomas. PLoS One 7(4):e33813. doi:10.1371/journal.pone.0033813

    PubMed  CAS  Google Scholar 

  60. Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S, Scott DW, Tan KL, Steidl C, Sehn LH, Chan WC, Iqbal J, Meyer PN, Lenz G, Wright G, Rimsza LM, Valentino C, Brunhoeber P, Grogan TM, Braziel RM, Cook JR, Tubbs RR, Weisenburger DD, Campo E, Rosenwald A, Ott G, Delabie J, Holcroft C, Jaffe ES, Staudt LM, Gascoyne RD (2012) Concurrent expression of MYC and BCL2 in diffuse large B-Cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. doi:10.1200/JCO.2011.41.0985

  61. Gascoyne RD, Magrath IT, Sehn L (2010) Burkitt lymphoma. In: Armitage J, Mauch PM, Harris NL, Coiffier B, Dalla-Favera R (eds) Non-Hodgkin lymphomas, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 334–357

    Google Scholar 

  62. Li S, Lin P, Fayad LE, Lennon PA, Miranda RN, Yin CC, Lin E, Medeiros LJ (2012) B-cell lymphomas with MYC/8q24 rearrangements and IGH@BCL2/t(14;18)(q32;q21): an aggressive disease with heterogeneous histology, germinal center B-cell immunophenotype and poor outcome. Mod Pathol 25(1):145–156. doi:10.1038/modpathol.2011.147

    PubMed  CAS  Google Scholar 

  63. Snuderl M, Kolman OK, Chen YB, Hsu JJ, Ackerman AM, Dal Cin P, Ferry JA, Harris NL, Hasserjian RP, Zukerberg LR, Abramson JS, Hochberg EP, Lee H, Lee AI, Toomey CE, Sohani AR (2010) B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Surg Pathol 34(3):327–340. doi:10.1097/PAS.0b013e3181cd3aeb

    PubMed  Google Scholar 

  64. Jaffe ES, Pittaluga S (2011) Aggressive B-cell lymphomas: a review of new and old entities in the WHO classification. ASH Educ Program Book 2011(1):506–514. doi:10.1182/asheducation-2011.1.506

    Google Scholar 

  65. Friedberg JW (2012) Double-hit diffuse large B-cell lymphoma. J Clin Oncol. doi:10.1200/jco.2012.43.5800

  66. Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS, Nielsen O, Gadeberg OV, Mourits-Andersen T, Frederiksen M, Pedersen LM, Moller MB (2012) Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. doi:10.1200/jco.2011.41.4342

  67. Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D, Levy R (2004) Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 350(18):1828–1837

    PubMed  CAS  Google Scholar 

  68. Alizadeh AA, Gentles AJ, Alencar AJ, Liu CL, Kohrt HE, Houot R, Goldstein MJ, Zhao S, Natkunam Y, Advani RH, Gascoyne RD, Briones J, Tibshirani RJ, Myklebust JH, Plevritis SK, Lossos IS, Levy R (2011) Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood 118(5):1350–1358. doi:10.1182/blood-2011-03-345272

    PubMed  CAS  Google Scholar 

  69. Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G, Murty VV, Dominguez-Sola D, Pasqualucci L, Dalla-Favera R (2011) Combined genetic inactivation of beta2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20(6):728–740. doi:10.1016/j.ccr.2011.11.006

    PubMed  CAS  Google Scholar 

  70. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, Chan WC, Zhao T, Haioun C, Greiner TC, Weisenburger DD, Lynch JC, Vose J, Armitage JO, Smeland EB, Kvaloy S, Holte H, Delabie J, Campo E, Montserrat E, Lopez-Guillermo A, Ott G, Muller-Hermelink HK, Connors JM, Braziel R, Grogan TM, Fisher RI, Miller TP, LeBlanc M, Chiorazzi M, Zhao H, Yang L, Powell J, Wilson WH, Jaffe ES, Simon R, Klausner RD, Staudt LM (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198(6):851–862

    PubMed  CAS  Google Scholar 

  71. Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L, Kurtin P, Dal Cin P, Ladd C, Feuerhake F, Aguiar RC, Li S, Salles G, Berger F, Jing W, Pinkus GS, Habermann T, Dalla-Favera R, Harris NL, Aster JC, Golub TR, Shipp MA (2003) The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102(12):3871–3879. doi:10.1182/blood-2003-06-18412003-06-1841[pii]

    PubMed  CAS  Google Scholar 

  72. Pileri SA, Gaidano G, Zinzani PL, Falini B, Gaulard P, Zucca E, Pieri F, Berra E, Sabattini E, Ascani S, Piccioli M, Johnson PW, Giardini R, Pescarmona E, Novero D, Piccaluga PP, Marafioti T, Alonso MA, Cavalli F (2003) Primary mediastinal B-cell lymphoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. Am J Pathol 162(1):243–253

    PubMed  CAS  Google Scholar 

  73. Boleti E, Johnson PW (2007) Primary mediastinal B-cell lymphoma. Hematol Oncol 25(4):157–163. doi:10.1002/hon.818

    PubMed  CAS  Google Scholar 

  74. Steidl C, Gascoyne RD (2011) The molecular pathogenesis of primary mediastinal large B-cell lymphoma. Blood 118(10):2659–2669. doi:10.1182/blood-2011-05-326538

    PubMed  CAS  Google Scholar 

  75. Guiter C, Dusanter-Fourt I, Copie-Bergman C, Boulland ML, Le Gouvello S, Gaulard P, Leroy K, Castellano F (2004) Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood 104(2):543–549

    PubMed  CAS  Google Scholar 

  76. Feuerhake F, Kutok JL, Monti S, Chen W, LaCasce AS, Cattoretti G, Kurtin P, Pinkus GS, de Leval L, Harris NL, Savage KJ, Neuberg D, Habermann TM, Dalla-Favera R, Golub TR, Aster JC, Shipp MA (2005) NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood 106(4):1392–1399. doi:2004-12-4901 [pii] 10.1182/blood-2004-12-4901

    PubMed  CAS  Google Scholar 

  77. Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G, Wright GW, Lenz G, Ngo VN, Shaffer AL, Xu W, Zhao H, Yang Y, Lamy L, Davis RE, Xiao W, Powell J, Maloney D, Thomas CJ, Moller P, Rosenwald A, Ott G, Muller-Hermelink HK, Savage K, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Weisenburger DD, Chan WC, Gascoyne RD, Levens D, Staudt LM (2010) Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18(6):590–605. doi:S1535-6108(10)00481-2 [pii] 10.1016/j.ccr.2010.11.013

    PubMed  CAS  Google Scholar 

  78. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, Johnson NA, Zhao Y, Telenius A, Neriah SB, McPherson A, Meissner B, Okoye UC, Diepstra A, van den Berg A, Sun M, Leung G, Jones SJ, Connors JM, Huntsman DG, Savage KJ, Rimsza LM, Horsman DE, Staudt LM, Steidl U, Marra MA, Gascoyne RD (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471(7338):377–381. doi:10.1038/nature09754

    PubMed  CAS  Google Scholar 

  79. Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G, Klapper W, Vater I, Giefing M, Gesk S, Stanelle J, Siebert R, Kuppers R (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206(5):981–989. doi:jem.20090528 [pii] 10.1084/jem.20090528

    PubMed  CAS  Google Scholar 

  80. Bentz M, Barth TF, Bruderlein S, Bock D, Schwerer MJ, Baudis M, Joos S, Viardot A, Feller AC, Muller-Hermelink HK, Lichter P, Dohner H, Moller P (2001) Gain of chromosome arm 9p is characteristic of primary mediastinal B-cell lymphoma (MBL): comprehensive molecular cytogenetic analysis and presentation of a novel MBL cell line. Genes Chromosomes Cancer 30(4):393–401

    PubMed  CAS  Google Scholar 

  81. Joos S, Otano-Joos MI, Ziegler S, Bruderlein S, du Manoir S, Bentz M, Moller P, Lichter P (1996) Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood 87(4):1571–1578

    PubMed  CAS  Google Scholar 

  82. Mestre C, Rubio-Moscardo F, Rosenwald A, Climent J, Dyer MJ, Staudt L, Pinkel D, Siebert R, Martinez-Climent JA (2005) Homozygous deletion of SOCS1 in primary mediastinal B-cell lymphoma detected by CGH to BAC microarrays. Leukemia 19(6):1082–1084

    PubMed  CAS  Google Scholar 

  83. Melzner I, Bucur AJ, Bruderlein S, Dorsch K, Hasel C, Barth TF, Leithauser F, Moller P (2005) Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105(6):2535–2542

    PubMed  CAS  Google Scholar 

  84. Traverse-Glehen A, Pittaluga S, Gaulard P, Sorbara L, Alonso MA, Raffeld M, Jaffe ES (2005) Mediastinal gray zone lymphoma: the missing link between classic Hodgkin’s lymphoma and mediastinal large B-cell lymphoma. Am J Surg Pathol 29(11):1411–1421

    PubMed  Google Scholar 

  85. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117(19):5019–5032. doi:blood-2011-01-293050 [pii] 10.1182/blood-2011-01-293050

    PubMed  CAS  Google Scholar 

  86. Conconi A, Motta M, Bertoni F, Piona C, Stathis A, Wannesson L, Gracia E, Filho VB, Abreu DR, Mian M, Froesch P, Mazzucchelli L, Ghielmini M, Cavalli F, Zucca E (2010) Patterns of survival of follicular lymphomas at a single institution through three decades. Leuk Lymphoma 51(6):1028–1034. doi:10.3109/10428191003743460

    PubMed  Google Scholar 

  87. Solal-Celigny P, Roy P, Colombat P, White J, Armitage JO, Arranz-Saez R, Au WY, Bellei M, Brice P, Caballero D, Coiffier B, Conde-Garcia E, Doyen C, Federico M, Fisher RI, Garcia-Conde JF, Guglielmi C, Hagenbeek A, Haioun C, LeBlanc M, Lister AT, Lopez-Guillermo A, McLaughlin P, Milpied N, Morel P, Mounier N, Proctor SJ, Rohatiner A, Smith P, Soubeyran P, Tilly H, Vitolo U, Zinzani PL, Zucca E, Montserrat E (2004) Follicular lymphoma international prognostic index. Blood 104(5):1258–1265. doi:10.1182/blood-2003-12-4434 [doi] 2003-12-4434 [pii]

    PubMed  CAS  Google Scholar 

  88. Luminari S, Federico M (2006) Prognosis of follicular lymphomas. Hematol Oncol 24(2):64–72

    PubMed  CAS  Google Scholar 

  89. Federico M, Bellei M, Marcheselli L, Luminari S, Lopez-Guillermo A, Vitolo U, Pro B, Pileri S, Pulsoni A, Soubeyran P, Cortelazzo S, Martinelli G, Martelli M, Rigacci L, Arcaini L, Di Raimondo F, Merli F, Sabattini E, McLaughlin P, Solal-Celigny P (2009) Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol 27(27):4555–4562. doi:JCO.2008.21.3991 [pii] 10.1200/JCO.2008.21.3991

    PubMed  Google Scholar 

  90. Dreyling M, Ghielmini M, Marcus R, Salles G, Vitolo U (2011) Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(Suppl 6):vi59–vi63. doi:10.1093/annonc/mdr388

    PubMed  Google Scholar 

  91. Bahler D, Campbell M, Hart S, Miller R, Levy S, Levy R (1991) Ig VH gene expression among human follicular lymphomas. Blood 78(6):1561–1568

    PubMed  CAS  Google Scholar 

  92. Zhu D, Hawkins RE, Hamblin TJ, Stevenson FK (1994) Clonal history of a human follicular lymphoma as revealed in the immunoglobulin variable region genes. Br J Haematol 86(3):505–512

    PubMed  CAS  Google Scholar 

  93. Stamatopoulos K, Kosmas C, Papadaki T, Pouliou E, Belessi C, Afendaki S, Anagnostou D, Loukopoulos D (1997) Follicular lymphoma immunoglobulin kappa light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains. Br J Haematol 96(1):132–146

    PubMed  CAS  Google Scholar 

  94. Payne K, Wright P, Grant JW, Huang Y, Hamoudi R, Bacon CM, Du MQ, Liu H (2011) BIOMED-2 PCR assays for IGK gene rearrangements are essential for B-cell clonality analysis in follicular lymphoma. Br J Haematol 155(1):84–92. doi:10.1111/j.1365-2141.2011.08803.x

