Skip to main content

Phytoplankton response to a changing climate

  • Chapter
  • First Online:
Book cover Phytoplankton responses to human impacts at different scales

Part of the book series: Developments in Hydrobiology ((DIHY,volume 221))

Abstract

Phytoplankton are at the base of aquatic food webs and of global importance for ecosystem functioning and services. The dynamics of these photosynthetic cells are linked to annual fluctuations of temperature, water column mixing, resource availability, and consumption. Climate can modify these environmental factors and alter phytoplankton structure, seasonal dynamics, and taxonomic composition. Here, we review mechanistic links between climate alterations and factors limiting primary production, and highlight studies where climate change has had a clear impact on phytoplankton processes. Climate affects phytoplankton both directly through physiology and indirectly by changing water column stratification and resource availability, mainly nutrients and light, or intensified grazing by heterotrophs. These modifications affect various phytoplankton processes, and a widespread advance in phytoplankton spring bloom timing and changing bloom magnitudes have both been observed. Climate warming also affects phytoplankton species composition and size structure, and favors species traits best adapted to changing conditions associated with climate change. Shifts in phytoplankton can have far-reaching consequences for ecosystem structure and functioning. An improved understanding of the mechanistic links between climate and phytoplankton dynamics is important for predicting climate change impacts on aquatic ecosystems.

Guest editors: N. Salmaso, L. Naselli-Flores, L. Cerasino, G. Flaim, M. Tolotti & J. Padisák / Phytoplankton responses to human impacts at different scales: 16th workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, R., S. Wilhelm & D. Gerten, 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology 12(4): 652–661.

    Article  Google Scholar 

  • Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.

    Article  PubMed  Google Scholar 

  • Alheit, J., C. Mollmann, J. Dutz, G. Kornilovs, P. Loewe, V. Mohrholz & N. Wasmund, 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science 62: 1205–1215.

    Article  Google Scholar 

  • Allen, A. P., J. F. Gillooly & J. H. Brown, 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 19: 202–213.

    Article  Google Scholar 

  • Behrenfeld, M. J., R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. Falkowski, R. M. Letelier & E. S. Boss, 2006. Climate-driven trends in contemporary ocean productivity. Nature 444: 752–755.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S. A., S. Diehl, H. Stibor, G. Trommer, M. Ruhenstroth, C. Jäger & M. Striebel, 2007. Water temperature and mixing depth affect timing and intensity of events during spring succession of the plankton. Oecologia 150: 643–654.

    Article  PubMed  Google Scholar 

  • Berger, S. A., S. Diehl, H. Stibor, G. Trommer & M. Ruhenstroth, 2010. Water temperature and stratification depth independently shift cardinal events during plankton spring succession. Global Change Biology 7: 1954–1965.

    Article  Google Scholar 

  • Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Jarvinen, C. N. Aonghusa, T. Noges, D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13(7): 1314–1326.

    Article  Google Scholar 

  • Bopp, L., O. Aumont, P. Cadule, S. Alvain & M. Gehlen, 2005. Response of diatoms distribution to global warming and potential implications: a global model study. Geophysical Research Letters 32: L19606.

    Article  Google Scholar 

  • Boyce, D. G., M. R. Lewis & B. Worm, 2010. Global phytoplankton decline over the past century. Nature 446: 591–596.

    Article  Google Scholar 

  • Boyd, P. W. & S. C. Doney, 2002. Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical Research Letters 29(16): 53–56.

    Article  Google Scholar 

  • Briceño, H. O. & J. N. Boyer, 2010. Climatic controls on phytoplankton biomass in a sub-tropical estuary, Florida Bay, USA. Estuaries Coasts 33: 541–553.

    Article  Google Scholar 

  • Burckle, L. H., N. J. Shackleton & S. L. Bromble, 1981. Late Quaternary stratigraphy for the equatorial Pacific based upon the diatom Coscinodiscus-nodulifer. Micropaleontology 27(4): 352–355.

    Article  Google Scholar 

  • Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71(2): 163–186.

    Article  Google Scholar 

  • Cloern, J. E., 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34(2): 127–168.

    Article  CAS  Google Scholar 

  • Cloern, J. E., A. D. Jassby, J. K. Thompson & K. A. Hieb, 2007. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proceedings of the National Academy of Sciences of the United States of America 104(47): 18561–18565.

