Mixotrophic phytoplankton is enhanced by UV radiation in a low altitude, P-limited Mediterranean lake

  • Carmen Rojo
  • Guillermo Herrera
  • María A. Rodrigo
  • María José Ortíz-Llorente
  • Presentación Carrillo
Part of the Developments in Hydrobiology book series (DIHY, volume 221)


UV radiation promotes harmful effects on phytoplankton populations, but it is influenced by the degree of sensitivity of different populations to the ultraviolet:photosynthetically active radiation ratio (UVR:PAR), part of which is P-dependent. Given the expected increase of UV radiation along with global change, one may ask if phytoplankton populations are able to adapt to the expectedly higher UVR:PAR ratio. If so, how would phytoplankton communities be affected? The main goal of this study is to answer these questions. Field and laboratory experiments were carried out with phytoplankton populations of an oligotrophic, low altitude lake in Central Spain. No changes were observed in abundance of phytoplankton fractions after UVR removal in the lake. However, autotrophic picoplankton underwent lower growth and contribution to total phytoplankton biomass when UVR increased. Phytoplankton biomass under enhanced UVR was one-third lower than the biomass reached under only PAR. UV-related growth changes were species-specific and linked to cell size and metabolism. An UVR increase would then promote phytoplankton assemblages who resulted from a trade-off between competitive advantages of picoplankton in a P-limited system and selected larger algae. Under these circumstances, the mixotrophic character of these larger species happened to be an evolutionary advantage.


UVR damage Ecosystem vulnerability Ruidera Lakes Natural Park Autotrophic picophytoplankton Mesocosm-experiments Stoichiometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Álvarez-Cobelas, M., S. Cirujano, E. Montero, C. Rojo, M. A. Rodrigo, E. Piña, J. C. Rodríguez, O. Soriano, M. A. Aboal, J. P. Marín & R. Araujo, 2007. Ecología acuática y sociedad de las lagunas de Ruidera. CSIC Editorial, Madrid.Google Scholar
  2. American Public Health Association, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. APHA, American Water Works Association, Water Environment Federation, Washington.Google Scholar
  3. Banaszak, A. T., 2003. Photoprotective physiological and biochemical responses of aquatic organisms. In Helbling, E. W. & H. Zagarese (eds), UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry, Cambridge: 329–356.CrossRefGoogle Scholar
  4. Bell, T. & J. Kalff, 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnology and Oceanography 46: 1243–1248.CrossRefGoogle Scholar
  5. Berman-Frank, I. & Z. Dubinsky, 1999. Balanced growth of photosynthesizing aquatic organisms: myth and reality. BioScience 49: 29–37.CrossRefGoogle Scholar
  6. Bertoni, R. & C. Callieri, 1999. Effects of UVB radiation on freshwater autotrophic and heterotrophic picoplankton in a subalpine lake. Journal of Plankton Research 21: 1373–1388.CrossRefGoogle Scholar
  7. Buma, A. G. J., P. Boelen & W. H. Jeffrey, 2003. UVR induced DNA damage in aquatic organisms. In Helbling, E. W. & H. E. Zagarese (eds), UV Effects in Aquatic Organisms and Ecosystems. The Royal Society of Chemistry, Cambridge: 291–327.CrossRefGoogle Scholar
  8. Callieri, C., 2008. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Revue 1: 1–28.Google Scholar
  9. Callieri, C., G. Morabito, Y. Huot, P. Neal & E. Lichman, 2001. Photosynthetic response of pico- and nanoplanktonic algae to UVB, UVA and PAR in a high mountain lake. Aquatic Science 63: 286–293.CrossRefGoogle Scholar
  10. Callieri, C., B. Modenutti, C. Queimaliños, R. Bertoni & E. Balseiro, 2007. Production and biomass of picoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquatic Ecology 41: 511–523.CrossRefGoogle Scholar
