Hierarchical Cluster Analysis for Unsupervised Data

  • Ton J. Cleophas
  • Aeilko H. Zwinderman


Drug efficacy is multifactorial and with multiple variables regression modeling rapidly looses power and it is invalid if the correlations between the variables is strong. Hierarchical cluster analysis can handle hundreds of variables, and is unaffected by strong correlations.


Hierarchical Cluster Analysis Drug Efficacy Machine Learning Method Multifactorial Nature Density Base Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Solyanik GI (2010) Multifactorial nature of tumor drug resistance. Exp Oncol 32:181–185PubMedGoogle Scholar
  2. 2.
    Tsao DA, Chang HJ, Hsiung SK, Huang SE, Chang MS, Chiu HH, Chen YF, Cheng TL, Shiu-Ru L (2010) Gene expression profiles for predicting the efficacy of the anticancer drug 5-fluorouracil in breast cancer. DNA Cell Biol 29:285–293PubMedCrossRefGoogle Scholar
  3. 3.
    Latan MS, Laddha NC, Latani J, Imran MJ, Begum R, Misra A (2012) Suppression of cytokine gene expression and improved therapeutic efficacy of microemulsion -based tacrolimus cream for atopic dermatitis. Drug Deliv Transl Res 2:129–141CrossRefGoogle Scholar
  4. 4.
    National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland. Enhancing HIV ­vaccine efficacy in high-risk drug users. Release data Jan 6 2003, RFA Number DA-03-002Google Scholar
  5. 5.
    Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ, Field MC, Berriman M, Horn D (2012) High throughput decoding of antitrypanosomal drug efficacy and resistance. Nature. doi: 10.1038/nature10771
  6. 6.
    Sibson R (1973) An optimally efficient algorithm for a single-link cluster method. Comput J 16:30–34CrossRefGoogle Scholar
  7. 7.
    Defays D (1977) An efficient algorithm for a complete link cluster method. Comput J 20:364–366CrossRefGoogle Scholar
  8. 8.
    Anonymous (2012) Cluster analysis. Accessed 12 July 2012
  9. 9.
    Anonymous (2012) Sequence clustering. Accessed 12 July 2012
  10. 10.
    Kim HK, Choi IJ, Kim HS, Oshima A, Michalowski A, Green JE (2011) A gene expression signature of acquired chemoresistance to cisplatinum and fluorouracil combination chemotherapy in gastric cancer patients. PLoS One 18:e16694CrossRefGoogle Scholar
  11. 11.
    Yeh ST (2012) Clinical adverse event data analysis and visualization. Smith Kline Datafile, Accessed 10 July 2012Google Scholar
  12. 12.
    Bychowiec B, Piskorski J, Stanislawska K, Dziarmaga M, Mineczykowski A, Wykretowicz A, Wysocki H (2010) An exploratory clustering study of rare adverse events in drug deluting stent patients. Comput Methods Sci Technol 16:5–11Google Scholar
  13. 13.
    Xu D, Redamn-Furey N (2007) Statistical cluster analysis of pharmaceutical solvents. Int J Pharm 339:175–188PubMedCrossRefGoogle Scholar
  14. 14.
    Hawwa A, Millership JS, Collier PS, McCarthy A, Dempsey S, Cairns C, McElnay JC (2009) Development of objective methodology to measure medication adherence to oral thiopurines in paediatric patients with acute lymphoblastic leucemia. Eur J Clin Pharm 65:1105–1112CrossRefGoogle Scholar
  15. 15.
    SPSS statistical software (2012) Accessed 12 July 2012

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ton J. Cleophas
    • 1
  • Aeilko H. Zwinderman
    • 2
  1. 1.European College Pharmaceutical MedicineLyonFrance
  2. 2.Department of Epidemiology and BiostatisticsAcademic Medical CenterAmsterdamNetherlands

Personalised recommendations