    PubMed  CAS  Google Scholar 

  95. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226(4678):1097–1099

    PubMed  CAS  Google Scholar 

  96. Siebert R (2009) Mature B- and T-cell neoplasms and Hodgkin lymphoma. In: Heim S, Mitelman F (eds) Cancer cytogenetics, 3rd edn. Wiley-Blackwell, Hoboken, pp 297–374

    Google Scholar 

  97. Dalla Favera R, Pasqualucci L (2010) Molecular genetics of lymphoma. In: Armitage J, Mauch PM, Harris NL, Coiffier B, Dalla-Favera R (eds) Non-Hodgkin lymphomas, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 115–130

    Google Scholar 

  98. Belaud-Rotureau MA, Parrens M, Carrere N, Turmo M, Ferrer J, de Mascarel A, Dubus P, Merlio JP (2007) Interphase fluorescence in situ hybridization is more sensitive than BIOMED-2 polymerase chain reaction protocol in detecting IGH-BCL2 rearrangement in both fixed and frozen lymph node with follicular lymphoma. Hum Pathol 38(2):365–372. doi:10.1016/j.humpath.2006.08.022

    PubMed  CAS  Google Scholar 

  99. Ladetto M, De Marco F, Benedetti F, Vitolo U, Patti C, Rambaldi A, Pulsoni A, Musso M, Liberati AM, Olivieri A, Gallamini A, Pogliani E, Scalabrini DR, Callea V, Di Raimondo F, Pavone V, Tucci A, Cortelazzo S, Levis A, Boccadoro M, Majolino I, Pileri A, Gianni AM, Passera R, Corradini P, Tarella C (2008) Prospective, multicenter randomized GITMO/IIL trial comparing intensive (R-HDS) versus conventional (CHOP-R) chemoimmunotherapy in high-risk follicular lymphoma at diagnosis: the superior disease control of R-HDS does not translate into an overall survival advantage. Blood 111(8):4004–4013. doi:10.1182/blood-2007-10-116749

    PubMed  CAS  Google Scholar 

  100. Leich E, Salaverria I, Bea S, Zettl A, Wright G, Moreno V, Gascoyne RD, Chan WC, Braziel RM, Rimsza LM, Weisenburger DD, Delabie J, Jaffe ES, Lister A, Fitzgibbon J, Staudt LM, Hartmann EM, Mueller-Hermelink HK, Campo E, Ott G, Rosenwald A (2009) Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood 114(4):826–834. doi:blood-2009-01-198580 [pii] 10.1182/blood-2009-01-198580

    PubMed  CAS  Google Scholar 

  101. Leich E, Zamo A, Horn H, Haralambieva E, Puppe B, Gascoyne RD, Chan WC, Braziel RM, Rimsza LM, Weisenburger DD, Delabie J, Jaffe ES, Fitzgibbon J, Staudt LM, Mueller-Hermelink HK, Calaminici M, Campo E, Ott G, Hernandez L, Rosenwald A (2011) MicroRNA profiles of t(14;18)-negative follicular lymphoma support a late germinal center B-cell phenotype. Blood 118(20):5550–5558. doi:10.1182/blood-2011-06-361972

    PubMed  CAS  Google Scholar 

  102. Hoeller S, Bihl MP, Zihler D, Cogliatti S, Ponzoni M, Zettl A, Went P, Foerster A, Hirschmann P, Tzankov A, Dirnhofer S (2011) Molecular and immunohistochemical characterization of B-cell lymphoma-2-negative follicular lymphomas. Hum Pathol. doi:10.1016/j.humpath.2011.05.018

  103. Roulland S, Navarro JM, Grenot P, Milili M, Agopian J, Montpellier B, Gauduchon P, Lebailly P, Schiff C, Nadel B (2006) Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med 203(11):2425–2431. doi:10.1084/jem.20061292

    PubMed  CAS  Google Scholar 

  104. Ross CW, Ouillette PD, Saddler CM, Shedden KA, Malek SN (2007) Comprehensive analysis of copy number and allele status identifies multiple chromosome defects underlying follicular lymphoma pathogenesis. Clin Cancer Res 13(16):4777–4785

    PubMed  CAS  Google Scholar 

  105. Cheung KJ, Johnson NA, Affleck JG, Severson T, Steidl C, Ben-Neriah S, Schein J, Morin RD, Moore R, Shah SP, Qian H, Paul JE, Telenius A, Relander T, Lam W, Savage K, Connors JM, Brown C, Marra MA, Gascoyne RD, Horsman DE (2010) Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res 70(22):9166–9174. doi:0008-5472.CAN-10-2460 [pii] 10.1158/0008-5472.CAN-10-2460

    PubMed  CAS  Google Scholar 

  106. Cheung KJ, Delaney A, Ben-Neriah S, Schein J, Lee T, Shah SP, Cheung D, Johnson NA, Mungall AJ, Telenius A, Lai B, Boyle M, Connors JM, Gascoyne RD, Marra MA, Horsman DE (2010) High resolution analysis of follicular lymphoma genomes reveals somatic recurrent sites of copy-neutral loss of heterozygosity and copy number alterations that target single genes. Genes Chromosomes Cancer 49(8):669–681. doi:10.1002/gcc.20780

    PubMed  CAS  Google Scholar 

  107. O’Shea D, O’Riain C, Gupta M, Waters R, Yang Y, Wrench D, Gribben J, Rosenwald A, Ott G, Rimsza LM, Holte H, Cazier JB, Johnson NA, Campo E, Chan WC, Gascoyne RD, Young BD, Staudt LM, Lister TA, Fitzgibbon J (2009) Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation. Blood 113(10):2298–2301. doi:blood-2008-08-174953 [pii] 10.1182/blood-2008-08-174953

    PubMed  Google Scholar 

  108. O’Shea D, O’Riain C, Taylor C, Waters R, Carlotti E, Macdougall F, Gribben J, Rosenwald A, Ott G, Rimsza LM, Smeland EB, Johnson N, Campo E, Greiner TC, Chan WC, Gascoyne RD, Wright G, Staudt LM, Lister TA, Fitzgibbon J (2008) The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood 112(8):3126–3129

    PubMed  Google Scholar 

  109. Oricchio E, Nanjangud G, Wolfe AL, Schatz JH, Mavrakis KJ, Jiang M, Liu X, Bruno J, Heguy A, Olshen AB, Socci ND, Teruya-Feldstein J, Weis-Garcia F, Tam W, Shaknovich R, Melnick A, Himanen JP, Chaganti RS, Wendel HG (2011) The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 147(3):554–564. doi:10.1016/j.cell.2011.09.035

    PubMed  CAS  Google Scholar 

  110. Cheung KJ, Shah SP, Steidl C, Johnson N, Relander T, Telenius A, Lai B, Murphy KP, Lam W, Al-Tourah AJ, Connors JM, Ng RT, Gascoyne RD, Horsman DE (2009) Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood 113(1):137–148. doi:10.1182/blood-2008-02-140616

    PubMed  CAS  Google Scholar 

  111. Schwaenen C, Viardot A, Berger H, Barth TF, Bentink S, Dohner H, Enz M, Feller AC, Hansmann ML, Hummel M, Kestler HA, Klapper W, Kreuz M, Lenze D, Loeffler M, Moller P, Muller-Hermelink HK, Ott G, Rosolowski M, Rosenwald A, Ruf S, Siebert R, Spang R, Stein H, Truemper L, Lichter P, Bentz M, Wessendorf S (2009) Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status. Genes Chromosomes Cancer 48(1):39–54. doi:10.1002/gcc.20617

    PubMed  CAS  Google Scholar 

  112. Bosga-Bouwer AG, van den Berg A, Haralambieva E, de Jong D, Boonstra R, Kluin P, van den Berg E, Poppema S (2006) Molecular, cytogenetic, and immunophenotypic characterization of follicular lymphoma grade 3B; a separate entity or part of the spectrum of diffuse large B-cell lymphoma or follicular lymphoma? Hum Pathol 37(5):528–533. doi:10.1016/j.humpath.2005.12.005

    PubMed  CAS  Google Scholar 

  113. Horn H, Schmelter C, Leich E, Salaverria I, Katzenberger T, Ott MM, Kalla J, Romero M, Siebert R, Rosenwald A, Ott G (2011) Follicular lymphoma grade 3B is a distinct neoplasm according to cytogenetic and immunohistochemical profiles. Haematologica 96(9):1327–1334. doi:10.3324/haematol.2011.042531

    PubMed  Google Scholar 

  114. Harris NL, Kluin P (2011) Follicular lymphoma grade 3B: is it a real disease? Haematologica 96(9):1244–1246. doi:10.3324/haematol.2011.050930

    PubMed  Google Scholar 

  115. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, Fisher RI, Braziel RM, Rimsza LM, Grogan TM, Miller TP, LeBlanc M, Greiner TC, Weisenburger DD, Lynch JC, Vose J, Armitage JO, Smeland EB, Kvaloy S, Holte H, Delabie J, Connors JM, Lansdorp PM, Ouyang Q, Lister TA, Davies AJ, Norton AJ, Muller-Hermelink HK, Ott G, Campo E, Montserrat E, Wilson WH, Jaffe ES, Simon R, Yang L, Powell J, Zhao H, Goldschmidt N, Chiorazzi M, Staudt LM (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351(21):2159–2169

    PubMed  CAS  Google Scholar 

  116. Glas AM, Kersten MJ, Delahaye LJ, Witteveen AT, Kibbelaar RE, Velds A, Wessels LF, Joosten P, Kerkhoven RM, Bernards R, van Krieken JH, Kluin PM, Van’t Veer LJ, de Jong D (2005) Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood 105(1):301–307

    PubMed  CAS  Google Scholar 

  117. Johnson NA, Gascoyne RD (2008) Gene expression signatures in follicular lymphoma: are they ready for the clinic? Haematologica 93(7):982–987. doi:10.3324/haematol.13326

    PubMed  CAS  Google Scholar 

  118. Wang W, Corrigan-Cummins M, Hudson J, Maric I, Simakova O, Neelapu SS, Kwak LW, Janik JE, Gause B, Jaffe ES, Calvo KR (2011) MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica. doi:10.3324/haematol.2011.048132

  119. Janikova A, Tichy B, Supikova J, Stano-Kozubik K, Pospisilova S, Kren L, Vasova I, Salek D, Mayer J (2011) Gene expression profiling in follicular lymphoma and its implication for clinical practice. Leuk Lymphoma 52(1):59–68. doi:10.3109/10428194.2010.531412

    PubMed  CAS  Google Scholar 

  120. Piccaluga PP, Califano A, Klein U, Agostinelli C, Bellosillo B, Gimeno E, Serrano S, Solè F, Zang Y, Falini B, Zinzani PL, Pileri SA (2008) Gene expression analysis provides a potential rationale for revising the histological grading of follicular lymphomas. Haematologica 93(7):1033–1038. doi:10.3324/haematol.12754

    PubMed  CAS  Google Scholar 

  121. Lejeune M, Álvaro T (2009) Clinicobiological, prognostic and therapeutic implications of the tumor microenvironment in follicular lymphoma. Haematologica 94(1):16–21. doi:10.3324/haematol.2008.001255

    PubMed  Google Scholar 

  122. de Jong D, Koster A, Hagenbeek A, Raemaekers J, Veldhuizen D, Heisterkamp S, de Boer JP, van Glabbeke M (2009) Impact of the tumor microenvironment on prognosis in follicular lymphoma is dependent on specific treatment protocols. Haematologica 94(1):70–77. doi:10.3324/haematol.13574

    PubMed  Google Scholar 

  123. Steidl C, Connors JM, Gascoyne RD (2011) Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J Clin Oncol 29(14):1812–1826. doi:10.1200/jco.2010.32.8401

    PubMed  CAS  Google Scholar 

  124. Ghielmini M, Zucca E (2009) How I treat mantle cell lymphoma. Blood 114(8):1469–1476. doi:blood-2009-02-179739 [pii] 10.1182/blood-2009-02-179739

    PubMed  CAS  Google Scholar 

  125. Walsh SH, Rosenquist R (2005) Immunoglobulin gene analysis of mature B-cell malignancies: reconsideration of cellular origin and potential antigen involvement in pathogenesis. Med Oncol 22(4):327–342

