Proteomics Defines Protein Interaction Network of Signaling Pathways

Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 3)

Abstract

Protein interactions play fundamental roles in signaling transduction. Analysis of protein–protein interaction (PPI) has contributed numerous insights to the understanding of the regulation of signal pathways. Different approaches have been used to discover PPI and characterize protein complexes. In addition to conventional PPI methods, such as yeast two-hybrid (YTH), affinity purification coupled with mass spectrometry (AP-MS) is emerging as an important and popular tool to unravel protein complex and elucidate protein function through the interaction partners. With the AP-MS method, protein complexes are prepared first by affinity purification directly from cell lysates, followed by characterization of their components by mass spectrometry. In contrast to most PPI methods, AP-MS reflects PPI under near physiological conditions in the relevant organism and cell type. AP-MS is also able to probe dynamic PPI dependent on protein posttranslational modifications, which is common for signal transduction. AP-MS mapping protein interaction network of various signal pathways has dramatically increased in recent years. Here, I’ll present the strategies toward obtaining an interactome map of signal pathway and the methodology, detailed protocols, and perspectives of AP-MS.

Keywords

Protein interactions Signaling transduction Mass spectrometry Affinity purification Interaction network Dynamic 

References

  1. Bandyopadhyay S, Chiang CY, Srivastava J, Gersten M, White S, Bell R, Kurschner C, Martin CH, Smoot M, Sahasrabudhe S, et al. A human MAP kinase interactome. Nat Methods. 2010;7(10):801–5.PubMedCrossRefGoogle Scholar
  2. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005;307(5715):1621–5.PubMedCrossRefGoogle Scholar
  3. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature. 2010;466(7302):68–76.PubMedCrossRefGoogle Scholar
  4. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol. 2004;6(2):97–105.PubMedCrossRefGoogle Scholar
  5. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G, et al. A global protein kinase and phosphatase interaction network in yeast. Science. 2010;328(5981):1043–6.PubMedCrossRefGoogle Scholar
  6. Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Harper JW, Kopito RR. Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol. 2012;14(1):93–105.CrossRefGoogle Scholar
  7. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM. Functional proteomics mapping of a human signaling pathway. Genome Res. 2004;14(7):1324–32.PubMedCrossRefGoogle Scholar
  8. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRefGoogle Scholar
  9. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol. 2007;3:89.PubMedCrossRefGoogle Scholar
  10. Eyckerman S, Verhee A, der Heyden JV, Lemmens I, Ostade XV, Vandekerckhove J, Tavernier J. Design and application of a cytokine-receptor-based interaction trap. Nat Cell Biol. 2001;3(12):1114–19.PubMedCrossRefGoogle Scholar
  11. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.PubMedCrossRefGoogle Scholar
  12. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989;340(6230):245–6.PubMedCrossRefGoogle Scholar
  13. Fromont-Racine M, Rain JC, Legrain P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet. 1997;16(3):277–82.PubMedCrossRefGoogle Scholar
  14. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006;440(7084):631–6.PubMedCrossRefGoogle Scholar
  15. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, et al. A protein interaction map of Drosophila melanogaster. Science. 2003;302(5651):1727–36.PubMedCrossRefGoogle Scholar
  16. Glatter T, Schittenhelm RB, Rinner O, Roguska K, Wepf A, Junger MA, Kohler K, Jevtov I, Choi H, Schmidt A, et al. Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome. Mol Syst Biol. 2011;7:547.PubMedCrossRefGoogle Scholar
  17. Guerrero C, Milenkovic T, Przulj N, Kaiser P, Huang L. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci U S A. 2008;105(36):13333–8.PubMedCrossRefGoogle Scholar
  18. Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, et al. A protein complex network of Drosophila melanogaster. Cell. 2011;147(3):690–703.PubMedCrossRefGoogle Scholar
  19. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17(10):994–9.PubMedCrossRefGoogle Scholar
  20. Hillenkamp F, Karas M, Beavis RC, Chait BT. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991;63(24):1193A–203A.PubMedGoogle Scholar
  21. Hirosawa M, Hoshida M, Ishikawa M, Toya T. MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput Appl Biosci. 1993;9(2):161–7.PubMedGoogle Scholar
  22. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415(6868):180–3.PubMedCrossRefGoogle Scholar
  23. Hu P, Janga SC, Babu M, Diaz-Mejia JJ, Butland G, Yang W, Pogoutse O, Guo X, Phanse S, Wong P, et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 2009;7(4):e96.PubMedCrossRefGoogle Scholar
  24. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001;98(8):4569–74.PubMedCrossRefGoogle Scholar
  25. Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, et al. Global landscape of HIV-human protein complexes. Nature. 2012;481(7381):365–70.Google Scholar