    Article  PubMed  CAS  Google Scholar 

  • Cushing, D. H., 1974. Sea Fisheries Research. Wiley, New York.

    Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073pnas.0902080106.

  • De Senerpont Domis, L. N., W. M. Mooij, S. Hulsmann, E. H. van Nes & M. Scheffer, 2007. Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions? Oecologia 150(4): 682–698.

    Article  PubMed  Google Scholar 

  • Dewar, R. C., B. E. Bedlyn & R. E. McMurtrie, 1999. Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Global Change Biology 5: 615–622.

    Article  Google Scholar 

  • Diehl, S., S. Berger, R. Ptacnik & A. Wild, 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83: 399–411.

    Article  Google Scholar 

  • Edwards, M. & A. J. Richardson, 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430: 881–884.

    Article  PubMed  CAS  Google Scholar 

  • Falkowski, P. G. & M. J. Oliver, 2007. Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology 5(10): 813–819.

    Article  PubMed  CAS  Google Scholar 

  • Fee, E. J., 1976. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Areas, northwestern Ontario: implications for primary production estimates. Limnology and Oceanography 21: 767–783.

    Article  Google Scholar 

  • Field, C. B., M. J. Behrenfeld, J. T. Randerson & P. Falkowski, 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, D. L., S. E. M. Kasian, M. P. Stainton, K. Beaty & M. Lyng, 2001. Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnology and Oceanography 46: 1784–1793.

    Article  Google Scholar 

  • Finkel, Z. V., M. E. Katz, J. D. Wright, O. M. E. Schofield & P. G. Falkowski, 2005. Climatically driven macroevolutionary patterns in the size of marine diatoms over the cenozoic. Proceedings of the National Academy of Sciences of the United States of America 102(25): 8927–8932.

    Article  PubMed  CAS  Google Scholar 

  • Finkel, Z. V., J. Sebbo, S. Feist-Burkhardt, A. J. Irwin, M. E. Katz, O. M. E. Schofield, J. R. Young & P. G. Falkowski, 2007. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.0709381104.

  • Gardner, J. L., A. Peters, M. R. Kearney, L. Joseph & R. Heinsohn, 2011. Declining body size: a third universal response to warming? Trend Ecol Evol 26(6): 285–291.

    Article  Google Scholar 

  • Gervais, F., 1997. Light-dependent growth, dark survival, and glucose uptake by Cryptophytes isolated from a freshwater chemocline. Journal of Phycology 33: 18–25.

    Article  CAS  Google Scholar 

  • Huisman, J. & B. Sommeijer, 2002. Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parameters. Journal of Sea Research 48(2): 83–96.

    Article  Google Scholar 

  • Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. H. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.

    Article  Google Scholar 

  • Huisman, J., N. N. P. Thi, D. M. Karl & B. Sommeijer, 2006. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439(7074): 322–325.

    Article  PubMed  CAS  Google Scholar 

  • IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jäger, C. G., S. Diehl & G. M. Schmidt, 2008. Influence of water column depth and mixing on phytoplankton biomass, community composition, and nutrients. Limnology and Oceanography 53: 2361–2373.

    Article  Google Scholar 

  • Jankowski, T., D. M. Livingstone, H. Buhrer, R. Forster & P. Niederhauser, 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnology and Oceanography 51(2): 815–819.

    Article  Google Scholar 

  • Jansson, M., A. Jonsson, A. Andersson & J. Karlsson, 2010. Biomass and structure of planktonic communities along an air temperature gradient in subarctic Sweden. Freshwater Biology 55(3): 691–700.

    Article  CAS  Google Scholar 

  • Jöhnk, K. D., J. Huisman, J. Sharples, B. Sommeijer, P. M. Visser & J. M. Stroom, 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology 14: 412–495.

    Article  Google Scholar 

  • King, J. R., B. J. Shuter & A. Z. Zimmerman, 1997. The response of the thermal stratification of South Bay (Lake Huron) to climatic variability. Canadian Journal of Fisheries and Aquatic Sciences 54: 1873–1882.

    Google Scholar 

  • Kosten, S., V. L. M. Huszar, E. Becares, L. S. Costa, E. van Donk, L. A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Luerling, T. Noges, S. Romo & M. Scheffer, 2011. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology. doi:10.1111/j.1365-2486.2011.02488.x.

