Skip to main content

Receptor Binding Targets for Antipsychotic Efficacy

  • 1180 Accesses

Abstract

In order to identify the contribution of individual serotonin and dopamine receptor subtype binding targets to antipsychotic medication efficacy, we analyzed correlations between binding affinity to cloned dopamine and serotonin receptor subtypes and clinically effective drug dose for atypical antipsychotic medications. The strongest correlation was observed between binding affinity to the D3 subtype dopamine receptor and clinically effective atypical antipsychotic medication drug dose (r = 0.77, p = 0.005). In contrast, binding affinity to the D2 (r = 0.59, p = 0.056) and D4 subtype dopamine receptors (r = 0.23, p = 0.23) exhibited lower correlations with atypical antipsychotic medication dosages. No direct correlations were identified between atypical antipsychotic medication dose and binding affinities to serotonin 5-HT1A, 5-HT2A, 5-HT2C, or 5-HT7 receptor subtypes. Highly significant correlations were also observed between atypical antipsychotic medication dose and the ratios of D2/5-HT1A (r = 0.69, p = 0.019); D3/5-HT1A (r = 0.69, p = 0.02); D3 × 5-HT2A (r = 0.71, p = 0.014); (D2 × D3)/5-HT1A (r = 0.81, p = 0.002); (D2 × D3 × 5-HT7)/5-HT1A (r = 0.74, p = 0.010); (D2 × D3 × 5-HT2A)/5-HT1A (r = 0.76, p = 0.007); (D2 × D3 × 5-HT2C)/5-HT1A (r = 0.76, p = 0.007); and (D2 × D3 × 5-HT2A × 5-HT2C)/5-HT1A (r = 0.72, p = 0.013) receptor binding affinities. These observations suggest opposing interactions among three distinct domains of receptor binding targets contribute to the antipsychotic effects of atypical antipsychotic medications: (1) D3 and D2 dopamine receptor binding affinity enhance atypical antipsychotic medication potency. (2) Binding affinity to serotonin 5-HT2A, 5-HT2C, and 5-HT7 receptors also facilitates antipsychotic efficacy. (3) In contrast, enhanced binding affinity to serotonin 5-HT1A receptor reduces antipsychotic medication potency.

Keywords

  • Dopamine
  • Serotonin
  • Schizophrenia
  • Psychosis
  • Neuroleptic
  • Antipsychotic

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-5805-6_2
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-5805-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5

Abbreviations

5-HT:

Serotonin

FDA:

Food and Drug Administration

NIMH:

National Institute of Mental Health

PDSP:

Psychoactive Drug Screening Program

References

  1. Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    PubMed  CrossRef  CAS  Google Scholar 

  2. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    PubMed  CrossRef  CAS  Google Scholar 

  3. Kapur S, Seeman P (2001) Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: a new hypothesis. Am J Psychiatry 158:360–369

    PubMed  CrossRef  CAS  Google Scholar 

  4. Kuroki T, Nagao N, Nakahara T (2008) Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis. Prog Brain Res 172:199–212

    PubMed  CrossRef  CAS  Google Scholar 

  5. Seeman P (2011) All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neurosci Ther 17:118–132

    PubMed  CrossRef  CAS  Google Scholar 

  6. Richtand NM, Welge JA, Logue AD, Keck PE Jr, Strakowski SM, McNamara RK (2007) Dopamine and serotonin receptor binding and antipsychotic efficacy. Neuropsychopharmacology 32:1715–1726

    PubMed  CrossRef  CAS  Google Scholar 

  7. Suckling CJ, Murphy JA, Khalaf AI, Zhou SZ, Lizos DE, van Nhien AN, Yasumatsu H, McVie A, Young LC, McCraw C, Waterman PG, Morris BJ, Pratt JA, Harvey AL (2007) M4 agonists/5HT7 antagonists with potential as antischizophrenic drugs: serominic compounds. Bioorg Med Chem Lett 17:2649–2655

