An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria

  • Jiří Komárek
  • Jan Mareš
Part of the Developments in Hydrobiology book series (DIHY, volume 221)


It is essential for the modern taxonomic classification of cyanobacteria to be continually updated in accordance with revisions based on molecular sequence comparisons and combined with morphological features, ecophysiological characters and other biochemical and molecular markers (“polyphasic approach”). Several genera, which are characterized by their planktic life form and contain indicator species important for the evaluation of aquatic biocenoses in majority of water bodies are recognized in the monophyletic group of heterocytous cyanobacteria. Current taxonomic revisions (and nomenclatoric consequences) of the specific contents of these heterocytous cyanobacterial generic units are covered by this article. Among these genera, 12 contain only planktic species, three remaining genera contain both planktic and non-planktic species. Comments and suggestions for future research are stressed especially in the ecologically distinct genera, which includes species dominating in the plankton of various reservoir types.


Cyanobacteria Ecology Heterocytous types Plankton Taxonomic revision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, G. L. A., P. K. Hayes, S. L. O’Mahony, P. Vacharapiyasophon & A. E. Walsby, 1999. A molecular and phenotypic analysis of Nodularia (Cyanobacteria) from the Baltic Sea. Journal of Phycology 35: 931–937.CrossRefGoogle Scholar
  2. Barker, G. L. A., B. A. Handley, P. Vacharapiyasophon, J. R. Stevens & P. K. Hayes, 2000. Allene-specific PCR shows that genetic exchange occurs among genetically diverse Nodularia (Cyanobacteria) filaments in the Baltic Sea. Microbiology 146: 2865–2875.PubMedGoogle Scholar
  3. Batley, J. & P. K. Hayes, 2003. Development of high throughput single nucleotide polymorphism genotypic for the analysis of Nodularia (Cyanobacteria) population genetics. Journal of Phycology 39: 248–252.CrossRefGoogle Scholar
  4. Blackburn, S. I. & G. J. Jones, 1995. Toxic Nodularia spumigena Mertens blooms in Australian waters. A case study from Orielton Lagoon, Tasmania. In Lassus, A., G. Arzil, E. Erard-LeDenn, P. Gentien & C. Marcailou LeBaut (eds), Harmful Marine Algal Blooms. Lavoisier, Paris: 121–126.Google Scholar
  5. Bolch, C. J. S. & S. I. Blackburn, 1998. Nodularia spumigena: a global clone or genetic hierarchy? In 4th International Conference on Toxic Cyanobacteria—Compilation of Abstracts, Beaufort, NC, USA: 21.Google Scholar
  6. Bolch, C. J. S., P. T. Orr, G. J. Jones & S. J. Blackburn, 1999. Genetic, morphological, and toxicological variation among globally distributed strains of Nodularia (Cyanobacteria). Journal of Phycology 35: 339–355.CrossRefGoogle Scholar
  7. Bornet, E. & C. Flahault, 1886–1888. Révision des Nostocacées hétérocystées. Annales des Sciences Naturelles, Botanique, Series 7, 3: 323–381, 4: 343–373, 5: 51–129, 7: 171–262.Google Scholar
  8. Castenholz, R. W., 2001. Phylum BX. Cyanobacteria. In Boone, D. R. & R. W. Castenholz (eds), Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer, New York: 473–599.CrossRefGoogle Scholar
  9. Cmiech, H. A., G. F. Leedale & C. S. Reynolds, 1984. Morphological and ultrastructural variability of planktonic Cyanophyceae in relation to seasonal periodicity. 1. Gloeotrichia echinulata: vegetative cells, polarity, heterocysts, akinetes. British Phycological Journal 19: 259–275.CrossRefGoogle Scholar
