Skip to main content

Catchment land use and trophic state impacts on phytoplankton composition: a case study from the Rotorua lakes’ district, New Zealand

  • PHYTOPLANKTON
  • Chapter
  • First Online:
Phytoplankton responses to human impacts at different scales

Part of the book series: Developments in Hydrobiology ((DIHY,volume 221))

Abstract

Trophic state of lakes has been related to catchment land use, but direct links between phytoplankton taxa and land use are limited. Phytoplankton composition, represented by relative cell abundance of phyla, was measured over a period of 4 years in 11 lakes in the Rotorua region, New Zealand. The lakes differed in morphometry, trophic state and land use (as percentage catchment area). We tested whether relative proportion of land uses, indirectly representing relative nutrient loading, was the overarching driver of phytoplankton composition. Trophic state was correlated negatively with native forest and positively with pasture and urban area. Cyanoprokaryota were correlated negatively with native forest and positively with pasture and trophic state, Chlorophyta were correlated positively with native forest and urban land use and negatively with pasture and trophic state, and Bacillariophyta were positively correlated with dissolved reactive silica to dissolved inorganic nitrogen (Si:DIN) and Si to dissolved reactive phosphorus (Si:DRP) ratios. Lakes with higher nutrient loads had higher trophic state and Cyanoprokaryota dominance. Chlorophyta were negatively correlated with Cyanoprokaryota and Bacillariophyta, suggesting competition amongst these groups. Our results apply to lakes potentially subject to changes in catchment land use, which may have implications for trophic state, phytoplankton composition and Cyanoprokaryota blooms.

Guest editors: N. Salmaso, L. Naselli-Flores, L. Cerasino, G. Flaim, M. Tolotti & J. Padisák / Phytoplankton responses to human impacts at different scales: 16th workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abell, J. M., D. Özkundakci & D. P. Hamilton, 2010. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems 13: 966–977.

    Article  CAS  Google Scholar 

  • Abell, J. M., D. Özkundakci, D. P. Hamilton & S. D. Miller, 2011. Relationships between land use and nitrogen and phosphorus in New Zealand lakes. Marine & Freshwater Research 62: 162–175.

    CAS  Google Scholar 

  • Anon, 2011. State of the Rotorua/Te Arawa lakes 2009–2010. Bay of Plenty Regional Council, Rotorua District Council and Te Arawa Maori Trust Board, Bay of Plenty Regional Council, Whakatane, New Zealand.

    Google Scholar 

  • Arar, E. J. & G. B. Collins, 1997. In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence, Revision 1.2. National Exposure Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio: 22 pp.

    Google Scholar 

  • Bellinger, E. G. & D. C. Sigee, 2010. Freshwater Algae: Identification and Use as Bioindicators. John Wiley & Sons, Ltd, Chichester, UK.

    Book  Google Scholar 

  • Brookes, J. D. & C. C. Carey, 2011. Resilience to blooms. Science 334(46): 46–47.

    Article  PubMed  CAS  Google Scholar 

  • Burns, N. M., J. C. Rutherford & J. S. Clayton, 1999. A monitoring and classification system for New Zealand lakes and reservoirs. Journal of Lakes Research and Management 15: 225–271.

    Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22(2): 361–369.

    Article  CAS  Google Scholar 

  • Clesceri, L. S., A. E. Greenberg & A. D. Eaton (eds), 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Water Works Association and the Water Environment Federation, New York, USA.

    Google Scholar 

  • Codd, G. A., L. F. Morrison & J. S. Metcalf, 2005. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203: 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A. B. & C. E. Thomsen, 1988. Nitrogen and phosphorus in streamwaters from adjacent pasture, pine, and native forest catchments. New Zealand Journal of Marine and Freshwater Research 22: 279–291.

    Article  CAS  Google Scholar 

  • Dignum, M., H. C. P. Matthijs, H. J. Pel, H. J. Laanbroek & L. R. Mur, 2005. Nutrient limitation of freshwater cyanobacteria. In Huisman, J., H. C. P. Matthijs & P. M. Visser (eds), Harmful Algae. Springer, Netherlands.

    Google Scholar 

  • Dodson, S. I., S. E. Arnott & K. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.