    PubMed  CrossRef  CAS  Google Scholar 

  8. Meltzer HY, Horiguchi M, Massey BW (2011) The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology (Berl) 213:289–305

    CrossRef  CAS  Google Scholar 

  9. Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11:59–67

    PubMed  CrossRef  CAS  Google Scholar 

  10. Huang M, Horiguchi M, Felix AR, Meltzer HY (2012) 5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux. Neuroreport 23:436–440

    PubMed  CAS  Google Scholar 

  11. Horiguchi M, Huang M, Meltzer HY (2011) The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats. J Pharmacol Exp Ther 338:605–614

    PubMed  CrossRef  CAS  Google Scholar 

  12. Roth BL, Lopez E, Beischel S, Westkaemper RB, Evans JM (2004) Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for CNS drug discovery. Pharmacol Ther 102:99–110

    PubMed  CrossRef  CAS  Google Scholar 

  13. Strange PG (2001) Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol Rev 53:119–133

    PubMed  CAS  Google Scholar 

  14. Alfaro C, Lurasidone HCl (2010) In. NDA #200603-O1 ed: Center for Drug Evaluation and Research, p 1–196

    Google Scholar 

  15. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, Matsumoto K, Nishikawa H, Ueda Y, Toma S, Oki H, Tanno N, Saji I, Ito A, Ohno Y, Nakamura M (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther 334:171–181

    PubMed  CrossRef  CAS  Google Scholar 

  16. Shahid M, Walker GB, Zorn SH, Wong EH (2009) Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol 23:65–73

    PubMed  CrossRef  CAS  Google Scholar 

  17. Leucht S, Pitschel-Walz G, Abraham D, Kissling W (1999) Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo. A meta-analysis of randomized controlled trials. Schizophr Res 35:51–68

    PubMed  CrossRef  CAS  Google Scholar 

  18. Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology (Berl) 99(Suppl):S18–S27

    CrossRef  Google Scholar 

  19. Meltzer HY (1995) The role of serotonin in schizophrenia and the place of serotonin-dopamine antagonist antipsychotics. J Clin Psychopharmacol 15:2S–3S

    PubMed  CrossRef  CAS  Google Scholar 

  20. Leysen JE, Janssen PM, Schotte A, Luyten WH, Megens AA (1993) Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors. Psychopharmacology (Berl) 112:S40–S54

    CrossRef  CAS  Google Scholar 

  21. Huttunen M (1995) The evolution of the serotonin-dopamine antagonist concept. J Clin Psychopharmacol 15:4S–10S

    PubMed  CrossRef  CAS  Google Scholar 

  22. Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21:106S–115S

    PubMed  CAS  Google Scholar 

  23. Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther 295:853–861

    PubMed  CAS  Google Scholar 

  24. Protais P, Chagraoui A, Arbaoui J, Mocaer E (1994) Dopamine receptor antagonist properties of S 14506, 8-OH-DPAT, raclopride and clozapine in rodents. Eur J Pharmacol 271:167–177

    PubMed  CrossRef  CAS  Google Scholar 

  25. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    PubMed  CrossRef  CAS  Google Scholar 

  26. Sokoloff P, Martres MP, Giros B, Bouthenet ML, Schwartz JC (1992) The third dopamine receptor (D3) as a novel target for antipsychotics. Biochem Pharmacol 43:659–666

    PubMed  CrossRef  CAS  Google Scholar 

  27. Diaz J, Pilon C, Le Foll B, Gros C, Triller A, Schwartz JC, Sokoloff P (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677–8684

    PubMed  CAS  Google Scholar 

  28. Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J Neurosci 13:266–275

    PubMed  CAS  Google Scholar 

  29. Parsons LH, Justice JBJ (1992) Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. J Neurochem 58:212–218

    PubMed  CrossRef  CAS  Google Scholar 

  30. Lahti AC, Weiler M, Carlsson A, Tamminga CA (1998) Effects of the D3 and autoreceptor-preferring dopamine antagonist (+)- UH232 in schizophrenia. J Neural Transm 105:719–734

