The queer Tetraëdron minimum from Lake Kivu (Eastern Africa): is it a result of a human impact?

  • Maya P. Stoyneva
  • Jean-Pierre Descy
  • Vanessa Balagué
  • Pierre Compère
  • Maria Leitao
  • Hugo Sarmento
Part of the Developments in Hydrobiology book series (DIHY, volume 221)


The coccal unicellular green algal genus Tetraëdron Kütz. ex Korshikov, which can be easily identified by its typical polygonal shape, is a common member of freshwater plankton and metaphyton, frequently observed in lowland temperate and tropical waters. During the analysis of samples from tropical Lake Kivu (Eastern Africa), we found an interesting “lemon-shaped” alga, which, after observations in light microscope and scanning electron microscope, had been listed as Tetraëdron sp. Isolation in pure culture allowed a deeper study on morphology at different stages of the life cycle and the partial sequencing of the 18S rDNA. The results from the different combined approaches confirmed that it belongs to the species Tetraëdronminimum (A. Braun) Hansg. The unusual “lemon-shaped” forms predominant in Lake Kivu are young stages of the life cycle. This study contributes to the knowledge of the morphological variability, reproduction, and resting stages of T. minimum and discusses the reasons for the dominance of such unusual shape found in Lake Kivu, a lake strongly impacted by human activities as resulted by the large-scale biomanipulation following the introduction of the “Tanganyika sardine,” Limnothrissa miodon (Boulenger, 1906), at the end of the 1950s.