  11. Carignan, R., D. Planas & C. Vis, 2000. Planktonic production and respiration in oligotrophic Shield lakes. Limnology and Oceanography 45: 189–199.CrossRefGoogle Scholar
  12. Carrillo, P., J. A. Delgado-Molina, J. M. Medina-Sánchez, F. J. Bullejos & M. Villar-Argaiz, 2008. Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Global Change Biology 14: 423–439.CrossRefGoogle Scholar
  13. de Mora, S., S. Demers & M. Vernet, 2000. The Effects of UV Radiation in the Marine Environment. Cambridge Environmental Chemistry Series 10. Cambridge University Press, Cambridge.Google Scholar
  14. Delgado-Molina, J. A., P. Carrillo, J. M. Medina-Sanchez, M. Villar-Argaiz & F. J. Bullejos, 2009. Interactive effects of phosphorus loads and ambient ultraviolet radiation on the algal community in a high-mountain lake. Journal of Plankton Research 31: 619–634.CrossRefGoogle Scholar
  15. Eilertsen, H. C. & O. Holm-Hansen, 2000. Effects of high latitude UV radiation on phytoplankton and nekton modelled from field measurements by simple algorithms. Polar Research 19: 173–182.CrossRefGoogle Scholar
  16. Gallardo, C., A. Arribas, J. A. Prego, M. A. Gaertner & M. Castro, 2001. Multi-year simulations with a high resolution regional climate model over the Iberian Peninsula. Current climate and 2xCO scenario. Quarterly Journal of the Royal Meteorological Society 127: 1659–1682.Google Scholar
  17. García-Pichel, F. & R. W. Castenholz, 1993. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Applied and Environmental Microbiology 59: 163–169.PubMedGoogle Scholar
  18. Häder, D., H. Kumar, R. Smith & R. Worrest, 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical & Photobiological Sciences 6: 267–285.CrossRefGoogle Scholar
  19. Halac, S., M. Felip, Ll. Camarero, S. Sommaruga-Wögrath, R. Psenner, J. Catalan & R. Sommaruga, 1997. An in situ enclosure experiment to test the solar UV-B impact on microplankton in a high altitude mountain lake: 1) lack of effect on phytoplankton species composition and growth. Journal of Plankton Research 11: 1671–1687.CrossRefGoogle Scholar
  20. Harrison, J. W. & R. E. H. Smith, 2009. Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities. Photochemical & Photobiological Sciences 8: 1218–1232.CrossRefGoogle Scholar
  21. Hayhome, B. A., T. Brei & R. C. Tuttle, 1981. Photoreactivation of far U.V. damage in the dinoflagellate Peridinium cinctum. Environmental and Experimental Botany 21: 121–125.CrossRefGoogle Scholar
  22. Helbling, E. W. & H. Zagarese, 2003. UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  23. Helbling, E. W., V. Villafañe, A. Buma, M. Andrade & F. Zaratti, 2001. DNA damage and photosynthetic inhibition induced by solar ultraviolet radiation in tropical phytoplankton (Lake Titicaca, Bolivia). European Journal of Phycology 36: 157–166.CrossRefGoogle Scholar
  24. Hessen, D. O., E. Leu, P. J. Faerovig & S. F. Petersen, 2008. Light and spectral properties as determinants of C:N:P-ratios in phytoplankton. Deep Sea Research LPABt II: Topical Studies in Oceanography 55: 2169–2175.CrossRefGoogle Scholar
  25. Hudson, J. J., W. D. Taylor & D. W. Schindler, 2000. Phosphate concentration in lakes. Nature 406: 54–56.PubMedCrossRefGoogle Scholar
  26. Kaczmarska, I., T. A. Clair, J. M. Ehrman, S. L. MacDonald, D. Lean & K. E. Day, 2000. The effect of UV-B on phytoplankton populations in clear and brown temperate Canadian lakes. Limnology and Oceanography 45: 651–663.CrossRefGoogle Scholar
  27. Karentz, D., J. E. Cleaver & D. L. Mitchell, 1991. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. Journal of Phycology 27: 326–341.CrossRefGoogle Scholar
  28. Kasai, F., M. J. Waiser, R. D. Robarts & M. T. Arts, 2001. Size-dependent UVR sensitivity in Redberry Lake phytoplankton communities. International Association of Theoretical and Applied Limnology Proceedings 27: 2018–2023.Google Scholar