    PubMed  CAS  Google Scholar 

  126. Hadzidimitriou A, Agathangelidis A, Darzentas N, Murray F, Delfau-Larue MH, Pedersen LB, Lopez AN, Dagklis A, Rombout P, Beldjord K, Kolstad A, Dreyling MH, Anagnostopoulos A, Tsaftaris A, Mavragani-Tsipidou P, Rosenwald A, Ponzoni M, Groenen P, Ghia P, Sander B, Papadaki T, Campo E, Geisler C, Rosenquist R, Davi F, Pott C, Stamatopoulos K (2011) Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood 118(11):3088–3095. doi:10.1182/blood-2011-03-343434

    PubMed  CAS  Google Scholar 

  127. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J, Lichtman SM, Schulman P, Vinciguerra VP, Rai KR, Ferrarini M, Chiorazzi N (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94(6):1840–1847

    PubMed  CAS  Google Scholar 

  128. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94(6):1848–1854

    PubMed  CAS  Google Scholar 

  129. Orchard J, Garand R, Davis Z, Babbage G, Sahota S, Matutes E, Catovsky D, Thomas PW, Avet-Loiseau H, Oscier D (2003) A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood 101(12):4975–4981

    PubMed  CAS  Google Scholar 

  130. Bertoni F, Conconi A, Cogliatti SB, Schmitz SF, Ghielmini M, Cerny T, Fey M, Pichert G, Bertolini F, Ponzoni M, Baldini L, Jones C, Auer R, Zucca E, Cavalli F, Cotter FE (2004) Immunoglobulin heavy chain genes somatic hypermutations and chromosome 11q22-23 deletion in classic mantle cell lymphoma: a study of the Swiss Group for Clinical Cancer Research. Br J Haematol 124(3):289–298

    PubMed  CAS  Google Scholar 

  131. Del Giudice I, Messina M, Chiaretti S, Santangelo S, Tavolaro S, De Propris MS, Nanni M, Pescarmona E, Mancini F, Pulsoni A, Martelli M, Di Rocco A, Finolezzi E, Paoloni F, Mauro FR, Cuneo A, Guarini A, Foa R (2012) Behind the scenes of non-nodal MCL: downmodulation of genes involved in actin cytoskeleton organization, cell projection, cell adhesion, tumour invasion, TP53 pathway and mutated status of immunoglobulin heavy chain genes. Br J Haematol 156(5):601–611. doi:10.1111/j.1365-2141.2011.08962.x

    PubMed  Google Scholar 

  132. Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224(4656):1403–1406

    PubMed  CAS  Google Scholar 

  133. Pérez-Galán P, Dreyling M, Wiestner A (2011) Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 117(1):26–38. doi:10.1182/blood-2010-04-189977

    PubMed  Google Scholar 

  134. Bertoni F, Rinaldi A, Zucca E, Cavalli F (2006) Update on the molecular biology of mantle cell lymphoma. Hematol Oncol 24(1):22–27

    PubMed  CAS  Google Scholar 

  135. Jares P, Colomer D, Campo E (2007) Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 7(10):750–762. doi:10.1038/nrc2230

    PubMed  CAS  Google Scholar 

  136. Navarro A, Royo C, Hernandez L, Jares P, Campo E (2011) Molecular pathogenesis of mantle cell lymphoma: new perspectives and challenges with clinical implications. Semin Hematol 48(3):155–165. doi:10.1053/j.seminhematol.2011.04.001

    PubMed  CAS  Google Scholar 

  137. Wiestner A, Tehrani M, Chiorazzi M, Wright G, Gibellini F, Nakayama K, Liu H, Rosenwald A, Muller-Hermelink HK, Ott G, Chan WC, Greiner TC, Weisenburger DD, Vose JM, Armitage JO, Gascoyne RD, Connors JM, Campo E, Montserrat E, Bosch F, Smeland EB, Kvaloy S, Holte H, Delabie J, Fisher RI, Grogan TM, Miller TP, Wilson WH, Jaffe ES, Staudt LM (2007) Point mutations and genomic deletions in Cyclin D1 create stable truncated mRNAs that are associated with increased proliferation rate and shorter survival in mantle cell lymphoma. Blood 109(11):4599–4606

    PubMed  CAS  Google Scholar 

  138. Fu K, Weisenburger DD, Greiner TC, Dave S, Wright G, Rosenwald A, Chiorazzi M, Iqbal J, Gesk S, Siebert R, De Jong D, Jaffe ES, Wilson WH, Delabie J, Ott G, Dave BJ, Sanger WG, Smith LM, Braziel RM, Muller-Hermelink HK, Campo E, Gascoyne RD, Staudt LM, Chan WC (2005) Cyclin D1-negative mantle cell lymphoma: a clinicopathological study based on gene expression profiling. Blood 106(13):4315–4321

    PubMed  CAS  Google Scholar 

  139. Salaverria I, Zettl A, Bea S, Moreno V, Valls J, Hartmann E, Ott G, Wright G, Lopez-Guillermo A, Chan WC, Weisenburger DD, Gascoyne RD, Grogan TM, Delabie J, Jaffe ES, Montserrat E, Muller-Hermelink HK, Staudt LM, Rosenwald A, Campo E (2007) Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J Clin Oncol 25(10):1216–1222

    PubMed  CAS  Google Scholar 

  140. Fernandez V, Salamero O, Espinet B, Sole F, Royo C, Navarro A, Camacho F, Bea S, Hartmann E, Amador V, Hernandez L, Agostinelli C, Sargent RL, Rozman M, Aymerich M, Colomer D, Villamor N, Swerdlow SH, Pileri SA, Bosch F, Piris MA, Montserrat E, Ott G, Rosenwald A, Lopez-Guillermo A, Jares P, Serrano S, Campo E (2010) Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res 70(4):1408–1418. doi:0008-5472.CAN-09-3419 [pii] 10.1158/0008-5472.CAN-09-3419

    PubMed  CAS  Google Scholar 

  141. Mozos A, Royo C, Hartmann E, De Jong D, Baro C, Valera A, Fu K, Weisenburger DD, Delabie J, Chuang SS, Jaffe ES, Ruiz-Marcellan C, Dave S, Rimsza L, Braziel R, Gascoyne RD, Sole F, Lopez-Guillermo A, Colomer D, Staudt LM, Rosenwald A, Ott G, Jares P, Campo E (2009) SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica 94(11):1555–1562. doi:94/11/1555 [pii] 10.3324/haematol.2009.010264

    PubMed  CAS  Google Scholar 

  142. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E, Gascoyne RD, Grogan TM, Muller-Hermelink HK, Smeland EB, Chiorazzi M, Giltnane JM, Hurt EM, Zhao H, Averett L, Henrickson S, Yang L, Powell J, Wilson WH, Jaffe ES, Simon R, Klausner RD, Montserrat E, Bosch F, Greiner TC, Weisenburger DD, Sanger WG, Dave BJ, Lynch JC, Vose J, Armitage JO, Fisher RI, Miller TP, LeBlanc M, Ott G, Kvaloy S, Holte H, Delabie J, Staudt LM (2003) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3(2):185–197

    PubMed  CAS  Google Scholar 

  143. Hartmann E, Fernandez V, Moreno V, Valls J, Hernandez L, Bosch F, Abrisqueta P, Klapper W, Dreyling M, Hoster E, Muller-Hermelink HK, Ott G, Rosenwald A, Campo E (2008) Five-gene model to predict survival in mantle-cell lymphoma using frozen or formalin-fixed, paraffin-embedded tissue. J Clin Oncol 26(30):4966–4972. doi:JCO.2007.12.0410 [pii] 10.1200/JCO.2007.12.0410

    PubMed  Google Scholar 

  144. Rinaldi A, Kwee I, Taborelli M, Largo C, Uccella S, Martini V, Poretti G, Gaidano G, Calabrese G, Martinelli G, Baldini L, Pruneri G, Capella C, Zucca E, Cotter FE, Cigudosa JC, Catapano C, Tibiletti MG, Bertoni F (2006) Genomic and expression profiling identifies the B cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol 132:303–316

    PubMed  CAS  Google Scholar 

  145. Hartmann EM, Campo E, Wright G, Lenz G, Salaverria I, Jares P, Xiao W, Braziel RM, Rimsza LM, Chan WC, Weisenburger DD, Delabie J, Jaffe ES, Gascoyne RD, Dave SS, Mueller-Hermelink HK, Staudt LM, Ott G, Bea S, Rosenwald A (2010) Pathway discovery in mantle cell lymphoma by integrated analysis of high-resolution gene expression and copy number profiling. Blood 116(6):953–961. doi:blood-2010-01-263806 [pii] 10.1182/blood-2010-01-263806

    PubMed  CAS  Google Scholar 

  146. Takeuchi I, Tagawa H, Tsujikawa A, Nakagawa M, Katayama-Suguro M, Guo Y, Seto M (2009) The potential of copy number gains and losses, detected by array-based comparative genomic hybridization, for computational differential diagnosis of B-cell lymphomas and genetic regions involved in lymphomagenesis. Haematologica 94(1):61–69. doi:haematol.12986 [pii] 10.3324/haematol.12986

    PubMed  Google Scholar 

  147. Bea S, Salaverria I, Armengol L, Pinyol M, Fernandez V, Hartmann EM, Jares P, Amador V, Hernandez L, Navarro A, Ott G, Rosenwald A, Estivill X, Campo E (2008) Uniparental disomies, homozygous deletions, amplifications and target genes in mantle cell lymphoma revealed by integrative high-resolution whole genome profiling. Blood 113(13):3059–3069. doi:blood-2008-07-170183 [pii] 10.1182/blood-2008-07-170183

    PubMed  Google Scholar 

  148. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, Gunawardana J, Jenkins C, Cochrane C, Ben-Neriah S, Tan K, Morin RD, Opat S, Sehn LH, Connors JM, Marra MA, Weng AP, Steidl C, Gascoyne RD (2012) Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 119(9):1963–1971. doi:10.1182/blood-2011-11-391474

    PubMed  CAS  Google Scholar 

  149. Gutierrez-Fernandez A, Costa D, Carrio A, Guijarro S, Enjuanes A, Hernandez L, Yague J, Nicolas P, Romeo-Casabona CM, Himmelbauer H, Castillo E, Dohm JC, de Sanjose S, Piris MA, de Alava E, San Miguel J, Royo R, Gelpi JL, Torrents D, Orozco M, Pisano DG, Valencia A, Guigo R, Bayes M, Heath S, Gut M, Klatt P, Marshall J, Raine K, Stebbings LA, Futreal PA, Stratton MR, Campbell PJ, Gut I, Lopez-Guillermo A, Estivill X, Montserrat E, Lopez-Otin C, Campo E (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475(7354):101–105. doi: nature10113[pii]10.1038/nature10113

    PubMed  Google Scholar 

  150. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, Grunn A, Fangazio M, Capello D, Monti S, Cresta S, Gargiulo E, Forconi F, Guarini A, Arcaini L, Paulli M, Laurenti L, Larocca LM, Marasca R, Gattei V, Oscier D, Bertoni F, Mullighan CG, Foa R, Pasqualucci L, Rabadan R, Dalla-Favera R, Gaidano G (2011) Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 208(7):1389–1401. doi:10.1084/jem.20110921

    PubMed  CAS  Google Scholar 

  151. Zucca E, Bertoni F, Roggero E, Bosshard G, Cazzaniga G, Pedrinis E, Biondi A, Cavalli F (1998) Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N Engl J Med 338(12):804–810. doi:10.1056/NEJM199803193381205

    PubMed  CAS  Google Scholar 

  152. Zucca E, Bertoni F, Roggero E, Cavalli F (2000) The gastric marginal zone B-cell lymphoma of MALT type. Blood 96(2):410–419

    PubMed  CAS  Google Scholar 

  153. Isaacson PG, Du MQ (2004) MALT lymphoma: from morphology to molecules. Nat Rev Cancer 4(8):644–653

    PubMed  CAS  Google Scholar 

  154. Ferreri AJ, Dolcetti R, Magnino S, Doglioni C, Ponzoni M (2009) Chlamydial infection: the link with ocular adnexal lymphomas. Nat Rev Clin Oncol 6(11):658–669. doi: nrclinonc.2009.147[pii]10.1038/nrclinonc.2009.147

    PubMed  Google Scholar 

  155. Qin Y, Greiner A, Trunk MJ, Schmausser B, Ott MM, Muller-Hermelink HK (1995) Somatic hypermutation in low-grade mucosa-associated lymphoid tissue- type B-cell lymphoma. Blood 86(9):3528–3534