  10. Cmiech, H. A., G. F. Leedale & C. S. Reynolds, 1988. Morphological and ultrastructural variability of planktonic Cyanophyceae in relation to seasonal periodicity. IV. Aphanizomenon flos-aquae: vegetative cells, heterocysts, akinetes. British Phycological Journal 23: 239–250.CrossRefGoogle Scholar
  11. Couté, A. & M. Bouvy, 2004. A new species of the genus Cylindrospermopsis, C. acuminato-crispa spec. nova (Cyanophyceae, Nostocales) from Ingazeira reservoir, Northern Brazil. Algological Studies (Cyanobacterial Research 5) 113: 57–72.CrossRefGoogle Scholar
  12. Couté, A., M. Leitao & C. Martin, 1997. Première observation du genre Cylindrospermopsis (Cyanophyceae, Nostocales) en France. Cryptogamie, Algologie 18(1): 57–70.Google Scholar
  13. Couté, A., M. Leitao & H. Sarmento, 2004. Cylindrospermopsis sinuosa spec. nova (Cyanophyceae, Nostocales), une nouvelle espéce du sud-ouest de la France. Archiv für Hydrobiologie 150 (Suppl.): 1–15.Google Scholar
  14. Cronberg, G., 2003. New and interesting cyanoprokaryotes from temperate, brackish ponds and the Baltic Sea. Algological Studies (Cyanobacterial Research 4) 109: 197–211.CrossRefGoogle Scholar
  15. Cronberg, G. & H. Annadotter, 2006. Manual on Aquatic Cyanobacteria. ISSHA, Copenhagen: 106.Google Scholar
  16. Cronberg, G. & J. Komárek, 2004. Some nostocalean cyanoprokaryotes from lentic habitats of Eastern and Southern Africa. Nova Hedwigia 78(1–2): 71–106.CrossRefGoogle Scholar
  17. Desikachary, T. V., 1959. Cyanophyta. In ICAR Monographs on Algae, New Delhi: 686 pp.Google Scholar
  18. Dokulil, M. T. & J. Mayer, 1996. Population dynamics and photosynthetic rates of a CylindrospermopsisLimnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algological Studies 83: 179–195.Google Scholar
  19. Dyble, J., H. W. Paerl & B. A. Neilan, 2002. Genetic characterization of Cylindrospermopsis raciborskii (Cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA-IGS nucleotide sequence analysis. Applied and Environment Microbiology 68(5): 2567–2571.CrossRefGoogle Scholar
  20. Elenkin, A. A., 1909. Neue, seltenere order interessante Arten und Formen der Algen in Mittel-Russland 1908–1909 gesammelt. Bulletin du Jardin Botanique 9(6): 121–154.Google Scholar
  21. Fabbro, L. D. & L. J. Duivenvoorden, 1996. Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszinska) Seenaya and Subba Raju in the Fitzroy River in tropical Central Queensland. Marine & Freshwater Research 47: 685–694.CrossRefGoogle Scholar
  22. Florenzano, G., C. Sili, E. Pelosi & M. Vicenzini, 1985. Cyanospira rippkae and Cyanospira capsulata (gen. nov. and spp. nov.): new filamentous heterocystous cyanobacteria from Magadi lake (Kenya). Archives of Microbiology 140: 301–306.CrossRefGoogle Scholar
  23. Fritsch, F. E. & I. Rich, 1929. Freshwater algae from Grigualand West. Transactions of the Royal Society of South Africa 18: 91–92.Google Scholar
  24. Geitler, L., 1932. Cyanophyceae. In Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz, Vol. 14, Akad. Verlagsges., Leipzig: 1–1196.Google Scholar
  25. Giovannoni, S. J., S. Turner, G. J. Olsen, S. Barns, D. J. Lane & N. R. Pace, 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. Journal of Bacteriology 170: 3584–3592.PubMedGoogle Scholar
  26. Goloboff, P., J. Farris & K. Nixon, 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786.CrossRefGoogle Scholar