  26. Kerppola TK. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem Soc Rev. 2009;38(10):2876–86.PubMedCrossRefGoogle Scholar
  27. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2012;40(Database issue):D841–6.PubMedCrossRefGoogle Scholar
  28. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006;440(7084):637–43.PubMedCrossRefGoogle Scholar
  29. Kuhner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, et al. Proteome organization in a genome-reduced bacterium. Science. 2009;326(5957):1235–40.PubMedCrossRefGoogle Scholar
  30. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, et al. A map of the interactome network of the metazoan C. elegans. Science. 2004;303(5657):540–3.PubMedCrossRefGoogle Scholar
  31. Li ST, Dorf ME. Optimization and ZSPORE analysis of affinity aurification aoupled with tandem mass spectrometry in mammalian cells. J Proteomics Genomics Res. 2013 (in press).Google Scholar
  32. Li S, Wang L, Berman M, Kong YY, Dorf ME. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity. 2011;35(3):426–40.PubMedCrossRefGoogle Scholar
  33. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40(Database issue):D857–61.PubMedCrossRefGoogle Scholar
  34. MacBeath G. Protein microarrays and proteomics. Nat Genet. 2002;32(Suppl):526–32.PubMedCrossRefGoogle Scholar
  35. MacCoss MJ, Wu CC, Yates 3rd JR. Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal Chem. 2002;74(21):5593–9.PubMedCrossRefGoogle Scholar
  36. Mirgorodskaya OA, Korner R, Kozmin YP, Roepstorff P. Absolute quantitation of proteins by acid hydrolysis combined with amino acid detection by mass spectrometry. Methods Mol Biol. 2012;828:115–20.PubMedCrossRefGoogle Scholar
  37. Mueller CL, Jaehning JA. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol Cell Biol. 2002;22(7):1971–80.PubMedCrossRefGoogle Scholar
  38. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.PubMedCrossRefGoogle Scholar
  39. Parrish JR, Gulyas KD, Finley Jr RL. Yeast two-hybrid contributions to interactome mapping. Curr Opin Biotechnol. 2006;17(4):387–93.PubMedCrossRefGoogle Scholar
  40. Pfefferle S, Schopf J, Kogl M, Friedel CC, Muller MA, Carbajo-Lozoya J, Stellberger T, von Dall’Armi E, Herzog P, Kallies S, et al. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 2011;7(10):e1002331.PubMedCrossRefGoogle Scholar
  41. Pilot-Storck F, Chopin E, Rual JF, Baudot A, Dobrokhotov P, Robinson-Rechavi M, Brun C, Cusick ME, Hill DE, Schaeffer L, et al. Interactome mapping of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway identifies deformed epidermal autoregulatory factor-1 as a new glycogen synthase kinase-3 interactor. Mol Cell Proteomics. 2010;9(7):1578–93.PubMedCrossRefGoogle Scholar
  42. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 2001;24(3):218–29.PubMedCrossRefGoogle Scholar
  43. Reboul J, Vaglio P, Rual JF, Lamesch P, Martinez M, Armstrong CM, Li S, Jacotot L, Bertin N, Janky R, et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet. 2003;34(1):35–41.PubMedCrossRefGoogle Scholar
  44. Rossi F, Charlton CA, Blau HM. Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci U S A. 1997;94(16):8405–10.PubMedCrossRefGoogle Scholar
  45. Rozen R, Sathish N, Li Y, Yuan Y. Virion-wide protein interactions of Kaposi’s sarcoma-associated herpesvirus. J Virol. 2008;82(10):4742–50.PubMedCrossRefGoogle Scholar
  46. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062):1173–8.PubMedCrossRefGoogle Scholar
  47. Smith BE, Hill JA, Gjukich MA, Andrews PC. Tranche distributed repository and ProteomeCommons.org. Methods Mol Biol. 2011;696:123–45.PubMedCrossRefGoogle Scholar
  48. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.PubMedCrossRefGoogle Scholar
  49. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009;138(2):389–403.PubMedCrossRefGoogle Scholar
  50. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 2011;39(Database issue):D698–704.PubMedCrossRefGoogle Scholar
  51. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011;39(Database issue):D561–8.PubMedCrossRefGoogle Scholar
  52. Tagwerker C, Flick K, Cui M, Guerrero C, Dou Y, Auer B, Baldi P, Huang L, Kaiser P. A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol Cell Proteomics. 2006;5(4):737–48.PubMedGoogle Scholar
  53. Tewari M, Hu, PJ, Ahn JS, Ayivi-Guedehoussou N, Vidalain PO, Li S, Milstein S, Armstrong CM, Boxem M, Butler MD, et al. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-β signaling network. Mol Cell. 2004;13:469–82.Google Scholar
  54. Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, Ladunga I, Ulitsky-Lazareva B, Muruganujan A, Rabkin S, et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 2003;31(1):334–41.PubMedCrossRefGoogle Scholar
  55. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000;403(6770):623–7.PubMedCrossRefGoogle Scholar
  56. Uetz P, Dong YA, Zeretzke C, Atzler C, Baiker A, Berger B, Rajagopala SV, Roupelieva M, Rose D, Fossum E, et al. Herpesviral protein networks and their interaction with the human proteome. Science. 2006;311(5758):239–42.PubMedCrossRefGoogle Scholar
  57. Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science. 2000;287(5450):116–22.PubMedCrossRefGoogle Scholar
  58. Waugh DS. Making the most of affinity tags. Trends Biotechnol. 2005;23(6):316–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUSA

Personalised recommendations