    PubMed  CAS  Google Scholar 

  156. Du M, Diss TC, Xu C, Peng H, Isaacson PG, Pan L (1996) Ongoing mutation in MALT lymphoma immunoglobulin gene suggests that antigen stimulation plays a role in the clonal expansion. Leukemia 10(7):1190–1197

    PubMed  CAS  Google Scholar 

  157. Bertoni F, Cazzaniga G, Bosshard G, Roggero E, Barbazza R, De Boni M, Capella C, Pedrinis E, Cavalli F, Biondi A, Zucca E (1997) Immunoglobulin heavy chain diversity genes rearrangement pattern indicates that MALT-type gastric lymphoma B cells have undergone an antigen selection process. Br J Haematol 97(4):830–836

    PubMed  CAS  Google Scholar 

  158. Bahler DW, Miklos JA, Swerdlow SH (1997) Ongoing Ig gene hypermutation in salivary gland mucosa- associated lymphoid tissue-type lymphomas. Blood 89(9):3335–3344

    PubMed  CAS  Google Scholar 

  159. Zucca E, Bertoni F, Roggero E, Cazzaniga G, Bosshard G, Biondi A, Cavalli F (1998) Autoreactive B cell clones in marginal-zone B cell lymphoma (MALT lymphoma) of the stomach. Leukemia 12(2):247–249

    PubMed  CAS  Google Scholar 

  160. Bertoni F, Conconi A, Capella C, Motta T, Giardini R, Ponzoni M, Pedrinis E, Novero D, Rinaldi P, Cazzaniga G, Biondi A, Wotherspoon A, Hancock BW, Smith P, Souhami R, Cotter FE, Cavalli F, Zucca E (2002) Molecular follow-up in gastric mucosa-associated lymphoid tissue lymphomas: early analysis of the LY03 cooperative trial. Blood 99(7):2541–2544

    PubMed  CAS  Google Scholar 

  161. Dagklis A, Ponzoni M, Govi S, Cangi MG, Pasini E, Charlotte F, Vino A, Doglioni C, Davi F, Lossos IS, Ntountas I, Papadaki T, Dolcetti R, Ferreri AJ, Stamatopoulos K, Ghia P (2011) Immunoglobulin gene repertoire in ocular adnexal lymphomas: hints on the nature of the antigenic stimulation. Leukemia. doi:10.1038/leu.2011.276

  162. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, De Wolf-Peeters C, Hagemeijer A, Van den Berghe H, Marynen P (1999) The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa- associated lymphoid tissue lymphomas. Blood 93(11):3601–3609

    PubMed  CAS  Google Scholar 

  163. Willis TG, Jadayel DM, Du MQ, Peng H, Perry AR, Abdul-Rauf M, Price H, Karran L, Majekodunmi O, Wlodarska I, Pan L, Crook T, Hamoudi R, Isaacson PG, Dyer MJ (1999) Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96(1):35–45

    PubMed  CAS  Google Scholar 

  164. Streubel B, Lamprecht A, Dierlamm J, Cerroni L, Stolte M, Ott G, Raderer M, Chott A (2002) T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 101(6):2335–2339

    PubMed  Google Scholar 

  165. Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A (2005) T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 19(4):652–658

    PubMed  CAS  Google Scholar 

  166. Remstein ED, Dogan A, Einerson RR, Paternoster SF, Fink SR, Law M, Dewald GW, Kurtin PJ (2006) The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am J Surg Pathol 30(12):1546–1553

    PubMed  Google Scholar 

  167. Dierlamm J, Pittaluga S, Wlodarska I, Stul M, Thomas J, Boogaerts M, Michaux L, Driessen A, Mecucci C, Cassiman JJ (1996) Marginal zone B-cell lymphomas of different sites share similar cytogenetic and morphologic features. Blood 87(1):299–307

    PubMed  CAS  Google Scholar 

  168. Rinaldi A, Mian M, Chigrinova E, Arcaini L, Bhagat G, Novak U, Rancoita PM, De Campos CP, Forconi F, Gascoyne RD, Facchetti F, Ponzoni M, Govi S, Ferreri AJ, Mollejo M, Piris MA, Baldini L, Soulier J, Thieblemont C, Canzonieri V, Gattei V, Marasca R, Franceschetti S, Gaidano G, Tucci A, Uccella S, Tibiletti MG, Dirnhofer S, Tripodo C, Doglioni C, Dalla Favera R, Cavalli F, Zucca E, Kwee I, Bertoni F (2011) Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood 117(5):1595–1604. doi:10.1182/blood-2010-01-264275

    PubMed  CAS  Google Scholar 

  169. Murga Penas EM, Hinz K, Roser K, Copie-Bergman C, Wlodarska I, Marynen P, Hagemeijer A, Gaulard P, Loning T, Hossfeld DK, Dierlamm J (2003) Translocations t(11;18)(q21;q21) and t(14;18)(q32;q21) are the main chromosomal abnormalities involving MLT/MALT1 in MALT lymphomas. Leukemia 17(11):2225–2229

    PubMed  CAS  Google Scholar 

  170. Kwee I, Rancoita PM, Rinaldi A, Ferreri AJ, Bhagat G, Gascoyne R, Canzonieri V, Gaidano G, Doglioni C, Zucca E, Ponzoni M, Bertoni F (2011) Genomic profiles of MALT lymphomas: variability across anatomic sites. Haematologica 96(7):1064–1066. doi:haematol.2011.040402[pii]10.3324/haematol.2011.040402

    PubMed  Google Scholar 

  171. Ye H, Liu H, Attygalle A, Wotherspoon AC, Nicholson AG, Charlotte F, Leblond V, Speight P, Goodlad J, Lavergne-Slove A, Martin-Subero JI, Siebert R, Dogan A, Isaacson PG, Du MQ (2003) Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H. pylori in gastric MALT lymphoma. Blood 102(3):1012–1018

    PubMed  CAS  Google Scholar 

  172. Goatly A, Bacon CM, Nakamura S, Ye H, Kim I, Brown PJ, Ruskone-Fourmestraux A, Cervera P, Streubel B, Banham AH, Du MQ (2008) FOXP1 abnormalities in lymphoma: translocation breakpoint mapping reveals insights into deregulated transcriptional control. Mod Pathol 21(7):902–911. doi:modpathol200874[pii]10.1038/modpathol.2008.74

    PubMed  CAS  Google Scholar 

  173. Baens M, Finalet Ferreiro J, Tousseyn T, Urbankova H, Michaux L, de Leval L, Dierickx D, Wolter P, Sagaert X, Vandenberghe P, De Wolf-Peeters C, Wlodarska I (2012) t(X;14)(p11.4;q32.33) is recurrent in marginal zone lymphoma and up-regulates GPR34. Haematologica 97(2):184–188. doi:10.3324/haematol.2011.052639

    PubMed  CAS  Google Scholar 

  174. Rosebeck S, Madden L, Jin X, Gu S, Apel IJ, Appert A, Hamoudi RA, Noels H, Sagaert X, Van Loo P, Baens M, Du M-Q, Lucas PC, McAllister-Lucas LM (2011) Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 331(6016):468–472. doi:10.1126/science.1198946

    PubMed  CAS  Google Scholar 

  175. Hosokawa Y, Suzuki H, Suzuki Y, Takahashi R, Seto M (2004) Antiapoptotic function of apoptosis inhibitor 2-MALT1 fusion protein involved in t(11;18)(q21;q21) mucosa-associated lymphoid tissue lymphoma. Cancer Res 64(10):3452–3457. doi:10.1158/0008-5472.CAN-03-3677

    PubMed  CAS  Google Scholar 

  176. Alpen B, Neubauer A, Dierlamm J, Marynen P, Thiede C, Bayerdorfer E, Stolte M (2000) Translocation t(11;18) absent in early gastric marginal zone B-cell lymphoma of MALT type responding to eradication of Helicobacter pylori infection. Blood 95(12):4014–4015

    PubMed  CAS  Google Scholar 

  177. Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A, Ye H, Molina T, Bouhnik Y, Hamoudi RA, Diss TC, Dogan A, Megraud F, Rambaud JC, Du MQ, Isaacson PG (2001) Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet 357(9249):39–40

    PubMed  CAS  Google Scholar 

  178. Liu H, Ye H, Ruskone-Fourmestraux A, De Jong D, Pileri S, Thiede C, Lavergne A, Boot H, Caletti G, Wundisch T, Molina T, Taal BG, Elena S, Thomas T, Zinzani PL, Neubauer A, Stolte M, Hamoudi RA, Dogan A, Isaacson PG, Du MQ (2002) T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 122(5):1286–1294

    PubMed  CAS  Google Scholar 

  179. Kuo SH, Chen LT, Yeh KH, Wu MS, Hsu HC, Yeh PY, Mao TL, Chen CL, Doong SL, Lin JT, Cheng AL (2004) Nuclear expression of BCL10 or nuclear factor kappa B predicts Helicobacter pylori-independent status of early-stage, high-grade gastric mucosa-associated lymphoid tissue lymphomas. J Clin Oncol 22(17):3491–3497

    PubMed  CAS  Google Scholar 

  180. Ye H, Gong L, Liu H, Ruskone-Fourmestraux A, de Jong D, Pileri S, Thiede C, Lavergne A, Boot H, Caletti G, Wundisch T, Molina T, Taal BG, Elena S, Neubauer A, Maclennan KA, Siebert R, Remstein ED, Dogan A, Du MQ (2006) Strong BCL10 nuclear expression identifies gastric MALT lymphomas that do not respond to H pylori eradication. Gut 55(1):137–138. doi:10.1136/gut.2005.081117

    PubMed  CAS  Google Scholar 

  181. Fukuhara N, Nakamura T, Nakagawa M, Tagawa H, Takeuchi I, Yatabe Y, Morishima Y, Nakamura S, Seto M (2007) Chromosomal imbalances are associated with outcome of Helicobacter pylori eradication in t(11;18)(q21;q21) negative gastric mucosa-associated lymphoid tissue lymphomas. Genes Chromosomes Cancer 46(8):784–790. doi:10.1002/gcc.20464

    PubMed  CAS  Google Scholar 

  182. Du MQ, Atherton JC (2006) Molecular subtyping of gastric MALT lymphomas: implications for prognosis and management. Gut 55(6):886–893

    PubMed  CAS  Google Scholar 

  183. Tibiletti MG, Milani K, Martin V, Zucca E, Motta T, Cortelazzo S, Pinotti G, Mazzucchelli L, Pruneri G, Martinelli G, Barbazza R, Capella C, Bertoni F (2007) Chromosome instability and translocation t(11;18) in primary gastric marginal zone B-cell lymphoma of MALT-type. Hematol Oncol 25(4):184–188. doi:10.1002/hon.825

    PubMed  Google Scholar 

  184. Levy M, Copie-Bergman C, Gameiro C, Chaumette MT, Delfau-Larue MH, Haioun C, Charachon A, Hemery F, Gaulard P, Leroy K, Delchier JC (2005) Prognostic value of translocation t(11;18) in tumoral response of low-grade gastric lymphoma of mucosa-associated lymphoid tissue type to oral chemotherapy. J Clin Oncol 23(22):5061–5066

    PubMed  Google Scholar 

  185. Martinelli G, Laszlo D, Ferreri AJ, Pruneri G, Ponzoni M, Conconi A, Crosta C, Pedrinis E, Bertoni F, Calabrese L, Zucca E (2005) Clinical activity of rituximab in gastric marginal zone non-Hodgkin’s lymphoma resistant to or not eligible for anti-Helicobacter pylori therapy. J Clin Oncol 23(9):1979–1983

    PubMed  CAS  Google Scholar 

  186. Streubel B, Ye H, Du MQ, Isaacson PG, Chott A, Raderer M (2004) Translocation t(11;18)(q21;q21) is not predictive of response to chemotherapy with 2CdA in patients with gastric MALT lymphoma. Oncology 66(6):476–480

    PubMed  CAS  Google Scholar 

  187. Raderer M, Wöhrer S, Bartsch R, Prager G, Drach J, Hejna M, Gaiger A, Turetschek K, Jaeger U, Streubel B, Zielinski CC (2005) Phase II study of oxaliplatin for treatment of patients with mucosa-associated lymphoid tissue lymphoma. J Clin Oncol 23(33):8442–8446. doi:10.1200/jco.2004.00.8532