Green algae Phytoplankton Zooplankton Grazing Tropical lake Akinetes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, R. (ed.), 2005. Algal Culturing Techniques. Elsevier Academic Press, Phycological Society of America, London.Google Scholar
  2. Blokker, P., S. Schouten, H. van den Ende, J. W. de Leeuw, P. G. Hatcher & J. S. S. Damsté, 1998. Chemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Organic Geochemistry 29: 1453–1468.CrossRefGoogle Scholar
  3. Brönmark, C. & L.-A. Hansson, 2005. The Biology of Lakes and Ponds. Oxford University Press, Oxford.Google Scholar
  4. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  5. Buchheim, M., J. Buchheim, T. Carlson, A. Braband, D. Hepperle, L. Krienitz, M. Wolf & E. Hegewald, 2005. Phylogeny of the Hydrodictyaceae (Chlorophyceae) inferences from rDNA data. Journal of Phycology 41: 1039–1054.CrossRefGoogle Scholar
  6. Collart, A., 1954. La pêche au Ndagala au lac Tanganyika. Bulletin Agricole Congo Belge 45: 3–49.Google Scholar
  7. Collart, A., 1960. L’introduction du Stolothrissa tanganicae (Ndagala) au lac Kivu. Bull Agric Congo Belg 51:975–985Google Scholar
  8. Davis, J. S., 1966. Akinetes of Tetraëdron. Transactions of the American Microscopical Society 85: 573–575.CrossRefGoogle Scholar
  9. Dumont, H. J., 1986. The Tanganyika sardine in Lake Kivu: Another ecodisaster for Africa? Environmental Conservation 13: 143–148.CrossRefGoogle Scholar
  10. Ettl, H., 1980. Grundriß der allgemeinen Algologie. Gustav Fischer Verlag, Stuttgart.Google Scholar
  11. Ettl, H. & G. Gärtner, 1995. Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer, Stuttgart, Jena, New York.Google Scholar
  12. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  13. Isumbisho, M., H. Sarmento, B. Kaningini, J.-C. Micha & J.-P. Descy, 2006. Zooplankton of Lake Kivu, East Africa, half a century after a Tanganyika sardine introduction. Journal of Plankton Research 28: 1–10.CrossRefGoogle Scholar
  14. Jürgens, K. & H. Güde, 1994. The potential importance of grazing-resistant bacteria in planktonic systems. Marine Ecology-Progress Series 112: 169–188.CrossRefGoogle Scholar
  15. Korshikov, O. A., 1953. Viznachnik prisnovodnih vodorostey Ukrainskoy RSR. V. Protococcineae. Naukova dumka, Kiïv (in Ukrainian).Google Scholar
  16. Kováčik, L., 1975. Taxonomic review of the genus Tetraëdron (Chlorococcales). Archiv für Hydrobiologie, Supplement 46, Algological Studies 13: 354–391.Google Scholar
  17. Kováčik, L. & T. Kalina, 1975. Ultrastructure of the cell wall of some species in the genus Tetraëdron (Chlorococcales). Archiv für Hydrobiologie, Supplement 46, Algological Studies 13: 433–444.Google Scholar
  18. Masilya, P., 2011. Ecologie alimentaire comparée de Limnothrissa miodon et de Lamprichthys tanganicanus au lac Kivu (Afrique de l’Est). PhD thesis, Faculty of Sciences, Department of Biology, University of Namur, Namur, Belgium.Google Scholar
  19. Naselli-Flores, L. & R. Barone, 2011. Fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie, Algologie 32: 157–204.Google Scholar
  20. Nei, M. & S. Kumar, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.Google Scholar
  21. Pickett-Heaps, J., 1972. Cell division in Tetraedron. Annals of Botany 36: 693–701.Google Scholar
  22. Reynolds, C. S., 1997. Vegetation Process in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf/Luhe, Germany.Google Scholar
  23. Sarmento, H., M. Isumbisho & J.-P. Descy, 2006. Phytoplankton ecology of Lake Kivu (eastern Africa). Journal of Plankton Research 28: 815–829.CrossRefGoogle Scholar
  24. Sarmento, H., M. Leitao, M. Stoyneva, A. Couté, P. Compère, M. Isumbisho & J.-P. Descy, 2007. Species diversity of pelagic algae in Lake Kivu (East Africa). Cryptogamie, Algologie 28: 245–269.Google Scholar
  25. Sarmento, H., F. Unrein, M. Isumbisho, S. Stenuite, J. M. Gasol & J.-P. Descy, 2008. Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshwater Biology 53: 756–771.CrossRefGoogle Scholar
  26. Sarmento, H., M. Isumbisho, S. Stenuite, F. Darchambeau, B. Leporcq & J.-P. Descy, 2009. Phytoplankton ecology of Lake Kivu (eastern Africa): biomass, production and elemental ratios. Verhandlungen des Internationalen Verein Limnologie 30: 709–713.Google Scholar
  27. Sarmento, H., F. Darchambeau & J.-P Descy, 2012. Phytoplankton of Lake Kivu. In Descy J.-P., F. Darchambeau, M. Schmid (eds.), Lake Kivu: Limnology and biogeochemistry of a tropical great lake, Aquatic Ecology Series 5, Springer. doi: 10.1007/978-94-007-4243-7_5.
  28. Simberloff, D., 1995. Why do introduced species appear to devastate islands more than mainland areas? Pacific Science 49: 87–97.Google Scholar
  29. Starr, R. C., 1954. Reproduction by zoospores in Tetraëdron bitridens. American Journal of Botany 41: 17–21.CrossRefGoogle Scholar
  30. Sterner, R. W., 1989. The role of grazers in phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology. Succession in Plankton Communities. Springer-Verlag, Berlin: 107–170.Google Scholar
  31. Stoyneva, M. P., J.-P. Descy & W. Vyverman, 2007. Green algae in Lake Tanganyika: is morphological variation a response to seasonal changes? Hydrobiologia 578: 7–16.CrossRefGoogle Scholar
  32. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.CrossRefPubMedGoogle Scholar
  33. Troitzkaja, O. W., 1933. Über die Morphologische Variabilität bei den Protococcales. Acta Instituti Botanici Academiae Scientiarum USSR, Series II, 1: 115–224 (in Russian, German summ.).Google Scholar
  34. Van Donk, E., A. Ianora & M. Vos, 2011. Induced defenses in marine and freshwater phytoplankton: a review. Hydrobiologia 668: 3–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Maya P. Stoyneva
    • 1
  • Jean-Pierre Descy
    • 2
  • Vanessa Balagué
    • 3
  • Pierre Compère
    • 4
  • Maria Leitao
    • 5
  • Hugo Sarmento
    • 3
  1. 1.Department of Botany, Faculty of BiologySofia University “St Kl. Ohridski”SofiaBulgaria
  2. 2.Laboratory of Freshwater Ecology, URBO, Department of BiologyUniversity of NamurNamurBelgium
  3. 3.Institut de Ciències del Mar (CSIC)BarcelonaSpain
  4. 4.Jardin Botanique National de BelgiqueMeiseBelgium
  5. 5.Bi-EauAngersFrance

Personalised recommendations