    Article  Google Scholar 

  • Dokulil, M. T., 1993. Long-term responses of phytoplankton population dynamics to oligotrophication in Mondsee, Austria. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 25: 657–661.

    Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    Article  CAS  Google Scholar 

  • Edmondson, W. T. & J. T. Lehman, 1981. The effects of change in nutrient income on the conditions of Lake Washington. Limnology and Oceanography 26: 1–29.

    Article  Google Scholar 

  • Elliot, A. H., R. B. Alexander, G. E. Schwarz, U. de Shankar, J. P. S. Sukias & G. B. McBride, 2005. Estimation of nutrient sources and transport for New Zealand using the hybrid mechanistic-statistical model SPARROW. Journal of Hydrology (NZ) 44: 1–27.

    Google Scholar 

  • Environment Bay of Plenty, Rotorua District Council & Te Arawa Maori Trust Board, 2006. Okaro Action Plan, Environmental Publication 2006/03. Environment Bay of Plenty, Whakatane, New Zealand.

    Google Scholar 

  • Fisher, T. R., L. H. Harding, D. W. Stanley & L. G. Ward, 1988. Phytoplankton, nutrients and turbidity in the Chesapeake, Delaware and Hudson estuaries. Estuarine, Coastal and Shelf Science 27: 61–93.

    Article  CAS  Google Scholar 

  • Fisher, T. R., E. R. Peele, J. W. Ammerman & L. H. Harding, 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Marine Ecology Progress Series 82: 51–63.

    Article  Google Scholar 

  • Flint, E. A., 1977. Phytoplankton in seven monomictic lakes near Rotorua, New Zealand. New Zealand Journal of Botany 15: 197–208.

    Article  Google Scholar 

  • Gabriel, K. R., 1971. The biplot graphical display of matrices with application to principal component analysis. Biometrika 58: 453–467.

    Article  Google Scholar 

  • Geider, R. J., H. L. MacIntyre & T. M. Kana, 1997. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series 148: 187–200.

    Article  Google Scholar 

  • Hamilton, D. P., 2005. Land use impacts on nutrient export in the Central Volcanic Plateau, North Island. New Zealand Journal of Forestry 49: 27–31.

    Google Scholar 

  • Hamilton, D. P. & M. J. Landman, 2011. Lake restoration: an experimental ecosystem approach for eutrophication control. Hydrobiologia 661: 1–3.

    Article  Google Scholar 

  • Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology 38: 159–168.

    Article  Google Scholar 

  • Hamilton, D. P., G. B. Douglas, J. A. Adeney & L. C. Radke, 2006. Seasonal changes in major ions, nutrients and Chlorophyll-a at two sites in the Swan River estuary, Western Australia. Marine & Freshwater Research 57: 803–815.

    Article  CAS  Google Scholar 

  • Hamilton, D. P., K. R. O’Brien, M. A. Burford, J. D. Brookes & C. G. McBride, 2010. Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquatic Sciences – Research Across Boundaries 72: 295–307.

    CAS  Google Scholar 

  • Harper, D. M. & W. D. P. Stewart, 1987. The effects of land use upon water chemistry, particularly nutrient enrichment, in shallow lowland lakes: comparative studies of three lochs in Scotland. Hydrobiologia 148: 211–229.

    Article  CAS  Google Scholar 

  • Hötzel, G. & R. Croome, 1999. A Phytoplankton Method Manual for Australian Freshwaters. Land and Water Resources Research and Development Corporation Occasional Paper 22/99, Canberra, Australia.

    Google Scholar 

  • Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. Edwin, A. Kardinaal, J. M. H. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.

    Article  Google Scholar 

  • Idso, B. S., 1973. On the concept of lake stability. Limnology and Oceanography 18: 681–683.

    Article  Google Scholar 

  • Interlandi, S. J. & S. S. Kilham, 2001. Limiting resources and the regulation of diversity in phytoplankton. Ecology 82: 1270–1282.

    Article  Google Scholar 

  • Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from Cyanobacteria to Chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Kohler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, C. L. Schelske, D. Straile, I. Tatrai, E. Willen & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Johnes, P., B. Moss & G. Phillips, 1996. The determination of total nitrogen and total phosphorus concentrations in freshwaters from land use, stock headage and population data: testing of a model for use in conservation and water quality management. Freshwater Biology 36: 451–473.

