Identification of Network Biomarkers for Cancer Diagnosis

Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 3)

Abstract

Researchers are now routinely identifying cancer biomarkers using proteomic technologies, but the results from independent experiments are highly divergent, and few individual marker candidates have been clinically validated. Cancer is a systems biology disease; hence, the discovery of biomarkers must take account of the complexity and heterogeneity of carcinogenesis. Due to this recognition, there is a growing movement from individual marker discovery to a systems-oriented paradigm. This chapter summarizes recent advances and future perspectives in proteomic study of cancer biomarkers. Of particular interest in this chapter is to describe the emerging network-based biomarker discovery as improved strategies against cancer intervention.

Keywords

Cancer Proteomics Biomarkers Network Personalized biomarker 

References

  1. Abdel-Hamid NM, Nazmy MH, Abdel-Bakey AI. Polyol profile as an early diagnostic and prognostic marker in natural product chemoprevention of hepatocellular carcinoma in diabetic rats. Diabetes Res Clin Pract. 2011;92:228–37.PubMedCrossRefGoogle Scholar
  2. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 2001;29:37–40.PubMedCrossRefGoogle Scholar
  3. Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 2003;31:248–50.PubMedCrossRefGoogle Scholar
  4. Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, Ong CN, Cheah PY, Eu KW, Hew CL. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics. 2006;5:1119–30.PubMedCrossRefGoogle Scholar
  5. Brown KR, Jurisica I. Online predicted human interaction database. Bioinformatics. 2005;21:2076–82.PubMedCrossRefGoogle Scholar
  6. Chaerkady R, Harsha HC, Nalli A, Gucek M, Vivekanandan P, Akhtar J, Cole RN, Simmers J, Schulick RD, Singh S, et al. A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. J Proteome Res. 2008;7:4289–98.PubMedCrossRefGoogle Scholar
  7. Chen JY, Shen C, Sivachenko AY. Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac Symp Biocomput. 2006;11:367–78.Google Scholar
  8. Choi JK, Choi JY, Kim DG, Choi DW, Kim BY, Lee KH, Yeom YI, Yoo HS, Yoo OJ, Kim S. Integrative analysis of multiple gene expression profiles applied to liver cancer study. FEBS Lett. 2004;565:93–100.PubMedCrossRefGoogle Scholar
  9. Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007;3:140.PubMedCrossRefGoogle Scholar
  10. Craig R, Cortens JP, Beavis RC. Open source system for analyzing, validating, and storing protein identification data. J Proteome Res. 2004;3:1234–42.PubMedCrossRefGoogle Scholar
  11. Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S, Eddes J, Loevenich SN, Aebersold R. The PeptideAtlas project. Nucleic Acids Res. 2006;34:D655–8.PubMedCrossRefGoogle Scholar
  12. DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ, Siu KW. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2005;4:377–86.PubMedCrossRefGoogle Scholar
  13. Ein-Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics. 2005;21:171–8.PubMedCrossRefGoogle Scholar
  14. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2011;127:2893–917.CrossRefGoogle Scholar
  15. Goufman EI, Moshkovskii SA, Tikhonova OV, Lokhov PG, Zgoda VG, Serebryakova MV, Toropygin IY, Vlasova MA, Safarova MR, Makarov OV, Archakov AI. Two-dimensional electrophoretic proteome study of serum thermostable fraction from patients with various tumor conditions. Biochemistry (Mosc). 2006;71:354–60.CrossRefGoogle Scholar
  16. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17:994–9.PubMedCrossRefGoogle Scholar
  17. Han K, Park B, Kim H, Hong J, Park J. HPID: the Human Protein Interaction Database. Bioinformatics. 2004;20:2466–70.PubMedCrossRefGoogle Scholar
  18. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, et al. IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004;32:D452–5.PubMedCrossRefGoogle Scholar
  19. Hodis E, Prilusky J, Martz E, Silman I, Moult J, Sussman JL. Proteopedia – a scientific ‘wiki’ bridging the rift between three-dimensional structure and function of biomacromolecules. Genome Biol. 2008;9:R121.PubMedCrossRefGoogle Scholar
  20. Jin G, Zhou X, Cui K, Zhang XS, Chen L, Wong ST. Cross-platform method for identifying candidate network biomarkers for prostate cancer. IET Syst Biol. 2009;3:505–12.PubMedCrossRefGoogle Scholar
  21. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al. Human Protein Reference Database – 2009 update. Nucleic Acids Res. 2009;37:D767–72.PubMedCrossRefGoogle Scholar
  22. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295:858–61.PubMedCrossRefGoogle Scholar
  23. Lee NP, Chen L, Lin MC, Tsang FH, Yeung C, Poon RT, Peng J, Leng X, Beretta L, Sun S, et al. Proteomic expression signature distinguishes cancerous and nonmalignant tissues in hepatocellular carcinoma. J Proteome Res. 2009;8:1293–303.PubMedCrossRefGoogle Scholar
  24. Li J, Duncan DT, Zhang B. CanProVar: a human cancer proteome variation database. Hum Mutat. 2010;31:219–28.PubMedCrossRefGoogle Scholar
  25. Li CY, Wang XL, Wang JH, Yan ZP, Gong GQ, Cheng JM, Chen Y, Liu LX, Li GP, Wang CG, Shi DH. Identifying serum biomarkers for TACE therapy efficiency of hepatocellular carcinoma. Front Biosci (Elite Ed). 2011;3:212–20.CrossRefGoogle Scholar
  26. Liu X, Liu ZP, Zhao XM, Chen L. Identifying disease genes and module biomarkers by differential interactions. J Am Med Inform Assoc. 2011;19:241–8.PubMedCrossRefGoogle Scholar
