Canonical Regression

  • Ton J. Cleophas
  • Aeilko H. Zwinderman
Chapter

Abstract

Canonical analysis assesses the combined effects of a set of predictor variables on a set of outcome variables, but is little used in clinical trials despite the omnipresence of multiple variables.

Keywords

Canonical Correlation Multiple Variable Canonical Model Manifest Variable Separate Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tsao DA, Chang HJ, Hsiung SK, Huang SE, Chang MS, Chiu HH, Chen YF, Cheng TL, Shiu-Ru L (2010) Gene expression profiles for predicting the efficacy of the anticancer drug 5-fluorouracil in breast cancer. DNA Cell Biol 29:285–293PubMedCrossRefGoogle Scholar
  2. 2.
    Latan MS, Laddha NC, Latani J, Imran MJ, Begum R, Misra A (2012) Suppression of cytokine gene expression and improved therapeutic efficacy of microemulsion- based tacrolimus cream for atopic dermatitis. Drug Deliv Transl Res 2:129–141CrossRefGoogle Scholar
  3. 3.
    Albertin PS (1999) Longitudinal data analysis (repeated measures) in clinical trials. Stat Med 18:2863–2870CrossRefGoogle Scholar
  4. 4.
    Yang X, Shen Q, Xu H, Shoptaw S (2007) Functional regression analysis using an F test for longitudinal data with large numbers of repeated measures. Stat Med 26:1552–1566PubMedCrossRefGoogle Scholar
  5. 5.
    Sverdlov L (2001) The fastclus procedure as an effective way to analyze clinical data. In: SUGI proceedings 26, paper 224, Long Beach, CAGoogle Scholar
  6. 6.
    Anderson TW (1990) Two of Harold Hotelling’s contributions to multivariate analysis. Technical report no. 40. National Science Foundation Grant DMS 89–04851Google Scholar
  7. 7.
    Naylor MG, Lin X, Weiss ST, Raby BA, Lange C (2010) Using canonical correlation analysis to discover genetic regulatory variants. PLoS One 5(5):e10395PubMedCrossRefGoogle Scholar
  8. 8.
    Waaijenberg S, Zwinderman AH (2007) Penalized canonical correlation analysis to quantify the association between gene expression and DNA markers. BMC Proc 1(Suppl 1):S122–S125CrossRefGoogle Scholar
  9. 9.
    Alonso A, Geys H, Molenberghs G, Kenward MG, Vangeneugden T (2004) Validation of surrogate markers in multiple randomized clinical trails with repeated measurements, Canonical correlation approach. Biometrics 60:845–853PubMedCrossRefGoogle Scholar
  10. 10.
    Meredith W, Tisak J (1982) Canonical analysis of longitudinal and repeated measures data with stationary weights. Psychometrika 47:47–67CrossRefGoogle Scholar
  11. 11.
    SPSS statistical software. www.spss.com. 12 June 2012
  12. 12.
    Sun L, Ji S, Yu S, Ye J (2009) On the equivalence between canonical correlation analysis and orthonormalized partial least squares. In: Proceedings of conference on artificial intelligence 2009, AAAI (Association Advancement Artificial Intelligence) Publications, Palo Alto, CA, pp 1230–1235Google Scholar
  13. 13.
    Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc B 67:301–320CrossRefGoogle Scholar
  14. 14.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc B 58:267–288Google Scholar
  15. 15.
    Stevens J (1986) Applied multivariate statistics for social sciences. Erlbaum, HillsdaleGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ton J. Cleophas
    • 1
  • Aeilko H. Zwinderman
    • 2
  1. 1.European College Pharmaceutical MedicineLyonFrance
  2. 2.Department of Epidemiology and BiostatisticsAcademic Medical CenterAmsterdamNetherlands

Personalised recommendations