  27. Gouy, M., S. Guindon & O. Gascuel, 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27(2): 221–224.PubMedCrossRefGoogle Scholar
  28. Gugger, M., Ch. Lyra, P. Henriksen, A. Couté, J.-F. Humbert & K. Sivonen, 2002a. Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. International Journal of Systematic and Evolutionary Microbiology 52: 1867–1880.PubMedCrossRefGoogle Scholar
  29. Gugger, M., Ch. Lyra, I. Suominen, I. Tsitko, J.-F. Humbert, M. S. Salkinoja-Salonen & K. Sivonen, 2002b. Cellular fatty acids as chemotaxonomic markers of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria). International Journal of Systematic and Evolutionary Microbiology 52: 1007–1015.PubMedCrossRefGoogle Scholar
  30. Gugger, M., R. Molica, B. Le Berre, P. Dufour, C. Bernard & J.-F. Humbert, 2005. Generic diversity of Cylindrospermopsis strain (Cyanobacteria) isolated from four continents. Applied and Environment Microbiology 71(2): 1097–1100.CrossRefGoogle Scholar
  31. Guglielmi, G. & G. Cohen-Bazire, 1984a. Étude taxonomique d’un genre de cyanobactérie oscillatoriacée: le genre Pseudanabaena Lauterborn. I. Étude ultrastructurale. Protistologica 20: 377–391.Google Scholar
  32. Guglielmi, G. & G. Cohen-Bazire, 1984b. Étude taxonomique d’un genre de cyanobactérie oscillatoriacée: le genre Pseudanabaena Lauterborn. II. Analyse de la composition moléculaire et de la structure des phycobilisomes. Protistologica 20: 393–413.Google Scholar
  33. Guindon, S., F. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk & O. Gascuel, 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 57(3): 307–321.CrossRefGoogle Scholar
  34. Hašler, P., P. Dvořák, V. Ondřej, M. Kitner, P. Hloušková & A. Poulíčková, 2011. The importance of the polyphasic approach in a comparative study of Nodularia (Nostocales, Cyanobacteria). Preslia 83: 167–182.Google Scholar
  35. Hayes, P. K. & G. L. Barker, 1997. Genetic diversity within Baltic Sea populations of Nodularia (Cyanobacteria). Journal of Phycology 33: 919–923.CrossRefGoogle Scholar
  36. Hindák, F., 1987. Morphological variation of trichomes in Raphidiopsis curvata Fritsch et Rich (Cyanophyta). Biológia, Bratislava 42(9): 847–854.Google Scholar
  37. Hindák, F., 2000. A contribution to the taxonomy of the nostocacean genus Richelia (Cyanophyta/Cyanobacteria). Biologia, Bratislava 55: 1–6.Google Scholar
  38. Hindák, F., 2001. Fotografický atlas mikroskopických siníc [Atlas of Microscopic Cyanobacteria]. Veda, Bratislava: 128.Google Scholar
  39. Hirano, M., 1963. Fresh water algae from the Nepal Himalaya, collected by a members of the Japanese Climbing Expedition. Contribution of the Biological Laboratory, Kyoto University, Japan 16: 1–23.Google Scholar
  40. Hoffmann, L., J. Komárek & J. Kaštovský, 2005. System of cyanoprokaryotes (cyanobacteria)—state in 2004. Algological Studies (Cyanobacterial Research 6) 117: 95–115.CrossRefGoogle Scholar
  41. Horecká, M. & J. Komárek, 1979. Taxonomic position of three planktonic blue-green algae from the genera Aphanizomenon and Cylindrospermopsis. Preslia 51: 289–312.Google Scholar
  42. Huber-Pestalozzi, G., 1938. Das Phytoplankton des Süsswasser System. und Biologie. In Thienemann, A. (ed.), Die Binnengewässer, Vol. 16, no. 1. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 342 pp.Google Scholar
  43. Iteman, I., R. Rippka, N. Tandeau de Marsac & M. Herdman, 2002. rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiology 148: 481–496.PubMedGoogle Scholar