  27. Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem. 2005;382:669–78.PubMedCrossRefGoogle Scholar
  28. Martens L, Hermjakob H, Jones P, Adamski M, Taylor C, States D, Gevaert K, Vandekerckhove J, Apweiler R. PRIDE: the proteomics identifications database. Proteomics. 2005;5:3537–45.PubMedCrossRefGoogle Scholar
  29. Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet. 2005;365:488–92.PubMedCrossRefGoogle Scholar
  30. Muthusamy B, Hanumanthu G, Suresh S, Rekha B, Srinivas D, Karthick L, Vrushabendra BM, Sharma S, Mishra G, Chatterjee P, et al. Plasma Proteome Database as a resource for proteomics research. Proteomics. 2005;5:3531–6.PubMedCrossRefGoogle Scholar
  31. Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol. 2006;2:52.PubMedCrossRefGoogle Scholar
  32. Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol. 2005;1:252–62.PubMedCrossRefGoogle Scholar
  33. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1:376–86.PubMedCrossRefGoogle Scholar
  34. Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stumpflen V, Mewes HW, et al. The MIPS mammalian protein-protein interaction database. Bioinformatics. 2005;21:832–4.PubMedCrossRefGoogle Scholar
  35. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359:572–7.PubMedCrossRefGoogle Scholar
  36. Poon TC, Chan AT, Zee B, Ho SK, Mok TS, Leung TW, Johnson PJ. Application of classification tree and neural network algorithms to the identification of serological liver marker profiles for the diagnosis of hepatocellular carcinoma. Oncology. 2001;61:275–83.PubMedCrossRefGoogle Scholar
  37. Poon TC, Yip TT, Chan AT, Yip C, Yip V, Mok TS, Lee CC, Leung TW, Ho SK, Johnson PJ. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem. 2003;49:752–60.PubMedCrossRefGoogle Scholar
  38. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 2004;32:D449–51.PubMedCrossRefGoogle Scholar
  39. Shen Y, Zhao R, Belov ME, Conrads TP, Anderson GA, Tang K, Pasa-Tolic L, Veenstra TD, Lipton MS, Udseth HR, Smith RD. Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. Anal Chem. 2001;73:1766–75.PubMedCrossRefGoogle Scholar
  40. Shi J, Zhu L, Liu S, Xie WF. A meta-analysis of case-control studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma in China. Br J Cancer. 2005;92:607–12.PubMedCrossRefGoogle Scholar
  41. Srivastava S, Kramer BS. Early detection cancer research network. Lab Invest. 2000;80:1147–8.PubMedCrossRefGoogle Scholar
  42. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 2010;39:D698–704.PubMedCrossRefGoogle Scholar
  43. Sun Y, Mi W, Cai J, Ying W, Liu F, Lu H, Qiao Y, Jia W, Bi X, Lu N, et al. Quantitative proteomic signature of liver cancer cells: tissue transglutaminase 2 could be a novel protein candidate of human hepatocellular carcinoma. J Proteome Res. 2008;7:3847–59.PubMedCrossRefGoogle Scholar
  44. Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Toda T, Sakaida I, Okita K, Oka M, Nakamura K. Proteomic profiling of heat shock protein 70 family members as biomarkers for hepatitis C virus-related hepatocellular carcinoma. Proteomics. 2003;3:2487–93.PubMedCrossRefGoogle Scholar
  45. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009;27:199–204.PubMedCrossRefGoogle Scholar
  46. Ummanni R, Mundt F, Pospisil H, Venz S, Scharf C, Barett C, Falth M, Kollermann J, Walther R, Schlomm T, et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PLoS One. 2011;6:e16833.PubMedCrossRefGoogle Scholar
  47. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.CrossRefGoogle Scholar
  48. Wang YC, Chen BS. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med Genomics. 2011;4:2.PubMedCrossRefGoogle Scholar
  49. Wang Y, Chen J, Li Q, Wang H, Liu G, Jing Q, Shen B. Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. Comput Biol Chem. 2011;35:151–8.PubMedCrossRefGoogle Scholar
  50. Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, Fiel I, Thung S, Mazzaferro V, Bruix J, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007;45:938–47.PubMedCrossRefGoogle Scholar
  51. Xu M, Kao MC, Nunez-Iglesias J, Nevins JR, West M, Zhou XJ. An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer. BMC Genomics. 2008;9 Suppl 1:S12.PubMedCrossRefGoogle Scholar
  52. Yan Q. The integration of personalized and systems medicine: bioinformatics support for pharmacogenomics and drug discovery. Methods Mol Biol. 2008;448:1–19.PubMedCrossRefGoogle Scholar
  53. Yokoyama Y, Kuramitsu Y, Takashima M, Iizuka N, Toda T, Terai S, Sakaida I, Oka M, Nakamura K, Okita K. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics. 2004;4:2111–16.PubMedCrossRefGoogle Scholar
  54. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G. MINT: a Molecular INTeraction database. FEBS Lett. 2002;513:135–40.PubMedCrossRefGoogle Scholar
  55. Zhang H, Loriaux P, Eng J, Campbell D, Keller A, Moss P, Bonneau R, Zhang N, Zhou Y, Wollscheid B, et al. UniPep–a database for human N-linked glycosites: a resource for biomarker discovery. Genome Biol. 2006;7:R73.PubMedCrossRefGoogle Scholar
  56. Zhang Y, Wang S, Li D, Zhnag J, Gu D, Zhu Y, He F. A systems biology-based classifier for hepatocellular carcinoma diagnosis. PLoS One. 2011;6:e22426.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Center for Systems BiologySoochow UniversitySuzhouChina
  2. 2.Key Laboratory of Systems BiologyShanghai Institutes for Biological Sciences Chinese Academy of SciencesShanghaiChina

Personalised recommendations