    Article  CAS  Google Scholar 

  • Komárek, J., 2005. The modern classification of cyanoprokaryotes (cyanobacteria). Oceanological and Hydrobiological Studies 36: 5–12.

    Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. Peeters, S. Bonilla, L. Costa, M. Lüring, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • McColl, R. H. S., 1972. Chemistry and trophic status of seven New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 6: 399–447.

    Article  CAS  Google Scholar 

  • McColl, R. H. S., 1975. Chemical and biological conditions in lakes of the Volcanic Plateau. In Jolly, V. H. & J. M. A. Brown (eds), New Zealand Lakes. Auckland University Press, Auckland, New Zealand: 123–139.

    Google Scholar 

  • Nygaard, G., 1949. Hydrobiological studies on some Danish ponds and lakes, II: the quotient hypothesis and some little known or new phytoplankton organisms. Kunglige Danske Vidensk, Selskab 7: 1–242.

    Google Scholar 

  • O’Brien, K. R., G. N. Ivey, D. P. Hamilton & A. M. Waite, 2003. Simple mixing criteria for the growth of negatively buoyant phytoplankton. Limnology and Oceanography 48: 1326–1337.

    Article  Google Scholar 

  • Padisàk, J., C. S. Reynolds & U. Sommer (eds), 1993. Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H. W., R. S. Fulton, P. H. Moisander & J. Dyble, 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World Journal 1: 76–113.

    Article  CAS  Google Scholar 

  • Paul, W. J., D. P. Hamilton & M. M. Gibbs, 2008. Low-dose alum application trialled as a management tool for internal nutrient loads in Lake Okaro, New Zealand. New Zealand Journal of Marine and Freshwater Research 42: 207–217.

    Article  CAS  Google Scholar 

  • Pettersson, K., E. Herlitz & V. Istvánovics, 1993. The role of Gloeotrichia echinulata in the transfer of phosphorus from sediments to water in Lake Erken. Hydrobiologia 253: 123–129.

    Google Scholar 

  • Peterson, G. S., M. E. Sierszen, P. M. Yurista & J. R. Kelly, 2007. Stable nitrogen isotopes of plankton and benthos reflect a landscape-level influence on Great Lakes coastal ecosystems. Journal of Great Lakes Restoration 33: 27–41.

    Article  CAS  Google Scholar 

  • Ptacnik, R., L. Lepisto, E. Willen, P. Brettum, T. Andersen, S. Rekolainen, A. Lyche Solheim & L. Carvalho, 2008. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquatic Ecology 42: 227–236.

    Article  CAS  Google Scholar 

  • Read, J. S., D. P. Hamilton, I. D. Jones, K. Muraoka, L. A. Winslowd, R. Kroiss, C. H. Wu & E. Gaiser, 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling and Software 26: 1325–1336.

    Article  Google Scholar 

  • Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of seawater. In Hill, M. N. (ed.), The Sea, Vol. 2. Wiley Interscience, New York: 26–79.

    Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., 1987. Community organisation in the freshwater plankton. In Gee, M. & P. S. Giller (eds), Organization of communities, past and present. Blackwell Scientific Publications, Oxford: 267–295.

    Google Scholar 

  • Reynolds, C. S., 1990. Temporal scales of variability in pelagic environments and the response of phytoplankton. Freshwater Biology 23: 25–53.

    Article  Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Excellence in Ecology no. 9. Ecology Institute, Oldendorf/Luhe, Germany.

    Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 396–370: 11–26.

    Article  Google Scholar 

  • Ross, C. W., M. S. Watt, R. L. Parfitt, R. Simcock, J. Dando, G. Coker, P. W. Clinton & M. R. David, 2009. Soil quality relationships with tree growth in exotic forests in New Zealand. Forest Ecology and Management 258: 2326–2334.

    Article  Google Scholar 

  • Round, F. E., 1963. The taxonomy of the Chlorophyta. British Phycological Bulletin 2: 224–235.

    Article  Google Scholar 

  • Ryan, E. F., I. C. Duggan, D. P. Hamilton & D. F. Burger, 2006. Phytoplankton assemblages in North Island lakes in New Zealand: is trophic state, mixing, or light climate more important? New Zealand Journal of Marine and Freshwater Research 40: 389–398.