  29. Klausmeier, C. A., E. Litchman, T. Daufresne & S. A. Levin, 2008. Phytoplankton stoichiometry. Ecological Research 23: 479–485.CrossRefGoogle Scholar
  30. Laurion, I. & W. F. Vincent, 1998. Cell size versus taxonomic composition as determinants of UV-sensitivity in natural phytoplankton communities. Limnology and Oceanography 43: 1774–1779.Google Scholar
  31. Laybourn-Parry, J., W. A. Marshall & H. J. Marchant, 2005. Flagellate nutritional versatility as a key to survival in two contrasting Antarctic saline lakes. Freshwater Biology 50: 830–838.CrossRefGoogle Scholar
  32. Leech, D. M. & C. E. Williamson, 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon, or lake transparency? Ecological Applications 10: 1530–1540.CrossRefGoogle Scholar
  33. Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology Evolution and Systematics 39: 615–639.CrossRefGoogle Scholar
  34. Lund, J., C. Kipling & E. D. Le Cren, 1958. The inverted method of estimating algal numbers and the statistical basis of estimation by counting. Hydorobiologia 11: 143–170.CrossRefGoogle Scholar
  35. Madronich, S., 1994. Increases in biologically damaging UV-B radiation due to stratospheric ozone reductions: a brief review. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 43: 17–30.Google Scholar
  36. Marañón, E., 2009. Phytoplankton size structure. In Steele, J. H., K. K. Turekian & S. A. Thorpe (eds), Encyclopedia of Ocean Sciences, 2nd ed. Academic Press, Oxford.Google Scholar
  37. Mauchly, J. W., 1940. Significance test for sphericity of a normal n-variate distribution. The Annals of Mathematical Statistics 11: 204–209.CrossRefGoogle Scholar
  38. Medina-Sánchez, J. M., M. Villar-Argaiz & P. Carrillo, 2004. Neither with nor without you: a complex algal control on bacterioplankton in a high mountain lake. Limnology and Oceanography 49(5): 1722–1733.CrossRefGoogle Scholar
  39. Medina-Sánchez, J. M., M. Villar-Argaiz & P. Carrillo, 2006. Solar radiation-nutrient interaction enhances the resource and predation algal control on bacterioplankton: a short-term experimental study. Limnology and Oceanography 51(2): 913–924.CrossRefGoogle Scholar
  40. Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.CrossRefGoogle Scholar
  41. Orce, V. I. & E. W. Helbling, 1997. Latitudinal UVR-PAR measurements in Argentina: extent of the “ozone hole”. Global and Planetary Change 15: 113–121.CrossRefGoogle Scholar
  42. Popovsky, J. & L. A. Préster, 1990. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. Springer, Jena.Google Scholar
  43. Quesada, A. & W. F. Vincent, 1997. Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology 32(4): 335–342.Google Scholar
  44. Quesada, A., J. L. Mouget & W. F. Vincent, 1995. Growth of Antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition. Journal of Phycology 31: 242–248.CrossRefGoogle Scholar
  45. Raven, J. A., 1998. The twelfth Tanseley lecture. Small is beautiful: the picophytoplankton. Functional Ecology 12: 503–513.CrossRefGoogle Scholar
  46. Ravishankara, A. R., J. S. Daniel & R. W. Portmann, 2008. Nitrous oxide (NO): the dominant ozone-depleting substance emitted in the 21st century. Science 326: 123–125.CrossRefGoogle Scholar
  47. Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.Google Scholar
  48. Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf, Luhe, Germany.Google Scholar
  49. Rodrigo, M. A., C. Rojo & M. Álvarez-Cobelas, 2003. Autotrophic and heterotrophic picoplankton in wetlands: differences with lake patterns. International Revue Hydrobiologie 88: 464–481.CrossRefGoogle Scholar
  50. Rodrigo, M. A., C. Rojo, M. Segura & J. Larrosa, 2009. Mechanisms of microalgae selection during the assembly of a planktonic community. Aquatic Ecology 43: 61–72.CrossRefGoogle Scholar