  44. Johansen, J. R. & D. A. Casamatta, 2005. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies 117: 71–93.CrossRefGoogle Scholar
  45. Kaštovský, J. & J. R. Johansen, 2008. Mastigocladus laminosus (Stigonematales, Cyanobacteria): phylogenetic relationship of strains from thermal springs to soil-inhabiting genera of the order and taxonomic implications for the genus. Phycologia 47(3): 307–320.CrossRefGoogle Scholar
  46. Katoh, K., G. Asimenos & H. Toh, 2009. Multiple alignment of DNA sequences with MAFFT. In Posada, D. (ed.), Bioinformatics for DNA Sequence Analysis. Humana Press, Totowa, NJ: 39–64.CrossRefGoogle Scholar
  47. Kling, H. J., D. L. Findlay & J. Komárek, 1994. Aphanizomenon schindleri sp. nov.: a new nostocacean cyanoprokaryote from the Experimental Lakes Area, northwestern Ontario. Canadian Journal of Fisheries and Aquatic Sciences 51: 2267–2273.CrossRefGoogle Scholar
  48. Komárek, J., 1958. Die taxonomische Revision der planktischen Blaualgen der Tschechoslowakei. In Komárek, J., H. Ettl (eds), Algologische Studien. Academia, Praha: 10–206.Google Scholar
  49. Komárek, J., 1996. Klíč k určování vodních květů sinic v České republice [Key to the identification of cyanobacterial water-blooms in Czech Republic]. In Maršálek, B., V. Keršner & P. Marvan (eds), Vodní květy sinic [Cyanobacterial Water-Blooms]. Nadatio Flos-aque, Brno: 22–85.Google Scholar
  50. Komárek, J., 1999. Übersicht der planktischen Blaualgen (Cyanobakterien) im Elbe Flussgebiet. IKSE/MKOL, Magdeburg: 53 pp., 133 Abb.Google Scholar
  51. Komárek, J., 2002. Problems in cyanobacterial taxonomy; implication for most common toxin producing species. In Melchiorre S., E. Viaggiu, & M. Bruno (eds), Rapporti ISTISAN (Istituto Superiore di Sanitá), Roma 2000: 6–43.Google Scholar
  52. Komárek, J., 2005. Phenotype diversity of the heterocytous cyanoprokaryotic genus Anabaenopsis. Czech Phycology 5: 1–35.Google Scholar
  53. Komárek, J., 2011. Introduction to the 18th IAC Symposium in České Budějovice 2010, Czech Republic: some current problems of modern cyanobacterial taxonomy. Fottea 11(1): 1–7.Google Scholar
  54. Komárek, J., 2012. Nomenclatural changes in heterocytous Cyanoprokaryotes (Cyanobacteria, Cyanophytes). Fottea 12(1) (in press).Google Scholar
  55. Komárek, J. & J. Kaštovský, 2003. Coincidences of structural and molecular characters in evolutionary lines of cyanobacteria. Algological Studies (Cyanobacterial Research 4) 109: 305–325.CrossRefGoogle Scholar
  56. Komárek, J. & J. Komárková, 2003. Phenotype diversity of the cyanoprokaryotic genus Cylindrospermopsis (Nostocales); review 2002. Czech Phycology 3: 1–30.Google Scholar
  57. Komárek, J. & J. Komárková, 2006. Diversity of Aphanizomenon-like cyanobacteria. Czech Phycology 6: 1–32.Google Scholar
  58. Komárek, J. & L. Kováčik, 1989. Trichome structure of four Aphanizomenon taxa (Cyanophyceae) from Czechoslovakia, with notes on the taxonomy and delimitation of the genus. Plant Systematics and Evolution 164: 47–64.CrossRefGoogle Scholar
  59. Komárek, J. & E. Zapomělová, 2007. Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum—1. Part: coiled types. Fottea 7(1): 1–31.Google Scholar
  60. Komárek, J. & E. Zapomělová, 2008. Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum—2. Part: straight types. Fottea 8(1): 1–14.Google Scholar
  61. Komárek, J., M. Hübel, H. Hübel & J. Šmarda, 1993. The Nodularia studies 2. Taxonomy. Algological Studies 68: 1–25.Google Scholar