  • Kromkamp, J. C. & T. Van Engeland, 2009. Changes in phytoplankton biomass in the Western Scheldt Estuary during the period 1978–2006. Estuaries and Coasts 33: 270–285.

    Article  Google Scholar 

  • Lewandowska, A. & U. Sommer, 2010. Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Marine Ecology Progress Series 405: 101–111.

    Article  CAS  Google Scholar 

  • Litchman, E., C. A. Klausmeier, O. M. Schofield & P. G. Falkowski, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters 10: 1170–1181.

    Article  PubMed  Google Scholar 

  • Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climate Change 57(1–2): 205–225.

    Article  Google Scholar 

  • Lopez-Urrutia, A., E. San Martin, R. P. Harris & X. Irigoien, 2006. Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences of the United States of America 103: 8739–8744.

    Article  PubMed  CAS  Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace & R. C. Francis, 2002. The Pacific Decadal Oscillation. Journal of Oceanography 58: 35–44.

    Article  Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • McKee, D. & D. Atkinson, 2000. The influence of climate change scenarios on populations of the mayfly Cloeon dipterum. Hydrobiologia 441(1–3): 55–62.

    Article  Google Scholar 

  • McQuatters-Gollop, A., P. C. Reid, M. Edwards, P. H. Burkill, C. Castellani, S. Batten, W. Gieskes, D. Beare, R. R. Bidigare, E. Head, R. Johnson, M. Kahru, J. A. Koslow & A. Pena, 2011. Is there a decline in marine phytoplankton? Nature 466: 591–596.

    Google Scholar 

  • Moran, X. A. G., A. Lopez-Urrutia, A. Calvo-Diaz & W. K. W. Li, 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16(3): 1137–1144.

    Article  Google Scholar 

  • O’Connor, M. I., M. F. Piehler, D. M. Leech, A. Anton & J. F. Bruno, 2009. Warming and resource availability shift food web structure and metabolism. PLoS Biology 7: e1000178.

    Google Scholar 

  • O’Reilly, C. M., S. R. Alin, P. Plisnier, A. S. Cohen & B. A. McKee, 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768.

    Article  PubMed  Google Scholar 

  • Padilla-Gamino, J. L. & R. C. Carpenter, 2007. Seasonal acclimatization of Asparagopsis taxiformis (Rhodophyta) from different biogeographic regions. Limnology and Oceanography 52: 833–842.

    Article  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.

    Article  PubMed  CAS  Google Scholar 

  • Peeters, F., D. Straile, A. Lorke & D. M. Livingstone, 2007. Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Global Change Biology 13(9): 1898–1909.

    Article  Google Scholar 

  • Platt, T., C. Fuentes-Yaco & K. T. Frank, 2003. Spring algal bloom and larval fish survival. Nature 423: 398–399.

    Article  PubMed  CAS  Google Scholar 

  • Ptacnik, R., S. Diehl & S. Berger, 2003. Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnology and Oceanography 48(5): 1903–1912.

    Article  Google Scholar 

  • Rabalais, N. N., R. E. Turner, Q. Dortch, D. Justic, V. J. Bierman & W. J. Wiseman, 2002. Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present and future. Hydrobiologia 475: 39–63.

    Article  Google Scholar 

  • Reynolds, C. S., 1987. Community organization in the freshwater plankton. Symposium of the British Ecological Society 27: 297–325.

    Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterwick, 1983. Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures. Journal of Plankton Research 5: 203–234.

    Article  Google Scholar 

  • Richardson, A. J., 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science 65(3): 279–295.

    Article  Google Scholar 

  • Richardson, T. L. & G. A. Jackson, 2007. Small phytoplankton and carbon export from the surface Ocean. Science 315: 838–840.

    Article  PubMed  CAS  Google Scholar 

  • Riley, G., 1957. Phytoplankton of the North Central Sargasso Sea. Limnology and Oceanography 2: 252–270.

    Google Scholar 

  • Roberts, D., D. A. Hodgson, A. McMinn, E. Verleyen, B. Terry, C. Corbett & W. Vyverman, 2006. Recent rapid salinity rise in three East Antarctic lakes. Journal of Paleolimnology 36: 385–406.