    PubMed  CAS  Google Scholar 

  188. Levy M, Copie-Bergman C, Molinier-Frenkel V, Riou A, Haioun C, Gaulard P, Delfau-Larue MH, Sobhani I, Leroy K, Delchier JC (2010) Treatment of t(11;18)-positive gastric mucosa-associated lymphoid tissue lymphoma with rituximab and chlorambucil: clinical, histological, and molecular follow-up. Leuk Lymphoma 51(2):284–290. doi:10.3109/10428190903431820

    PubMed  CAS  Google Scholar 

  189. Kuo SH, Cheng AL, Lin CW, Hsu CH, Wu MS, Yeh KH, Tzeng YS, Chen LT (2011) t(11;18)(q21;q21) translocation as predictive marker for non-responsiveness to salvage thalidomide therapy in patients with marginal zone B-cell lymphoma with gastric involvement. Cancer Chemother Pharmacol 68(6):1387–1395. doi:10.1007/s00280-011-1631-y

    PubMed  CAS  Google Scholar 

  190. Ye H, Dogan A, Karran L, Willis TG, Chen L, Wlodarska I, Dyer MJ, Isaacson PG, Du MQ (2000) BCL10 expression in normal and neoplastic lymphoid tissue: nuclear localization in MALT lymphoma. Am J Pathol 157(4):1147–1154

    PubMed  CAS  Google Scholar 

  191. Liu H, Ye H, Dogan A, Ranaldi R, Hamoudi RA, Bearzi I, Isaacson PG, Du MQ (2001) T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood 98(4):1182–1187

    PubMed  CAS  Google Scholar 

  192. Yeh KH, Kuo SH, Chen LT, Mao TL, Doong SL, Wu MS, Hsu HC, Tzeng YS, Chen CL, Lin JT, Cheng AL (2005) Nuclear expression of BCL10 or nuclear factor kappa B helps predict Helicobacter pylori-independent status of low-grade gastric mucosa-associated lymphoid tissue lymphomas with or without t(11;18)(q21;q21). Blood 106(3):1037–1041

    PubMed  CAS  Google Scholar 

  193. Dong G, Liu C, Ye H, Gong L, Zheng J, Li M, Huang X, Huang X, Huang Y, Shi Y, Yin W, Gao Z (2008) BCL10 nuclear expression and t(11;18)(q21;q21) indicate nonresponsiveness to Helicobacter pylori eradication of Chinese primary gastric MALT lymphoma. Int J Hematol 88(5):516–523. doi:10.1007/s12185-008-0187-z

    PubMed  CAS  Google Scholar 

  194. Sagaert X, de Paepe P, Libbrecht L, Vanhentenrijk V, Verhoef G, Thomas J, Wlodarska I, De Wolf-Peeters C (2006) Forkhead box protein P1 expression in mucosa-associated lymphoid tissue lymphomas predicts poor prognosis and transformation to diffuse large B-cell lymphoma. J Clin Oncol 24(16):2490–2497

    PubMed  CAS  Google Scholar 

  195. Haralambieva E, Adam P, Ventura R, Katzenberger T, Kalla J, Holler S, Hartmann M, Rosenwald A, Greiner A, Muller-Hermelink HK, Banham AH, Ott G (2006) Genetic rearrangement of FOXP1 is predominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation. Leukemia 20(7):1300–1303

    PubMed  CAS  Google Scholar 

  196. Callet-Bauchu E, Baseggio L, Felman P, Traverse-Glehen A, Berger F, Morel D, Gazzo S, Poncet C, Thieblemont C, Coiffier B, Magaud JP, Salles G (2005) Cytogenetic analysis delineates a spectrum of chromosomal changes that can distinguish non-MALT marginal zone B-cell lymphomas among mature B-cell entities: a description of 103 cases. Leukemia 19(10):1818–1823

    PubMed  CAS  Google Scholar 

  197. Krugmann J, Tzankov A, Dirnhofer S, Fend F, Greil R, Siebert R, Erdel M (2004) Unfavourable prognosis of patients with trisomy 18q21 detected by fluorescence in situ hybridisation in t(11;18) negative, surgically resected, gastrointestinal B cell lymphomas. J Clin Pathol 57(4):360–364

    PubMed  CAS  Google Scholar 

  198. Krugmann J, Tzankov A, Dirnhofer S, Fend F, Wolf D, Siebert R, Probst P, Erdel M (2005) Complete or partial trisomy 3 in gastro-intestinal MALT lymphomas co-occurs with aberrations at 18q21 and correlates with advanced disease stage: a study on 25 cases. World J Gastroenterol 11(46):7384–7385

    PubMed  Google Scholar 

  199. Nakamura S, Ye H, Bacon CM, Goatly A, Liu H, Banham AH, Ventura R, Matsumoto T, Iida M, Ohji Y, Yao T, Tsuneyoshi M, Du MQ (2007) Clinical impact of genetic aberrations in gastric MALT lymphoma: a comprehensive analysis using interphase fluorescence in situ hybridisation. Gut 56(10):1358–1363. doi:10.1136/gut.2007.123729

    PubMed  Google Scholar 

  200. Honma K, Tsuzuki S, Nakagawa M, Tagawa H, Nakamura S, Morishima Y, Seto M (2009) TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 114(12):2467–2475. doi:blood-2008-12-194852[pii]10.1182/blood-2008-12-194852

    PubMed  CAS  Google Scholar 

  201. Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PMV, Compagno M, Cerri M, Rossi D, Murty VV, Zucca E, Gaidano G, Dalla Favera R, Pasqualucci L, Bhagat G, Bertoni F (2009) The NF-ΚB negative regulator TNFAIP3 (A20) is commonly inactivated by somatic mutations and genomic deletions in marginal zone B-cell lymphomas. Blood 113(20):4918–4921

    PubMed  CAS  Google Scholar 

  202. Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K, Niwa A, Chen Y, Nakazaki K, Nomoto J, Asakura Y, Muto S, Tamura A, Iio M, Akatsuka Y, Hayashi Y, Mori H, Igarashi T, Kurokawa M, Chiba S, Mori S, Ishikawa Y, Okamoto K, Tobinai K, Nakagama H, Nakahata T, Yoshino T, Kobayashi Y, Ogawa S (2009) Frequent inactivation of A20 in B-cell lymphomas. Nature 459(7247):712–716. doi:nature07969[pii]10.1038/nature07969[doi]

    PubMed  CAS  Google Scholar 

  203. Conconi A, Martinelli G, Lopez-Guillermo A, Zinzani PL, Ferreri AJ, Rigacci L, Devizzi L, Vitolo U, Luminari S, Cavalli F, Zucca E (2011) Clinical activity of bortezomib in relapsed/refractory MALT lymphomas: results of a phase II study of the International Extranodal Lymphoma Study Group (IELSG). Ann Oncol 22(3):689–695. doi:mdq416[pii]10.1093/annonc/mdq416[doi]

    PubMed  CAS  Google Scholar 

  204. Hamoudi RA, Appert A, Ye H, Ruskone-Fourmestraux A, Streubel B, Chott A, Raderer M, Gong L, Wlodarska I, De Wolf-Peeters C, MacLennan KA, de Leval L, Isaacson PG, Du MQ (2010) Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism. Leukemia 24(8):1487–1497. doi:leu2010118[pii]10.1038/leu.2010.118

    PubMed  CAS  Google Scholar 

  205. Chng WJ, Remstein ED, Fonseca R, Bergsagel PL, Vrana JA, Kurtin PJ, Dogan A (2009) Gene expression profiling of pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma identifies new biological insights with potential diagnostic and therapeutic applications. Blood 113(3):635–645. doi:10.1182/blood-2008-02-140996

    PubMed  CAS  Google Scholar 

  206. Li ZM, Rinaldi A, Cavalli A, Mensah AA, Ponzoni M, Gascoyne RD, Bhagat G, Zucca E, Bertoni F (2012) MYD88 somatic mutations in MALT lymphomas. Br J Haematol 158(5):662–664. doi:10.1111/j.1365-2141.2012.09176.x

    PubMed  CAS  Google Scholar 

  207. Gachard N, Parrens M, Soubeyran I, Petit B, Marfak A, Rizzo D, Devesa M, Delage-Corre M, Coste V, Laforet MP, Mascarel AD, Merlio JP, Bouabdhalla K, Milpied N, Soubeyran P, Schmitt A, Bordessoule D, Cogne M, Feuillard J (2012) IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenstrom Macroglobulinemia/Lymphoplasmacytic lymphomas. Leukemia. doi:10.1038/leu.2012.257

  208. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR (2012) MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med 367(9):826–833. doi:10.1056/NEJMoa1200710

    PubMed  CAS  Google Scholar 

  209. Mollejo M, Camacho FI, Algara P, Ruiz-Ballesteros E, Garcia JF, Piris MA (2005) Nodal and splenic marginal zone B cell lymphomas. Hematol Oncol 23(3–4):108–118

    PubMed  Google Scholar 

  210. Marasca R, Vaccari P, Luppi M, Zucchini P, Castelli I, Barozzi P, Cuoghi A, Torelli G (2001) Immunoglobulin gene mutations and frequent use of VH1-69 and VH4-34 segments in hepatitis C virus-positive and hepatitis C virus-negative nodal marginal zone B-cell lymphoma. Am J Pathol 159(1):253–261

    PubMed  CAS  Google Scholar 

  211. Camacho FI, Algara P, Mollejo M, Garcia JF, Montalban C, Martinez N, Sanchez-Beato M, Piris MA (2003) Nodal marginal zone lymphoma: a heterogeneous tumor: a comprehensive analysis of a series of 27 cases. Am J Surg Pathol 27(6):762–771

    PubMed  Google Scholar 

  212. Algara P, Mateo MS, Sanchez-Beato M, Mollejo M, Navas IC, Romero L, Sole F, Salido M, Florensa L, Martinez P, Campo E, Piris MA (2002) Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. Blood 99(4):1299–1304

    PubMed  CAS  Google Scholar 

  213. Tierens A, Delabie J, Malecka A, Wang J, Gruszka-Westwood A, Catovsky D, Matutes E (2003) Splenic marginal zone lymphoma with villous lymphocytes shows on-going immunoglobulin gene mutations. Am J Pathol 162(2):681–689

    PubMed  CAS  Google Scholar 

  214. Rinaldi A, Forconi F, Arcaini L, Mian M, Sozzi E, Zibellini S, Baldini L, Franceschetti S, Gaidano G, Marasca R, Mollejo M, Piris MA, Tucci A, Facchetti F, Bhagat G, Dalla Favera R, Rancoita PM, Zucca E, Kwee I, Bertoni F (2010) Immunogenetics features and genomic lesions in splenic marginal zone lymphoma. Br J Haematol 151(5):435–439

    PubMed  Google Scholar 

  215. Salido M, Baro C, Oscier D, Stamatopoulos K, Dierlamm J, Matutes E, Traverse-Glehen A, Berger F, Felman P, Thieblemont C, Gesk S, Athanasiadou A, Davis Z, Gardiner A, Milla F, Ferrer A, Mollejo M, Calasanz MJ, Florensa L, Espinet B, Luno E, Wlodarska I, Verhoef G, Garcia-Granero M, Salar A, Papadaki T, Serrano S, Piris MA, Sole F (2010) Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. Blood 116(9):1479–1488. doi:10.1182/blood-2010-02-267476

    PubMed  CAS  Google Scholar 

  216. Zibellini S, Capello D, Forconi F, Marcatili P, Rossi D, Rattotti S, Franceschetti S, Sozzi E, Cencini E, Marasca R, Baldini L, Tucci A, Bertoni F, Passamonti F, Orlandi E, Varettoni M, Merli M, Rizzi S, Gattei V, Tramontano A, Paulli M, Gaidano G, Arcaini L (2010) Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma. Haematologica 95(10):1792–1796. doi:haematol.2010.025437[pii]10.3324/haematol.2010.025437

    PubMed  CAS  Google Scholar 

  217. Bikos V, Darzentas N, Hadzidimitriou A, Davis Z, Hockley S, Traverse-Glehen A, Algara P, Santoro A, Gonzalez D, Mollejo M, Dagklis A, Gangemi F, Bosler DS, Bourikas G, Anagnostopoulos A, Tsaftaris A, Iannitto E, Ponzoni M, Felman P, Berger F, Belessi C, Ghia P, Papadaki T, Dogan A, Degano M, Matutes E, Piris MA, Oscier D, Stamatopoulos K (2012) Over 30% of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications. Leukemia 26(7):1638–1646. doi:10.1038/leu.2012.3