  62. Komárek, J., E. Zapomělová & F. Hindák, 2010. Cronbergia gen. nov., a new cyanobacterial genus (Cyanophyta) with a special strategy of heterocyte formation. Cryptogamie, Algologie 31(3): 321–341.Google Scholar
  63. Komárková, J., 1998. The tropical planktonic genus Cylindrospermopsis (Cyanophytes, Cyanobacteria). In Anais IV. Congr. lat.-amer. Ficología, São Paulo, Vol. 1: 327–340.Google Scholar
  64. Komárková-Legnerová, J. & P. Eloranta, 1993. Planktic blue-green algae (Cyanophyta) from Central Finland (Jyväskylä region) with special reference to the genus Anabaena. Algological Studies 67: 103–133.Google Scholar
  65. Kondrateva, N. V., 1954. Pro dejakich cikavich predstavnikiv rodiny Rivuljarievich [Several interesting members from the family Rivulariaceae]. Botaničeskij Žurnal AN URSR 11(3): 116–119.Google Scholar
  66. Kondrateva, N.V., 1968. Sin‘o-zeleni vodorosti—Cyanophyta [Blue-green algae—Cyanophyta]. In Viznačnik Prisnovodnych Vodorostej Ukrainskoi RSR, Vidavnictvo “Naukova Dumka”, Kiev, Vol. 1, no. 2: 1–524.Google Scholar
  67. Krienitz, L. & E. Hegewald, 1996. Über das Vorkommen von wärmeliebenden Blaualgenarten in einem norddeutschen See. Lauterbornia 26: 55–63.Google Scholar
  68. Laamanen, M. J., M. F. Gugger, J. A. Lehtimäki, K. Haukka & K. Sivonen, 2001. Diversity of toxic and nontoxic Nodularia isolates (Cyanobacteria) and filaments from the Baltic Sea. Applied and Environment Microbiology 67(10): 4638–4647.CrossRefGoogle Scholar
  69. Lehtimäki, J., Ch. Lyra, S. Suomalainen, P. Sundaman, L. Rouhiainen, L. Paulin, M. Salkinoja-Salonen & K. Sivonen, 2000. Characterization of Nodularia strains, cyanobacteria from brackish waters, by genotypic and phenotypic methods. International Journal of Systematic and Evolutionary Microbiology 50: 1043–1053.PubMedCrossRefGoogle Scholar
  70. Lemmermann, E., 1898. Beiträge zur Kenntniss der Planktonalgen. Botanisches Zentralblatt 76: 150–156.Google Scholar
  71. Lemmermann, E., 1907. Algen I. Kryptogamen-Flora Mark Brandenburg 3: 1–256.Google Scholar
  72. Li, R. & M. M. Watanabe, 2001. Physiological properties of planktic species of Anabaena (Cyanobacteria and their taxonomic value at species level). Algological Studies 103: 31–45.Google Scholar
  73. Li, R., W. W. Carmichael, Y. Liu & M. M. Watanabe, 2000. Taxonomic re-evaluation of Aphanizomenon flos-aquae NH-5 based on morphology and 16S rRNA sequences. Hydrobiologia 438: 99–105.CrossRefGoogle Scholar
  74. Li, R., W. W. Carmichael & P. Pereira, 2003. Morphological and 16S rRNA gene evidence for reclassification of the paralytic shellfish toxin producing Aphanizomenon flos-aquae LMECYA31 as Aphanizomenon issatschenkoi (Cyanophyceae). Journal of Phycology 39: 814–818.CrossRefGoogle Scholar
  75. Li, R., S. W. Wilhelm, W. W. Carmichael & M. M. Watanabe, 2008. Polyphasic characterization of water bloom forming Raphidiopsis species (cyanobacteria) from central China. Harmful Algae 7: 146–153.CrossRefGoogle Scholar
  76. Litvaitis, M. K., 2002. A molecular test of cyanobacterial phylogeny: inferences from constraint analyses. Hydrobiologia 468(1–3): 135–145.CrossRefGoogle Scholar
  77. Miller, V. V., 1923. K sistematike roda Anabaena Bory. Archivs der russischen protistologischen Gesselschaft 2: 257–265.Google Scholar