    Article  Google Scholar 

  • Rodriguez, J., J. Tintore, J. T. Allen, J. M. Blanco, D. Gomis, A. Reul, J. Ruiz, V. Rodriguez, F. Echevarria & F. Jimenez-Gomez, 2001. Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature 410: 360–363.

    Article  PubMed  CAS  Google Scholar 

  • Rüger, T. & U. Sommer, 2012. Warming does not always benefit the small – results from a plankton experiment. Aquatic Botany 97: 64–68.

    Google Scholar 

  • Rühland, K. & J. P. Smol, 2005. Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 226(1–2): 1–16.

    Article  Google Scholar 

  • Rühland, K., A. M. Paterson & J. P. Smol, 2008. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology 14. doi:10.1111/j.1365-2486.2008.01670.x.

  • Salmaso, N., 2005. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnology and Oceanography 50(2): 553–565.

    Article  Google Scholar 

  • Saros, J. E., S. J. Interlandi, A. P. Wolfe & D. R. Engstrom, 2003. Recent changes in the diatom community structure of lakes in the Beartooth Mountain Range, USA. Arctic, Antarctic, and Alpine Research 35(1): 18–23.

    Article  Google Scholar 

  • Schalau, K., K. Rinke, D. Straile & F. Peeters, 2008. Temperature is the key factor explaining interannual variability of Daphnia development in spring – a modelling study. Oecologia 157: 531–543.

    Article  PubMed  Google Scholar 

  • Schindler, D. W., P. J. Curtis, B. R. Parker & M. P. Stainton, 1996. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379(6567): 705–708.

    Article  CAS  Google Scholar 

  • Schmidt, D. N., H. R. Thierstein, J. Bollmann & R. Schiebel, 2004. Abiotic forcing of plankton evolution in the Cenozoic. Science 303(5655): 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Schmittner, A., 2005. Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434(7033): 628–633.

    Article  PubMed  CAS  Google Scholar 

  • Seebens, H., D. Straile, R. Hoegg, H. B. Stich & U. Einsle, 2007. Population dynamics of a freshwater calanoid copepod: complex responses to changes in trophic status and climate variability. Limnology and Oceanography 52(6): 2364–2372.

    Article  Google Scholar 

  • Shaffer, G., S. M. Olsen & J. O. P. Pedersen, 2009. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nature Geoscience 2: 105–109.

    Article  CAS  Google Scholar 

  • Siegel, D. A., S. C. Doney & J. A. Yoder, 2002. The North Atlantic spring phytoplankton bloom and Sverdrup’s critical depth hypothesis. Science 296(5568): 730–733.

    Article  PubMed  CAS  Google Scholar 

  • Smayda, T. J., 1969. Some measurements of sinking rate of fecal pellets. Limnology and Oceanography 14(4): 621.

    Article  Google Scholar 

  • Smayda, T. J., 1997. What is a bloom? A commentary. Limnology and Oceanography 42: 1132–1136.

    Article  Google Scholar 

  • Smayda, T. J., D. Borkman, G. Beaugrand & A. Belgrano, 2004. Ecological effects of climate variation in the North Atlantic: phytoplankton. In Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Belgrano & B. Planque (eds), Marine Ecosystems and Climate Variation – the North Atlantic. Oxford University Press, Oxford: 49–58.

    Google Scholar 

  • Smith, W. & D. Nelson, 1985. Phytoplankton bloom produced by receding ice edge in the Ross Sea – spatial coherence with the density field. Science 227: 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K. L., B. H. Robison, J. J. Helly, R. S. Kaufmann, H. A. Ruhl, T. J. Shaw, B. S. Twining & M. Vernet, 2007. Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science 317: 478–482.

    Article  PubMed  CAS  Google Scholar 

  • Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Ruhland, S. Sorvari, D. Antoniades, S. J. Brooks, M. A. Fallu, M. Hughes, B. E. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, E. Saulnier-Talbot, S. Siitoneni, N. Solovieva & J. Weckstrom, 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102(12): 4397–4402.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, U., 1989. Plankton Ecology: Succession in Plankton Communities. Springer, Berlin.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fur Hydrobiologie 106: 433–471.