    Google Scholar 

  218. Ruiz-Ballesteros E, Mollejo M, Rodriguez A, Camacho FI, Algara P, Martinez N, Pollan M, Sanchez-Aguilera A, Menarguez J, Campo E, Martinez P, Mateo M, Piris MA (2005) Splenic marginal zone lymphoma: proposal of new diagnostic and prognostic markers identified after tissue and cDNA microarray analysis. Blood 106(5):1831–1838

    PubMed  CAS  Google Scholar 

  219. Mateo M, Mollejo M, Villuendas R, Algara P, Sanchez-Beato M, Martinez P, Piris MA (1999) 7q31-32 allelic loss is a frequent finding in splenic marginal zone lymphoma. Am J Pathol 154(5):1583–1589

    PubMed  CAS  Google Scholar 

  220. Hernandez JM, Garcia JL, Gutierrez NC, Mollejo M, Martinez-Climent JA, Flores T, Gonzalez MB, Piris MA, San Miguel JF (2001) Novel genomic imbalances in B-cell splenic marginal zone lymphomas revealed by comparative genomic hybridization and cytogenetics. Am J Pathol 158(5):1843–1850

    PubMed  CAS  Google Scholar 

  221. Fresquet V, Robles EF, Parker A, Martinez-Useros J, Mena M, Malumbres R, Agirre X, Catarino S, Arteta D, Osaba L, Mollejo M, Hernandez-Rivas JM, Calasanz MJ, Daibata M, Dyer MJ, Prosper F, Vizcarra E, Piris MA, Oscier D, Martinez-Climent JA (2012) High-throughput sequencing analysis of the chromosome 7q32 deletion reveals IRF5 as a potential tumour suppressor in splenic marginal-zone lymphoma. Br J Haematol 158(6):712–726. doi:10.1111/j.1365-2141.2012.09226.x

    PubMed  CAS  Google Scholar 

  222. Rossi D, Deaglio S, Dominguez-Sola D, Rasi S, Vaisitti T, Agostinelli C, Spina V, Bruscaggin A, Monti S, Cerri M, Cresta S, Fangazio M, Arcaini L, Lucioni M, Marasca R, Thieblemont C, Capello D, Facchetti F, Kwee I, Pileri SA, Foa R, Bertoni F, Dalla-Favera R, Pasqualucci L, Gaidano G (2011) Alteration of BIRC3 and multiple other NF-kappaB pathway genes in splenic marginal zone lymphoma. Blood 118(18):4930–4934. doi:10.1182/blood-2011-06-359166

    PubMed  Google Scholar 

  223. Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, Monti S, Vaisitti T, Arruga F, Fama R, Ciardullo C, Greco M, Cresta S, Piranda D, Holmes A, Fabbri G, Messina M, Rinaldi A, Wang J, Agostinelli C, Piccaluga PP, Lucioni M, Tabbo F, Serra R, Franceschetti S, Deambrogi C, Daniele G, Gattei V, Marasca R, Facchetti F, Arcaini L, Inghirami G, Bertoni F, Pileri SA, Deaglio S, Foa R, Dalla-Favera R, Pasqualucci L, Rabadan R, Gaidano G (2012) The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med 209(9):1537–1551. doi:10.1084/jem.20120904

    PubMed  CAS  Google Scholar 

  224. Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, Miranda RN, Bahler DW, Medeiros LJ, Lim MS, Elenitoba-Johnson KS (2012) Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med 209(9):1553–1565. doi:10.1084/jem.20120910

    PubMed  CAS  Google Scholar 

  225. Thieblemont C, Nasser V, Felman P, Leroy K, Gazzo S, Callet-Bauchu E, Loriod B, Granjeaud S, Gaulard P, Haioun C, Traverse-Glehen A, Baseggio L, Bertucci F, Birnbaum D, Magrangeas F, Minvielle S, Avet-Loiseau H, Salles G, Coiffier B, Berger F, Houlgatte R (2004) Small lymphocytic lymphoma, marginal zone B-cell lymphoma, and mantle cell lymphoma exhibit distinct gene-expression profiles allowing molecular diagnosis. Blood 103(7):2727–2737

    PubMed  CAS  Google Scholar 

  226. Harris NL, Horning SJ (2006) Burkitt’s lymphoma–the message from microarrays. N Engl J Med 354(23):2495–2498

    PubMed  CAS  Google Scholar 

  227. Rosenwald A, Ott G (2008) Burkitt lymphoma versus diffuse large B-cell lymphoma. Ann Oncol 19(suppl 4):iv-67–iv-69

    Google Scholar 

  228. Bellan C, Stefano L, de Giulia F, Rogena EA, Lorenzo L (2009) Burkitt lymphoma versus diffuse large B-cell lymphoma: a practical approach. Hematol Oncol 27(4):182–185

    PubMed  Google Scholar 

  229. Chapman CJ, Mockridge CI, Rowe M, Rickinson AB, Stevenson FK (1995) Analysis of VH genes used by neoplastic B cells in endemic Burkitt’s lymphoma shows somatic hypermutation and intraclonal heterogeneity. Blood 85(8):2176–2181

    PubMed  CAS  Google Scholar 

  230. Chapman CJ, Zhou JX, Gregory C, Rickinson AB, Stevenson FK (1996) VH and VL gene analysis in sporadic Burkitt’s lymphoma shows somatic hypermutation, intraclonal heterogeneity, and a role for antigen selection. Blood 88(9):3562–3568

    PubMed  CAS  Google Scholar 

  231. Capello D, Martini M, Gloghini A, Cerri M, Rasi S, Deambrogi C, Rossi D, Spina M, Tirelli U, Larocca LM, Carbone A, Gaidano G (2008) Molecular analysis of immunoglobulin variable genes in human immunodeficiency virus-related non-Hodgkin’s lymphoma reveals implications for disease pathogenesis and histogenesis. Haematologica 93(8):1178–1185. doi:10.3324/haematol.12705

    PubMed  CAS  Google Scholar 

  232. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79(24):7824–7827

    PubMed  CAS  Google Scholar 

  233. Klapproth K, Wirth T (2010) Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol 149(4):484–497. doi:BJH8159[pii]10.1111/j.1365-2141.2010.08159.x

    PubMed  CAS  Google Scholar 

  234. Salaverria I, Siebert R (2011) The gray zone between Burkitt’s lymphoma and diffuse large B-cell lymphoma from a genetics perspective. J Clin Oncol 29(14):1835–1843. doi:10.1200/jco.2010.32.8385

    PubMed  Google Scholar 

  235. Bellan C, Stefano L, de Giulia F, Rogena EA, Lorenzo L (2010) Burkitt lymphoma versus diffuse large B-cell lymphoma: a practical approach. Hematol Oncol 28(2):53–56. doi:10.1002/hon.916

    PubMed  Google Scholar 

  236. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, Greiner TC, Weisenburger DD, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Delabie J, Rimsza LM, Braziel RM, Grogan TM, Campo E, Jaffe ES, Dave BJ, Sanger W, Bast M, Vose JM, Armitage JO, Connors JM, Smeland EB, Kvaloy S, Holte H, Fisher RI, Miller TP, Montserrat E, Wilson WH, Bahl M, Zhao H, Yang L, Powell J, Simon R, Chan WC, Staudt LM (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354(23):2431–2442

    PubMed  CAS  Google Scholar 

  237. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, Bernd HW, Cogliatti SB, Dierlamm J, Feller AC, Hansmann ML, Haralambieva E, Harder L, Hasenclever D, Kuhn M, Lenze D, Lichter P, Martin-Subero JI, Moller P, Muller-Hermelink HK, Ott G, Parwaresch RM, Pott C, Rosenwald A, Rosolowski M, Schwaenen C, Sturzenhofecker B, Szczepanowski M, Trautmann H, Wacker HH, Spang R, Loeffler M, Trumper L, Stein H, Siebert R (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354(23):2419–2430

    PubMed  CAS  Google Scholar 

  238. Piccaluga PP, De Falco G, Kustagi M, Gazzola A, Agostinelli C, Tripodo C, Leucci E, Onnis A, Astolfi A, Sapienza MR, Bellan C, Lazzi S, Tumwine L, Mawanda M, Ogwang M, Calbi V, Formica S, Califano A, Pileri SA, Leoncini L (2011) Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes. Blood 117(13):3596–3608. doi:10.1182/blood-2010-08-301556

    PubMed  CAS  Google Scholar 

  239. Boerma EG, Siebert R, Kluin PM, Baudis M (2009) Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia 23(2):225–234. doi:leu2008281[pii]10.1038/leu.2008.281

    PubMed  CAS  Google Scholar 

  240. Salaverria I, Zettl A, Bea S, Hartmann EM, Dave SS, Wright GW, Boerma EJ, Kluin PM, Ott G, Chan WC, Weisenburger DD, Lopez-Guillermo A, Gascoyne RD, Delabie J, Rimsza LM, Braziel RM, Jaffe ES, Staudt LM, Muller-Hermelink HK, Campo E, Rosenwald A (2008) Chromosomal alterations detected by comparative genomic hybridization in subgroups of gene expression-defined Burkitt’s lymphoma. Haematologica 93(9):1327–1334. doi:10.3324/haematol.13071

    PubMed  Google Scholar 

  241. Toujani S, Dessen P, Ithzar N, Danglot G, Richon C, Vassetzky Y, Robert T, Lazar V, Bosq J, Da Costa L, Perot C, Ribrag V, Patte C, Wiels J, Bernheim A (2009) High resolution genome-wide analysis of chromosomal alterations in Burkitt’s lymphoma. PLoS One 4(9):e7089. doi:10.1371/journal.pone.0007089

    PubMed  Google Scholar 

  242. Capello D, Scandurra M, Poretti G, Rancoita PM, Mian M, Gloghini A, Deambrogi C, Martini M, Rossi D, Greiner TC, Chan WC, Ponzoni M, Moreno SM, Piris MA, Canzonieri V, Spina M, Tirelli U, Inghirami G, Rinaldi A, Zucca E, Favera RD, Cavalli F, Larocca LM, Kwee I, Carbone A, Gaidano G, Bertoni F (2010) Genome wide DNA-profiling of HIV-related B-cell lymphomas. Br J Haematol 148(2):245–255. doi:BJH7943[pii]10.1111/j.1365-2141.2009.07943.x

    PubMed  CAS  Google Scholar 

  243. Scholtysik R, Kreuz M, Klapper W, Burkhardt B, Feller AC, Hummel M, Loeffler M, Rosolowski M, Schwaenen C, Spang R, Stein H, Thorns C, Trumper L, Vater I, Wessendorf S, Zenz T, Siebert R, Kuppers R (2010) Detection of genomic aberrations in molecularly defined Burkitt’s lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. Haematologica 95(12):2047–2055. doi:10.3324/haematol.2010.026831

    PubMed  CAS  Google Scholar 

  244. Schiffman JD, Lorimer PD, Rodic V, Jahromi MS, Downie JM, Bayerl MG, Sanmann JN, Althof PA, Sanger WG, Barnette P, Perkins SL, Miles RR (2011) Genome wide copy number analysis of paediatric Burkitt lymphoma using formalin-fixed tissues reveals a subset with gain of chromosome 13q and corresponding miRNA over expression. Br J Haematol 155(4):477–486. doi:10.1111/j.1365-2141.2011.08883.x

    PubMed  CAS  Google Scholar 

  245. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, Liu X, Powell J, Yang Y, Xu W, Zhao H, Kohlhammer H, Rosenwald A, Kluin P, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Ogwang MD, Reynolds SJ, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pittaluga S, Wilson W, Waldmann TA, Rowe M, Mbulaiteye SM, Rickinson AB, Staudt LM (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. doi:10.1038/nature11378

  246. Rodriguez-Abreu D, Filho VB, Zucca E (2008) Peripheral T-cell lymphomas, unspecified (or not otherwise specified): a review. Hematol Oncol 26(1):8–20. doi:10.1002/hon.836

    PubMed  CAS  Google Scholar 

  247. Foss FM, Zinzani PL, Vose JM, Gascoyne RD, Rosen ST, Tobinai K (2011) Peripheral T-cell lymphoma. Blood 117(25):6756–6767. doi:10.1182/blood-2010-05-231548