  78. Moustaka-Gouni, M., K. A. Kormas, E. Vardaka, M. Katsiapi & S. Gkelis, 2009. Raphidiopsis mediterranea Skuja represents non-heterocytous life-cycle stages of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju in Lake Kastoria (Greece), its type locality: evidence by morphological and phylogenetic analysis. Harmful Algae 8(6): 864–872.CrossRefGoogle Scholar
  79. Niiyama, Y., A. Tuji & S. Tsujimura, 2011. Umezakia natans M.Watan does not belong to Stigonemataceae but to Nostocaceae. Fottea 11(1): 163–169.Google Scholar
  80. Nordin, R. N. & J. Stein, 1980. Taxonomic revision of Nodularia (Cyanophyceae/Cyanobacteria). Canadian Journal of Botany 58: 1211–1224.CrossRefGoogle Scholar
  81. Nygaard, G., 1949. Hydrobiological studies on some Danish ponds and lakes. Part II. The quotient hypothesis and some new or little known phytoplankton organisms. Kongelige Danske Videnskaberne Selskab. København 7(1): 1–293.Google Scholar
  82. Padisák, J., 1991. Occurrence of Anabaena raciborskii Wolosz. in the pond Tómalon near Sopron, Hungary. Acta Botanica Hungarica 36: 163–165.Google Scholar
  83. Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju, an expanding, highly adaptative cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie 107 (Suppl.): 563–593.Google Scholar
  84. Padisák, J., 2003. Estimation of minimum sedimentary inoculum (akinete) pool of Cylindrospermopsis raciborskii: a morphology and life-cycle based method. Hydrobiologia 502(1–3): 389–394.CrossRefGoogle Scholar
  85. Pearson, L., T. Mihali, M. Moffitt, R. Kellmann & B. Neilan, 2010. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine Drugs 8: 1650–1680.PubMedCrossRefGoogle Scholar
  86. Rajaniemi, P., P. Hrouzek, K. Kaštovská, R. Willame, A. Rantala, L. Hoffmann, J. Komárek & K. Sivonen, 2005a. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology 55: 11–26.PubMedCrossRefGoogle Scholar
  87. Rajaniemi, P., J. Komárek, P. Hrouzek, R. Willame, K. Kaštovská, L. Hoffmann & K. Sivonen, 2005b. Taxonomic consequences from the combined molecular and phenotype evaluation of selected Anabaena and Aphanizomenon strains. Algological Studies (Cyanobacterial Research 6) 117: 371–391.CrossRefGoogle Scholar
  88. Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.PubMedGoogle Scholar
  89. Seenayya, G. & N. Subba Raju, 1972. On the ecology and systematic position of the alga known as Anabaenopsis raciborskii (Wolosz.) Elenk. and a critical evaluation of the forms described under the genus Anabaenopsis. In Desikachary, T. Y. (ed.), Taxonomy and Biology of Blue-green algae. University of Madras, Centre for Advanced Study in Botany, Madras: 52–57.Google Scholar
  90. Skuja, H., 1956. Taxonomische und Biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Regiae Societatis Scientiarum Upsaliensis, Séries 4 16(3): 1–104.Google Scholar
  91. Šmarda, J., J. Komárek, J. Čáslavská & H. Hübel, 1988. The Nodularia-Studies. 1. Introduction, fine structure. Algological Studies 50–53: 109–129.Google Scholar
  92. Stackebrandt, E. & B. M. Goebel, 1994. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA gene sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology 44: 846–849.CrossRefGoogle Scholar
  93. Starmach, K., 1966. Cyanophyta-sinice. In Flora slodkowodna Polski 2: 807 pp.Google Scholar
  94. Stüken, A., J. Rücker, T. Endrulat, K. Preussel, M. Hemm, B. Nixdorf, U. Karsten & C. Wiedner, 2006. Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45: 696–703.CrossRefGoogle Scholar