    PubMed  CrossRef  CAS  Google Scholar 

  31. Lahti AC, Weiler MA, Corey PK, Lahti RA, Carlsson A, Tamminga CA (1998) Antipsychotic properties of the partial dopamine agonist (-)-3-(3- hydroxyphenyl)-N-n-propylpiperidine(preclamol) in schizophrenia. Biol Psychiatry 43:2–11

    PubMed  CrossRef  CAS  Google Scholar 

  32. Perachon S, Schwartz JC, Sokoloff P (1999) Functional potencies of new antiparkinsonian drugs at recombinant human dopamine D1, D2 and D3 receptors. Eur J Pharmacol 366:293–300

    PubMed  CrossRef  CAS  Google Scholar 

  33. Kasper S, Barnas C, Heiden A, Volz HP, Laakmann G, Zeit H, Pfolz H (1997) Pramipexole as adjunct to haloperidol in schizophrenia. Safety and efficacy. Eur Neuropsychopharmacol 7:65–70

    PubMed  CrossRef  CAS  Google Scholar 

  34. Newman AH, Beuming T, Banala AK, Donthamsetti P, Pongetti K, Labounty A, Levy B, Cao J, Michino M, Luedtke RR, Javitch JA, Shi L (2012) Molecular Determinants of Selectivity and Efficacy at the Dopamine D3 Receptor. J Med Chem 55:6689–6699

    PubMed  CrossRef  CAS  Google Scholar 

  35. Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:1159–1172

    PubMed  CrossRef  CAS  Google Scholar 

  36. Nimchinsky EA, Hof PR, Janssen WGM, Morrison JH, Schmauss C (1997) Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem 272:29229–29237

    PubMed  CrossRef  CAS  Google Scholar 

  37. Scarselli M, Novi F, Schallmach E, Lin R, Baragli A, Colzi A, Griffon N, Corsini GU, Sokoloff P, Levenson R, Vogel Z, Maggio R (2001) D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J Biol Chem 276:30308–30314

    PubMed  CrossRef  CAS  Google Scholar 

  38. Zawarynski P, Tallerico T, Seeman P, Lee SP, O’Dowd BF, George SR (1998) Dopamine D2 receptor dimers in human and rat brain. FEBS Lett 441:383–386

    PubMed  CrossRef  CAS  Google Scholar 

  39. Lee SP, O’Dowd BF, Ng GY, Varghese G, Akil H, Mansour A, Nguyen T, George SR (2000) Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol Pharmacol 58:120–128

    PubMed  CAS  Google Scholar 

  40. Carlsson A, Waters N, Carlsson ML (1999) Neurotransmitter interactions in schizophrenia-therapeutic implications. Eur Arch Psychiatry Clin Neurosci 249(Suppl 4):37–43

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

Supported by the Department of Veterans Affairs Medical Research Service, and National Institute of Mental Health (R21MH083192-01).

Conflict of InterestThe authors disclose the following relationships which might potentially bias this work:

Neil M. Richtand: Consultant: Bristol-Meyers Squibb, Gerson Lehrman Group, Sunovion Pharmaceuticals Inc./Sepracor. Speaker’s Bureau: Bristol-Meyers Squibb, Otsuka America Pharmaceutical, Schering - Plough Corporation/Merck, Novartis Pharmaceuticals, Sunovion Pharmaceuticals Inc./Sepracor. Grant/Research Support: Ortho-McNeil Janssen Scientific Affairs, LLC; AstraZeneca Pharmaceuticals

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil M. Richtand M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grainger, M.M., Ahlbrand, R., Horn, P.S., Richtand, N.M. (2013). Receptor Binding Targets for Antipsychotic Efficacy. In: Ritsner, M. (eds) Polypharmacy in Psychiatry Practice, Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5805-6_2

Download citation