    PubMed  CAS  Google Scholar 

  248. Weisenburger DD, Savage KJ, Harris NL, Gascoyne RD, Jaffe ES, MacLennan KA, Rudiger T, Pileri S, Nakamura S, Nathwani B, Campo E, Berger F, Coiffier B, Kim WS, Holte H, Federico M, Au WY, Tobinai K, Armitage JO, Vose JM (2011) Peripheral T-cell lymphoma, not otherwise specified: a report of 340 cases from the International Peripheral T-cell Lymphoma Project. Blood 117(12):3402–3408. doi:blood-2010-09-310342[pii]10.1182/blood-2010-09-310342

    PubMed  CAS  Google Scholar 

  249. Martinez-Delgado B (2006) Peripheral T-cell lymphoma gene expression profiles. Hematol Oncol 24(3):113–119

    PubMed  CAS  Google Scholar 

  250. Rudiger T, Geissinger E, Muller-Hermelink HK (2006) ‘Normal counterparts’ of nodal peripheral T-cell lymphoma. Hematol Oncol 24(4):175–180

    PubMed  Google Scholar 

  251. Costello R, Sanchez C, Le Treut T, Rihet P, Imbert J, Sebahoun G (2010) Peripheral T-cell lymphoma gene expression profiling and potential therapeutic exploitations. Br J Haematol 150(1):21–27. doi:BJH7977[pii]10.1111/j.1365-2141.2009.07977.x

    PubMed  CAS  Google Scholar 

  252. Lepretre S, Buchonnet G, Stamatoullas A, Lenain P, Duval C, D’Anjou J, Callat MP, Tilly H, Bastard C (2000) Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet Cytogenet 117(1):71–79. doi:S01654608991X[pii]

    PubMed  CAS  Google Scholar 

  253. Renedo M, Martinez-Delgado B, Arranz E, Garcia M, Urioste M, Martinez-Ramirez A, Rivas C, Cigudosa JC, Benitez I (2001) Chromosomal changes pattern and gene amplification in T cell non-Hodgkin’s lymphomas. Leukemia 15(10):1627–1632

    PubMed  CAS  Google Scholar 

  254. Melendez B, Diaz-Uriarte R, Cuadros M, Martinez-Ramirez A, Fernandez-Piqueras J, Dopazo A, Cigudosa JC, Rivas C, Dopazo J, Martinez-Delgado B, Benitez J (2004) Gene expression analysis of chromosomal regions with gain or loss of genetic material detected by comparative genomic hybridization. Genes Chromosomes Cancer 41(4):353–365

    PubMed  CAS  Google Scholar 

  255. Zettl A, Rudiger T, Konrad MA, Chott A, Simonitsch-Klupp I, Sonnen R, Muller-Hermelink HK, Ott G (2004) Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol 164(5):1837–1848

    PubMed  CAS  Google Scholar 

  256. Thorns C, Bastian B, Pinkel D, Roydasgupta R, Fridlyand J, Merz H, Krokowski M, Bernd HW, Feller AC (2007) Chromosomal aberrations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma unspecified: a matrix-based CGH approach. Genes Chromosomes Cancer 46(1):37–44. doi:10.1002/gcc.20386

    PubMed  CAS  Google Scholar 

  257. Nelson M, Horsman DE, Weisenburger DD, Gascoyne RD, Dave BJ, Loberiza FR, Ludkovski O, Savage KJ, Armitage JO, Sanger WG (2008) Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol 141(4):461–469. doi: BJH7042[pii]10.1111/j.1365-2141.2008.07042.x

    PubMed  CAS  Google Scholar 

  258. Fujiwara SI, Yamashita Y, Nakamura N, Choi YL, Ueno T, Watanabe H, Kurashina K, Soda M, Enomoto M, Hatanaka H, Takada S, Abe M, Ozawa K, Mano H (2008) High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays. Leukemia 22(10):1891–1898. doi:leu2008191[pii]10.1038/leu.2008.191[doi]

    PubMed  CAS  Google Scholar 

  259. Nakagawa M, Nakagawa-Oshiro A, Karnan S, Tagawa H, Utsunomiya A, Nakamura S, Takeuchi I, Ohshima K, Seto M (2009) Array comparative genomic hybridization analysis of PTCL-U reveals a distinct subgroup with genetic alterations similar to lymphoma-type adult T-cell leukemia/lymphoma. Clin Cancer Res 15(1):30–38. doi: 15/1/30[pii]10.1158/1078-0432.CCR-08-1808

    PubMed  CAS  Google Scholar 

  260. Hartmann S, Gesk S, Scholtysik R, Kreuz M, Bug S, Vater I, Doring C, Cogliatti S, Parrens M, Merlio JP, Kwiecinska A, Porwit A, Piccaluga PP, Pileri S, Hoefler G, Kuppers R, Siebert R, Hansmann ML (2010) High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus. Br J Haematol 148(3):402–412. doi:BJH7956[pii]10.1111/j.1365-2141.2009.07956.x

    PubMed  Google Scholar 

  261. Boi M, Stathis A, Zucca E, Inghirami G, Bertoni F (2012) Genetic alterations in systemic nodal and extranodal non-cutaneous lymphomas derived from mature T cells and natural killer cells. Cancer Sci 103(8):1397–1404. doi:10.1111/j.1349-7006.2012.02321.x

    PubMed  CAS  Google Scholar 

  262. Leich E, Haralambieva E, Zettl A, Chott A, Rudiger T, Holler S, Muller-Hermelink HK, Ott G, Rosenwald A (2007) Tissue microarray-based screening for chromosomal breakpoints affecting the T-cell receptor gene loci in mature T-cell lymphomas. J Pathol 213(1):99–105. doi:10.1002/path.2196[doi]

    PubMed  CAS  Google Scholar 

  263. Feldman AL, Law M, Grogg KL, Thorland EC, Fink S, Kurtin PJ, Macon WR, Remstein ED, Dogan A (2008) Incidence of TCR and TCL1 gene translocations and isochromosome 7q in peripheral T-cell lymphomas using fluorescence in situ hybridization. Am J Clin Pathol 130(2):178–185. doi:B583252N5V441272[pii]10.1309/PNXUKA1CFJMVGCN1[doi]

    PubMed  Google Scholar 

  264. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A (2006) Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 20(2):313–318

    PubMed  CAS  Google Scholar 

  265. Pechloff K, Holch J, Ferch U, Schweneker M, Brunner K, Kremer M, Sparwasser T, Quintanilla-Martinez L, Zimber-Strobl U, Streubel B, Gewies A, Peschel C, Ruland J (2010) The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med 207(5):1031–1044. doi:jem.20092042[pii]10.1084/jem.20092042

    PubMed  CAS  Google Scholar 

  266. Dierks C, Adrian F, Fisch P, Ma H, Maurer H, Herchenbach D, Forster CU, Sprissler C, Liu G, Rottmann S, Guo GR, Katja Z, Veelken H, Warmuth M (2010) The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease. Cancer Res 70(15):6193–6204. doi:70/15/6193[pii]10.1158/0008-5472.CAN-08-3719

    PubMed  CAS  Google Scholar 

  267. Mulloy JC (2010) Peripheral T cell lymphoma: new model + new insight. J Exp Med 207(5):911–913. doi:jem.20100608[pii]10.1084/jem.20100608

    PubMed  CAS  Google Scholar 

  268. Feldman AL, Sun DX, Law ME, Novak AJ, Attygalle AD, Thorland EC, Fink SR, Vrana JA, Caron BL, Morice WG, Remstein ED, Grogg KL, Kurtin PJ, Macon WR, Dogan A (2008) Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia 22(6):1139–1143. doi:10.1038/leu.2008.77

    PubMed  CAS  Google Scholar 

  269. Martinez-Delgado B, Cuadros M, Honrado E, Ruiz de la Parte A, Roncador G, Alves J, Castrillo JM, Rivas C, Benitez J (2005) Differential expression of NF-kappaB pathway genes among peripheral T-cell lymphomas. Leukemia 19(12):2254–2263. doi: 2403960[pii]10.1038/sj.leu.2403960

    PubMed  CAS  Google Scholar 

  270. Piccaluga PP, Agostinelli C, Zinzani PL, Baccarani M, Dalla Favera R, Pileri SA (2005) Expression of platelet-derived growth factor receptor alpha in peripheral T-cell lymphoma not otherwise specified. Lancet Oncol 6(6):440. doi:10.1016/S1470-2045(05)70213-8

    PubMed  Google Scholar 

  271. Ballester B, Ramuz O, Gisselbrecht C, Doucet G, Loi L, Loriod B, Bertucci F, Bouabdallah R, Devilard E, Carbuccia N, Mozziconacci MJ, Birnbaum D, Brousset P, Berger F, Salles G, Briere J, Houlgatte R, Gaulard P, Xerri L (2006) Gene expression profiling identifies molecular subgroups among nodal peripheral T-cell lymphomas. Oncogene 25(10):1560–1570. doi:10.1038/sj.onc.1209178

    PubMed  CAS  Google Scholar 

  272. de Leval L, Rickman DS, Thielen C, Reynies A, Huang YL, Delsol G, Lamant L, Leroy K, Briere J, Molina T, Berger F, Gisselbrecht C, Xerri L, Gaulard P (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109(11):4952–4963. doi:10.1182/blood-2006-10-055145

    PubMed  Google Scholar 

  273. Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S, Went P, Klein U, Zinzani PL, Baccarani M, Dalla Favera R, Pileri SA (2007) Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 117(3):823–834. doi:10.1172/JCI26833

    PubMed  CAS  Google Scholar 

  274. Iqbal J, Weisenburger DD, Greiner TC, Vose JM, McKeithan T, Kucuk C, Geng H, Deffenbacher K, Smith L, Dybkaer K, Nakamura S, Seto M, Delabie J, Berger F, Loong F, Au WY, Ko YH, Sng I, Armitage JO, Chan WC (2010) Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 115(5):1026–1036. doi:blood-2009-06-227579[pii]10.1182/blood-2009-06-227579

    PubMed  CAS  Google Scholar 

  275. Amin HM, Lai R (2007) Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood 110(7):2259–2267. doi:10.1182/blood-2007-04-060715

    PubMed  CAS  Google Scholar 

  276. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8(1):11–23. doi:10.1038/nrc2291

    PubMed  CAS  Google Scholar 

  277. Fornari A, Piva R, Chiarle R, Novero D, Inghirami G (2009) Anaplastic large cell lymphoma: one or more entities among T-cell lymphoma? Hematol Oncol 27(4):161–170

    PubMed  CAS  Google Scholar 

  278. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263(5151):1281–1284

    PubMed  CAS  Google Scholar 

  279. Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M, Levy DE, Inghirami G (2002) Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21(7):1038–1047. doi:10.1038/sj.onc.1205152

    PubMed  CAS  Google Scholar 

  280. Falini B, Pulford K, Pucciarini A, Carbone A, De Wolf-Peeters C, Cordell J, Fizzotti M, Santucci A, Pelicci PG, Pileri S, Campo E, Ott G, Delsol G, Mason DY (1999) Lymphomas expressing ALK fusion protein(s) other than NPM-ALK. Blood 94(10):3509–3515

    PubMed  CAS  Google Scholar 

  281. Wan W, Albom MS, Lu L, Quail MR, Becknell NC, Weinberg LR, Reddy DR, Holskin BP, Angeles TS, Underiner TL, Meyer SL, Hudkins RL, Dorsey BD, Ator MA, Ruggeri BA, Cheng M (2006) Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood 107(4):1617–1623

    PubMed  CAS  Google Scholar 

  282. Chiarle R, Martinengo C, Mastini C, Ambrogio C, D’Escamard V, Forni G, Inghirami G (2008) The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat Med 14(6):676–680. doi:10.1038/nm1769

    PubMed  CAS  Google Scholar 

  283. Gambacorti-Passerini C, Messa C, Pogliani EM (2011) Crizotinib in anaplastic large-cell lymphoma. N Engl J Med 364(8):775–776. doi:10.1056/NEJMc1013224

    PubMed  Google Scholar 

  284. Barreca A, Lasorsa E, Riera L, Machiorlatti R, Piva R, Ponzoni M, Kwee I, Bertoni F, Piccaluga PP, Pileri SA, Inghirami G (2011) Anaplastic lymphoma kinase in human cancer. J Mol Endocrinol 47(1):R11–R23. doi:10.1530/JME-11-0004

    PubMed  CAS  Google Scholar 

  285. Ott G, Katzenberger T, Siebert R, DeCoteau JF, Fletcher JA, Knoll JH, Kalla J, Rosenwald A, Ott MM, Weber-Matthiesen K, Kadin ME, Muller-Hermelink HK (1998) Chromosomal abnormalities in nodal and extranodal CD30+ anaplastic large cell lymphomas: infrequent detection of the t(2;5) in extranodal lymphomas. Genes Chromosomes Cancer 22(2):114–121