    Google Scholar 

  • Sommer, U. & K. Lengfellner, 2008. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Global Change Biology 14(6): 1199–1208.

    Article  Google Scholar 

  • Sommer, U. & A. Lewandowska, 2011. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology 17: 154–162.

    Article  Google Scholar 

  • Sommer, U., H. Stibor, A. Katechakis, F. Sommer & T. Hansen, 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484: 11–20.

    Article  Google Scholar 

  • Sorvari, S., A. Korhola & R. Thompson, 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8(2): 171–181.

    Article  Google Scholar 

  • Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K. S. Chan, N. G. Yoccoz & B. Adlandsvik, 2003. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proceedings of the Royal Society of London, Series B: Biological Sciences 270(1529): 2087–2096.

    Article  Google Scholar 

  • Straile, D., 2002. North Atlantic Oscillation synchronizes food-web interactions in central European lakes. Proceedings of the Royal Society of London, Series B: Biological Sciences 269(1489): 391–395.

    Article  Google Scholar 

  • Strecker, A. L., T. P. Cobb & R. D. Vinebrooke, 2004. Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnology and Oceanography 49(4): 1182–1190.

    Article  CAS  Google Scholar 

  • Sverdrup, H., 1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil International pour l’ Exploration de la Mer 18: 287–295.

    Google Scholar 

  • Taucher, J. & A. Oschlies, 2011. Can we predict the direction of marine primary production change under global warming? Geophysical Research Letters 38: L02603.

    Article  Google Scholar 

  • Thackeray, S. J., T. H. Sparks, M. Frederiksen, S. Burthe, P. J. Bacon, J. R. Bell, M. S. Botham, T. M. Brereton, P. W. Bright, L. Carvalho, T. Clutton-Brock, A. Dawson, M. Edwards, J. M. Elliott, R. Harrington, D. Johns, I. D. Jones, J. T. Jones, D. I. Leechk, D. B. Roy, W. A. Scottt, M. Smith, R. J. Smithers, I. J. Winfield & S. Wanless, 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology 16: 3304–3313.

    Article  Google Scholar 

  • Tilzer, M. M., M. Elbrachter, W. W. Gieskes & B. Beese, 1986. Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biology 5: 105–111.

    Article  Google Scholar 

  • Tirok, K. & U. Gaedke, 2007. The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change: long-term observations and model analysis. Oecologia 15: 625–642.

    Google Scholar 

  • Vehmaa, A. & K. Salonen, 2009. Development of phytoplankton in Lake Pääjärvi (Finland) during under-ice convective mixing period. Aquatic Ecology 43: 693–705.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lakes and River Ecosystems. Academic, Tokyo.

    Google Scholar 

  • Wilhelm, S. & R. Adrian, 2008. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biology 53: 226–237.

    Article  CAS  Google Scholar 

  • Winder, M. & J. E. Cloern, 2010. The annual cycles of phytoplankton biomass. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 3215–3226.

    Article  Google Scholar 

  • Winder, M. & D. A. Hunter, 2008. Temporal organization of phytoplankton communities linked to chemical and physical forcing. Oecologia 156: 179–192.

    Article  PubMed  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004a. Climate change uncouples trophic interactions in a lake ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004b. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844–1856.

    Article  Google Scholar 

  • Winder, M., J. E. Reuter & G. Schladow, 2009. Lake warming favours small-sized planktonic diatoms. Proceedings of the Royal Society of London, Series B: Biological Sciences 276: 427–435.

    Article  Google Scholar 

  • Winder, M., S. A. Berger, A. Lewandowska, N. Aberle, K. Lengfellner, U. Sommer & S. Diehl, 2012. Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions. Marine Biology. doi:10.1007/s00227-012-1964-z.

Download references

Acknowledgment

This work was supported by the DFG (Deutsche Forschungsgemeinschaft) within the priority program 1162 “AQUASHIFT” (The impact of climate variability on aquatic ecosystems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Winder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Winder, M., Sommer, U. (2012). Phytoplankton response to a changing climate. In: Salmaso, N., Naselli-Flores, L., Cerasino, L., Flaim, G., Tolotti, M., Padisák, J. (eds) Phytoplankton responses to human impacts at different scales. Developments in Hydrobiology, vol 221. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5790-5_2

Download citation

Publish with us

Policies and ethics