    Article  Google Scholar 

  • Salmaso, N. & J. Padisak, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Scholes, P., 2009. Rotorua Lakes Water Quality Report 2009, Environmental Publication 2009/12. Environment Bay of Plenty, Whakatane, New Zealand.

    Google Scholar 

  • Shannon, C. E., 1948. A mathematical theory of communication. Bell System Technical Journal 27(379–423): 623–656.

    Google Scholar 

  • Smith, V. H., 1983. Low nitrogen to phosphorus ratios favour dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient input on freshwater, marine, and terrestrial ecosystem. Environmental Pollution 100: 179–196.

    Article  PubMed  CAS  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509: 135–145.

    Article  Google Scholar 

  • Soranno, P. A., S. L. Hubler, S. R. Carpenter & R. C. Lathrop, 1996. Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecological Applications 6: 865–878.

    Article  Google Scholar 

  • StatSoft, Inc., 2009. STATISTICA (data analysis software system), version 9.0 [available on internet at www.statsoft.com].

  • Stockner, J. G., 1972. Paleolimnology as a means of assessing eutrophication. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 18: 1018–1030.

    Google Scholar 

  • Trimbee, A. M. & E. E. Prepas, 1988. The effect of oxygen depletion on the timing and magnitude of blue-green algal blooms. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 23: 220–226.

    Google Scholar 

  • Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justić, R. F. Shaw & J. Cope, 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences of the United States of America 95: 13048–13051.

    Article  PubMed  CAS  Google Scholar 

  • US Environmental Protection Agency, 2007. Standard Operating Procedure for Phytoplankton Analysis. US Environmental Protection Agency: 42 pp.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen phytoplankton-methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 38.

    Google Scholar 

  • Vincent, W. F., M. M. Gibbs & S. J. Dryden, 1984. Accelerated eutrophication in a New Zealand lake: Lake Rotoiti, Central North Island. New Zealand Journal of Marine and Freshwater Research 75: 431–440.

    Article  Google Scholar 

  • von Westernhagen, N., D. P. Hamilton, C. A. Pilditch, 2010. Temporal and spatial variations in phytoplankton productivity in surface waters of a warm-temperate, monomictic lake in New Zealand. Hydrobiologia 652:57–70.

    Google Scholar 

  • Vörösmarty, C. J., P. Green, J. Salisbury & B. Richard, 2000. Global water resources: vulnerability from climate change and population growth. Science 289: 284–288.

    Article  PubMed  Google Scholar 

  • Wagner, C. & R. Adrian, 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnology and Oceanography 54: 2460–2468.

    Article  Google Scholar 

  • Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 487–495.

    Article  Google Scholar 

  • Webb, C. O., D. D. Ackerly, M. A. McPeek & M. J. Donoghue, 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475–505.

    Google Scholar 

  • White, E., K. Law, G. W. Payne & S. Pickmere, 1985. Nutrient demand and availability among planktonic communities – an attempt to assess nutrient limitation to plant growth in 12 central volcanic plateau lakes. New Zealand Journal of Marine and Freshwater Research 19: 49–62.

    Article  CAS  Google Scholar 

  • Wood, S. A., A. Rueckert, D. P. Hamilton, C. Cary & D. A. Dietrich, 2011. Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom. Environmental Microbiology Reports 3: 118–124.

    Article  CAS  Google Scholar 

  • Zohary, T. & R. Robarts, 1998. Experimental study of microbial P limitation in the eastern Mediterranean. Limnology and Oceanography 43: 387–395.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy J. Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Paul, W.J., Hamilton, D.P., Ostrovsky, I., Miller, S.D., Zhang, A., Muraoka, K. (2012). Catchment land use and trophic state impacts on phytoplankton composition: a case study from the Rotorua lakes’ district, New Zealand. In: Salmaso, N., Naselli-Flores, L., Cerasino, L., Flaim, G., Tolotti, M., Padisák, J. (eds) Phytoplankton responses to human impacts at different scales. Developments in Hydrobiology, vol 221. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5790-5_11

Download citation

Publish with us

Policies and ethics