    PubMed  CAS  Google Scholar 

  286. Salaverria I, Bea S, Lopez-Guillermo A, Lespinet V, Pinyol M, Burkhardt B, Lamant L, Zettl A, Horsman D, Gascoyne R, Ott G, Siebert R, Delsol G, Campo E (2008) Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol 140(5):516–526. doi:10.1111/j.1365-2141.2007.06924.x

    PubMed  Google Scholar 

  287. Youssif C, Goldenbogen J, Hamoudi R, Carreras J, Viskaduraki M, Cui YX, Bacon CM, Burke GA, Turner SD (2009) Genomic profiling of pediatric ALK-positive anaplastic large cell lymphoma: a Children’s Cancer and Leukaemia Group Study. Genes Chromosomes Cancer 48(11):1018–1026. doi:10.1002/gcc.20701

    PubMed  CAS  Google Scholar 

  288. Boi M, Rinaldi A, Piva R, Rancoita PMV, Bonetti P, Matolcsy A, Tousseyn T, Rodriguez-Pinilla SM, Piris M, Bea S, Campo E, Bhagat G, Swerdlow SH, Rosenwald A, Ponzoni M, Young KH, Piccaluga PP, Pileri S, Neri A, Medico E, Zucca E, Kwee I, Inghirami G, Bertoni F (2011) BLIMP1 is commonly inactivated in anaplastic large T-cell lymphomas (ALCL). Blood 118(21):1131–1132

    Google Scholar 

  289. Falini B, Pileri S, Zinzani PL, Carbone A, Zagonel V, Wolf-Peeters C, Verhoef G, Menestrina F, Todeschini G, Paulli M, Lazzarino M, Giardini R, Aiello A, Foss HD, Araujo I, Fizzotti M, Pelicci PG, Flenghi L, Martelli MF, Santucci A (1999) ALK+ lymphoma: clinico-pathological findings and outcome. Blood 93(8):2697–2706

    PubMed  CAS  Google Scholar 

  290. Fischer TC, Gellrich S, Muche JM, Sherev T, Audring H, Neitzel H, Walden P, Sterry W, Tonnies H (2004) Genomic aberrations and survival in cutaneous T cell lymphomas. J Invest Dermatol 122(3):579–586. doi: 10.1111/j.0022-202X.2004.22301.xJID22301[pii]

    PubMed  CAS  Google Scholar 

  291. van Kester MS, Tensen CP, Vermeer MH, Dijkman R, Mulder AA, Szuhai K, Willemze R, van Doorn R (2010) Cutaneous anaplastic large cell lymphoma and peripheral T-cell lymphoma NOS show distinct chromosomal alterations and differential expression of chemokine receptors and apoptosis regulators. J Invest Dermatol 130(2):563–575. doi: jid2009270[pii]10.1038/jid.2009.270

    PubMed  Google Scholar 

  292. Kucuk C, Iqbal J, Hu X, Gaulard P, De Leval L, Srivastava G, Au WY, McKeithan TW, Chan WC (2011) PRDM1 is a tumor suppressor gene in natural killer cell malignancies. Proc Natl Acad Sci U S A 108(50):20119–20124. doi:10.1073/pnas.1115128108

    PubMed  CAS  Google Scholar 

  293. Karube K, Nakagawa M, Tsuzuki S, Takeuchi I, Honma K, Nakashima Y, Shimizu N, Ko YH, Morishima Y, Ohshima K, Nakamura S, Seto M (2011) Identification of FOXO3 and PRDM1 as tumor suppressor gene candidates in NK cell neoplasms by genomic and functional analyses. Blood 118(12):3195–3204. doi: blood-2011-04-346890[pii]10.1182/blood-2011-04-346890

    PubMed  CAS  Google Scholar 

  294. Feldman AL, Dogan A, Smith DI, Law ME, Ansell SM, Johnson SH, Porcher JC, Ozsan N, Wieben ED, Eckloff BW, Vasmatzis G (2011) Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 117(3):915–919. doi: blood-2010-08-303305[pii]10.1182/blood-2010-08-303305

    PubMed  CAS  Google Scholar 

  295. Feldman AL, Law M, Remstein ED, Macon WR, Erickson LA, Grogg KL, Kurtin PJ, Dogan A (2009) Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia 23(3):574–580. doi: leu2008320[pii]10.1038/leu.2008.320

    PubMed  CAS  Google Scholar 

  296. Pham-Ledard A, Prochazkova-Carlotti M, Laharanne E, Vergier B, Jouary T, Beylot-Barry M, Merlio JP (2010) IRF4 gene rearrangements define a subgroup of CD30-positive cutaneous T-cell lymphoma: a study of 54 cases. J Invest Dermatol 130(3):816–825. doi:jid2009314[pii]10.1038/jid.2009.314

    PubMed  CAS  Google Scholar 

  297. Lamant L, de Reynies A, Duplantier MM, Rickman DS, Sabourdy F, Giuriato S, Brugieres L, Gaulard P, Espinos E, Delsol G (2007) Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 109(5):2156–2164. doi:10.1182/blood-2006-06-028969

    PubMed  CAS  Google Scholar 

  298. Eckerle S, Brune V, Doring C, Tiacci E, Bohle V, Sundstrom C, Kodet R, Paulli M, Falini B, Klapper W, Chaubert AB, Willenbrock K, Metzler D, Brauninger A, Kuppers R, Hansmann ML (2009) Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia 23(11):2129–2138. doi: leu2009161[pii]10.1038/leu.2009.161

    PubMed  CAS  Google Scholar 

  299. Piva R, Agnelli L, Pellegrino E, Todoerti K, Grosso V, Tamagno I, Fornari A, Martinoglio B, Medico E, Zamo A, Facchetti F, Ponzoni M, Geissinger E, Rosenwald A, Muller-Hermelink HK, De Wolf-Peeters C, Piccaluga PP, Pileri S, Neri A, Inghirami G (2010) Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol 28(9):1583–1590. doi: JCO.2008.20.9759[pii]10.1200/JCO.2008.20.9759

    PubMed  CAS  Google Scholar 

  300. Agnelli L, Mereu E, Pellegrino E, Limongi T, Kwee I, Bergaggio E, Ponzoni M, Zamo A, Iqbal J, Piccaluga PP, Neri A, Chan WC, Pileri S, Bertoni F, Inghirami G, Piva R (2012) Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 120(6):1274–1281. doi:10.1182/blood-2012-01-405555

    PubMed  CAS  Google Scholar 

  301. Evens AM, Hutchings M, Diehl V (2008) Treatment of Hodgkin lymphoma: the past, present, and future. Nat Clin Pract Oncol 5(9):543–556. doi:10.1038/ncponc1186

    PubMed  CAS  Google Scholar 

  302. Eichenauer DA, Engert A, Dreyling M (2011) Hodgkin’s lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(Suppl 6):vi55–vi58. doi:10.1093/annonc/mdr378

    PubMed  Google Scholar 

  303. Küppers R (2009) Molecular biology of Hodgkin lymphoma. Hematol Am Soc Hematol Educ Program: 491–496. doi:10.1182/asheducation-2009.1.491

  304. Brune V, Tiacci E, Pfeil I, Doring C, Eckerle S, van Noesel CJ, Klapper W, Falini B, von Heydebreck A, Metzler D, Brauninger A, Hansmann ML, Kuppers R (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205(10):2251–2268. doi: jem.20080809[pii]10.1084/jem.20080809

    PubMed  CAS  Google Scholar 

  305. Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I, Wirth T, Demel G, Falini B (2001) Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 97(2):496–501

    PubMed  CAS  Google Scholar 

  306. Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B (2002) Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99(9):3398–3403

    PubMed  CAS  Google Scholar 

  307. Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, Hansmann ML, Dalla-Favera R, Rajewsky K, Kuppers R (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101(4):1505–1512. doi:10.1182/blood-2002-03-0839

    PubMed  CAS  Google Scholar 

  308. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 18(20):3063–3070. doi:10.1038/sj.onc.1202893

    PubMed  CAS  Google Scholar 

  309. Kube D, Holtick U, Vockerodt M, Ahmadi T, Haier B, Behrmann I, Heinrich PC, Diehl V, Tesch H (2001) STAT3 is constitutively activated in Hodgkin cell lines. Blood 98(3):762–770

    PubMed  CAS  Google Scholar 

  310. Joos S, Menz CK, Wrobel G, Siebert R, Gesk S, Ohl S, Mechtersheimer G, Trumper L, Moller P, Lichter P, Barth TFE (2002) Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood 99(4):1381–1387

    PubMed  CAS  Google Scholar 

  311. Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B, Grote W, Novo FJ, Calasanz MJ, Hansmann ML, Dyer MJ, Siebert R (2002) Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood 99(4):1474–1477

    PubMed  CAS  Google Scholar 

  312. Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS, Dohner K, Bommert K, Stein H, Dorken B (2003) Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J Pathol 201(3):413–420. doi:10.1002/path.1454

    PubMed  CAS  Google Scholar 

  313. Renne C, Willenbrock K, Kuppers R, Hansmann ML, Brauninger A (2005) Autocrine- and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood 105(10):4051–4059. doi: 2004-10-4008[pii]10.1182/blood-2004-10-4008

    PubMed  CAS  Google Scholar 

  314. Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K, Mattfeldt T, Barth TF, Moller P (2006) Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25(18):2679–2684. doi:10.1038/sj.onc.1209151

    PubMed  CAS  Google Scholar 

  315. Mottok A, Renne C, Willenbrock K, Hansmann ML, Brauninger A (2007) Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood 110(9):3387–3390. doi:10.1182/blood-2007-03-082511

    PubMed  CAS  Google Scholar 

  316. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, Chapuy B, Takeyama K, Neuberg D, Golub TR, Kutok JL, Shipp MA (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116(17):3268–3277. doi:10.1182/blood-2010-05-282780

    PubMed  CAS  Google Scholar 

  317. Schmidt A, Schmitz R, Giefing M, Martin-Subero JI, Gesk S, Vater I, Massow A, Maggio E, Schneider M, Hansmann ML, Siebert R, Kuppers R (2010) Rare occurrence of biallelic CYLD gene mutations in classical Hodgkin lymphoma. Genes Chromosomes Cancer 49(9):803–809. doi:10.1002/gcc.20789

    PubMed  CAS  Google Scholar 

  318. Schwarzer R, Dorken B, Jundt F (2011) Notch is an essential upstream regulator of NF-kappaB and is relevant for survival of Hodgkin and Reed-Sternberg cells. Leukemia. doi:10.1038/leu.2011.265

  319. Tiacci E, Doring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G, Falini B, Kuppers R, Hansmann ML (2012) Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood. doi:10.1182/blood-2012-05-428896

  320. Mancao C, Altmann M, Jungnickel B, Hammerschmidt W (2005) Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood 106(13):4339–4344. doi:10.1182/blood-2005-06-2341

    PubMed  CAS  Google Scholar 

  321. Otto C, Giefing M, Massow A, Vater I, Gesk S, Schlesner M, Richter J, Klapper W, Hansmann ML, Siebert R, Kuppers R (2012) Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol 157(6):702–708. doi:10.1111/j.1365-2141.2012.09113.x

    PubMed  CAS  Google Scholar 

  322. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, Delaney A, Jones SJ, Iqbal J, Weisenburger DD, Bast MA, Rosenwald A, Muller-Hermelink HK, Rimsza LM, Campo E, Delabie J, Braziel RM, Cook JR, Tubbs RR, Jaffe ES, Lenz G, Connors JM, Staudt LM, Chan WC, Gascoyne RD (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362(10):875–885. doi:10.1056/NEJMoa0905680

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Nelia et Amadeo Barletta Foundation, Lausanne, Switzerland; Oncosuisse (OCS-1939-8-2006, OCS-02034-02-2007, KLS-02403-02-2009), Bern, Switzerland; Computational life science/Ticino in rete, Bellinzona, Switzerland; Fondazione Ticinese Contro il Cancro, Bellinzona, Switzerland; SwissLife, Zurich, Switzerland; Anna Lisa Stiftung, Ascona, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bertoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bertoni, F., Li, ZM., Zucca, E. (2013). Where Do We Stand in the Genomics of Lymphomas?. In: Pfeffer, U. (eds) Cancer Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5842-1_15

Download citation

Publish with us

Policies and ethics