  51. Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie 43: 34–62.Google Scholar
  52. Sereda, J. M., D. M. Vandergucht & J. J. Hudson, 2011. Disruption of planktonic phosphorous cycling by ultraviolet radiation. Hydrobiologia 665: 205–217.CrossRefGoogle Scholar
  53. Solomon, S., 1999. Stratospheric ozone depletion: a review of concepts and history. Reviews of Geophysics 37: 275–316.CrossRefGoogle Scholar
  54. Sommaruga, R. & A. G. J. Buma, 2000. UV-induced cell damage is species-specific among aquatic phagotrophic protists. Journal of Eukaryotic Microbiology 47: 450–455.PubMedCrossRefGoogle Scholar
  55. Souza, M. S., B. E. Modenutti, P. Carrillo, M. Villar-Argaiz, J. M. Medina-Sánchez, F. Bullejos & E. G. Balseiro, 2010. Stoichiometric dietary constraints influence the response of copepods to ultraviolet radiation-induced oxidative stress. Limnology and Oceanography 55: 1024–1032.CrossRefGoogle Scholar
  56. Sterner, R. W., J. J. Elser & E. J. Fee, 1997. The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. American Naturalist 150: 663–684.PubMedCrossRefGoogle Scholar
  57. Stockner, J. G., 1991. Autotrophic picoplankton in freshwater ecosystems: the view from the summit. International Revue der Gesamten Hydrobiologie 76: 483–492.CrossRefGoogle Scholar
  58. van Donk, E., B. A. Faafeng, H. J. de Lange & D. O. Hessen, 2001. Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway). Plant Ecology 154: 247–259.CrossRefGoogle Scholar
  59. Villafañe, V., C. Sunfbäck, F. L. Figueroa & E. W. Helbling, 2003. Photosynthesis in the aquatic environment as affected by ultraviolet radiation. In Helbling, E. W. & H. Zagarese (eds), UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry, Cambridge: 357–399.CrossRefGoogle Scholar
  60. Villar-Argaiz, M., J. M. Medina-Sánchez, L. Cruz-Pizarro & P. Carrillo, 2001. Inter- and intraannual variability in the phytoplankton community of a high mountain lake: the influence of external (atmospheric) and internal (recycled) sources of P. Freshwater Biology 46: 1121–1138.CrossRefGoogle Scholar
  61. Villar-Argaiz, M., J. M. Medina-Sánchez, F. J. Bullejos, J. A. Delgado-Molina, O. Ruiz-Pérez, J. C. Navarro & P. Carrillo, 2009. UV radiation and phosphorus interact to influence the biochemical composition of phytoplankton. Freshwater Biology 54: 1233–1245.CrossRefGoogle Scholar
  62. Weisse, T., 1988. Dynamics of autotrophic picoplankton in lake constance. Journal of Plankton Research 10: 1179–1188.CrossRefGoogle Scholar
  63. Wetzel, R. G., 2001. Limnology Lakes and River Ecosystems, 3rd ed. Academic Press, New York, NY, USA.Google Scholar
  64. Wild, M., A. Ohmura & K. Makowski, 2007. Impact of global dimming and brightening on global warming. Geophysical Research Letters 34: L04702. doi:.Google Scholar
  65. Winder, M., 2009. Photosynthetic picoplankton dynamics in Lake Thahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells. Journal of Plankton Research 31: 1307–1320.CrossRefGoogle Scholar
  66. Xenopoulos, M. A. & P. C. Frost, 2003. UV radiation, phosphorus, and their combined effects on the taxonomic composition of phytoplankton in a boreal lake. Journal of Phycology 39: 291–302.CrossRefGoogle Scholar
  67. Xenopoulos, M. A., P. C. Frost & J. J. Elser, 2002. Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition. Ecology 83: 423–435.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Carmen Rojo
    • 1
  • Guillermo Herrera
    • 2
  • María A. Rodrigo
    • 1
  • María José Ortíz-Llorente
    • 3
  • Presentación Carrillo
    • 2
  1. 1.Integrative Ecology Group, Institute Cavanilles of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaternaSpain
  2. 2.Functional Ecology Group, Institute of WaterUniversity of GranadaGranadaSpain
  3. 3.Aquatic Ecology GroupNational Museum of Natural History, CSICMadridSpain

Personalised recommendations