  95. Stüken, A., R. J. Campbell, A. Quesada, A. Sukenik, P. K. Dadheech & C. Wiedner, 2009. Genetic and morphologic characterization of four putative cylindrospermopsin producing species of the cyanobacterial genera Anabaena and Aphanizomenon. Journal of Plankton Research 31(5): 465–480.CrossRefGoogle Scholar
  96. Tanabe, Y., F. Kasai & M. M. Watanabe, 2007. Multilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology 153: 3695–3703.PubMedCrossRefGoogle Scholar
  97. Tuji, A. & Y. Niiyama, 2010. Phylogenetic study by the morphological and molecular analyses of Japanese planktonic Anabaena species. Bulletin of the National Science Museum Series B (Botany) 36(2): 71–80.Google Scholar
  98. Turner, S., 1997. Molecular systematics of oxygenic photosynthetic bacteria. In Bhatacharya, D. (ed.), The Origin of the Algae and Their Plastids, Plant Systematics and Evolution Supplement 11. Springer, Wien: 13–52.Google Scholar
  99. Wacklin, P., L. Hoffmann & J. Komárek, 2009. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahault) comb. nova. Fottea 9(1): 59–64.Google Scholar
  100. Watanabe, M., 1987. Studies on the planktonic blue-green algae. 2. Umezakia natans gen. et sp. nov. (Stigonemataceae) from the Mikata lakes, Fukui prefecture. Bulletin of the National Science Museum 13(3): 81–88.Google Scholar
  101. Watanabe, M., 1992. Studies on planktonic blue-green algae 4. Some Anabaena species with straight trichomes in Japan. Bulletin of the National Science Museum, Series B (Botany) 18: 123–137.Google Scholar
  102. Watanabe, M., 1996. Studies on planktonic blue-green algae 7. Anabaena pseudocompacta sp. nov. from eutrophic lakes in central Japan. Bulletin of the National Science Museum, Series B (Botany) 22(3): 93–97.Google Scholar
  103. Watanabe, M., Y. Niiyama & A. Tuji, 2004. Studies on planktonic blue-green algae. 10. Classification of planktonic Anabaena with coiled trichomes maintained in the National Science Museum, Tokyo. Bulletin of the National Science Museum, Series B (Botany) 30(4): 135–149.Google Scholar
  104. Werner, V., H. D. Laughinghouse IV, M. F. Fiore, C. L. Sant’Anna, C. Hoff, K. R. de Sousa Santos, E. B. Neuhaus, R. J. R. Molica, R. Y. Honda & R. O. Echenique, 2011. Sphaerospermopsis torques-reginae (Cyanobacteria, Nostocales) comb. nov from South American water blooms. Journal of Phycology 47(SI2): S77.Google Scholar
  105. Willame, R., C. Boutte, S. Grubisic, A. Wilmotte, J. Komárek & L. Hoffmann, 2006. Morphological and molecular characterization of planktonic cyanobacteria from Belgium and Luxembourg. Journal of Phycology 42: 1312–1332.CrossRefGoogle Scholar
  106. Zapomělová, E., J. Jezberová, P. Hrouzek, D. Hisem, K. Řeháková & J. Komárková, 2009. Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (cyanobacteria) and their reclassification to Sphaerospermum gen. nov (incl. Anabaena kisseleviana). Journal of Phycology 45: 1363–1373.CrossRefGoogle Scholar
  107. Zapomělová, E., J. Jezberová, P. Hrouzek, D. Hisem, K. Řeháková & J. Komárková, 2010a. Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana) (45:1363–73). Journal of Phycology 46: 415.CrossRefGoogle Scholar
  108. Zapomělová, E., K. Řeháková, J. Jezberová & J. Komárková, 2010b. Polyphasic characterization of eight planktonic Anabaena strains (cyanobacteria) with reference to the variability of 61 Anabaena populations observed in the field. Hydrobiologia 639: 99–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Botany AS CRTřeboňCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations