Watershed land use types as drivers of freshwater phytoplankton structure

  • Matina Katsiapi
  • Antonios D. Mazaris
  • Evangelia Charalampous
  • Maria Moustaka-Gouni
Part of the Developments in Hydrobiology book series (DIHY, volume 221)


The potential importance of watershed land use types, lake/watershed morphometry/topography and geographic distance as drivers of phytoplankton community composition was evaluated by using data collected from 18 freshwaters (lakes and reservoirs) distributed around Greece. In all freshwaters, phytoplankton species composition showed a strong correlation with the composition of land uses within their watersheds but no correlation with morphometry/topography and geographic distance. Cyanobacteria were found to be associated with artificial and agricultural land use types. Chrysophytes were closely associated to forested areas whereas euglenophytes to industrial, commercial, and transport units. Phytoplankton total biomass was significantly higher in freshwaters with a cover of agricultural and artificial land use >30% in their watersheds. This rather low threshold of agricultural and artificial land use cover might be indicative of the higher sensitivity of Mediterranean freshwaters to eutrophication process. Analysis performed separately for lakes and reservoirs revealed some diverse patterns with lake morphometric/topographic variables significantly affecting similarity in species occurrence. The results demonstrate that land use types reflecting anthropogenic pressures could act as critical drivers explaining phytoplankton structure. Our research suggests that Mediterranean freshwaters could be highly sensitive to land use types within their watersheds, thus landscape structure and configuration should be taken into account toward effective conservation and management plans.


Land use types Drivers Freshwater phytoplankton Lakes and reservoirs Mediterranean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez Cobelas, M., C. Rojo & D. G. Angeler, 2005. Mediterranean limnology: current status, gaps and the future. Journal of Limnology 64: 13–29.CrossRefGoogle Scholar
  2. Borics, G., B. Tóthmérész, I. Grigorszky, J. Padisák, G. Várbiró & S. Szabó, 2003. Algal assemblage types of bog-lakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145–155.CrossRefGoogle Scholar
  3. Burns, C. W. & L. M. Galbraith, 2007. Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research 29: 127–139.CrossRefGoogle Scholar
  4. Carney, E., 2009. Relative influence of lake age and watershed land use on trophic state and water quality of artificial lakes in Kansas. Lake and Reservoir Management 25: 199–207.CrossRefGoogle Scholar
  5. Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.CrossRefGoogle Scholar
  6. Carpenter, S. R., E. H. Stanley & M. J. Vander Zanden, 2011. State of the world’s freshwater ecosystems: physical, chemical and biological changes. Annual Review of Environment and Resources 36: 75–99.CrossRefGoogle Scholar
  7. Chrisostomou, A., M. Moustaka-Gouni, S. Sgardelis & T. Lanaras, 2009. Air-dispersed phytoplankton in a Mediterranean River-Reservoir System (Aliakmon-Polyphytos, Greece). Journal of Plankton Research 31: 877–884.CrossRefGoogle Scholar
  8. Clarke, K. R. & R. M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth, UK.Google Scholar
  9. EEA, 1993. CORINE Land Cover Technical Guide: 136.Google Scholar
  10. Genitsaris, S., K. A. Kormas & M. Moustaka-Gouni, 2011. Airborne algae and cyanobacteria: occurrence and related health effects. Frontiers in Bioscience E3: 772–787.CrossRefGoogle Scholar
  11. GIS by ESRI, 1994. Cell-based modeling with grid. Environmental Systems Research Institute Inc., USA.Google Scholar
  12. Green, J. L., A. J. Holmes, M. Westoby, I. Oliver, D. Briscoe, M. Dangerfield, M. Gillings & A. Beattie, 2004. Spatial scaling of microbial eukaryote diversity. Nature 430: 135–138.Google Scholar
  13. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.Google Scholar
  14. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalge. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  15. Hoffmann, M. D. & S. I. Dodson, 2005. Land use, primary productivity, and lake area as descriptors of zooplankton diversity. Ecology 86: 255–261.CrossRefGoogle Scholar
  16. Jørgensen, S. E., H. Löffler, W. Rast & M. Straškraba, 2005. Lake and Reservoir Management. First Edition, Elsevier.Google Scholar
  17. Katsiapi, M., M. Moustaka, E. Michaloudi & A. K. Kormas, 2011. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece). Environmental Monitoring and Assessment 185: 563–575.CrossRefGoogle Scholar
  18. Kennedy, R. H., 1999. Reservoir design and operation: limnological implications and management opportunities. In Tundisi, J. G. & M. Straškraba (eds), Theoretical reservoir ecology and its applications. Backhuys, The Netherlands: 1–28.Google Scholar
  19. Kruk, C., L. Rodriguez-Gallego, M. Meerhoff, F. Quintans, G. Lacerot, N. Mazzeo, F. Scasso, J. C. Paggi, E. T. H. M. Peeters & S. Marten, 2009. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshwater Biology 54: 2628–2641.CrossRefGoogle Scholar
  20. Lambin, E. F., H. Geist & R. R. Rindfuss, 2006. Introduction: local processes with global impacts. In Lambin, E. F. & H. Geist (eds), Land-Use and Land-Cover Change: Local Processes and Global Impacts (Global Change A—The IGBP Series). Springer, Berlin: 1–8.Google Scholar
  21. Lampert, W. & U. Sommer, 2007. Limnoecology, 2nd ed. Oxford University Press Inc., New York.Google Scholar
  22. LAWA, 2003. German Guidance document for the implementation of the EC Water Framework Directive.
  23. Legendre, P., 2000. Comparison of permutation methods for the partial correlation and partial Mantel tests. Journal of Statistical Computation and Simulation 67: 37–73.CrossRefGoogle Scholar
  24. Liu, W., Q. Zhang & G. Liu, 2011. Effects of watershed land use and lake morphometry on the trophic state of Chinese lakes: implications for eutrophication control. Clean-Soil, Air, Water 39: 35–42.CrossRefGoogle Scholar
  25. Maberly, S. C., L. King, C. E. Gibson, L. May, R. I. Jones, M. M. Dent & C. Jordan, 2003. Linking nutrient limitation and water chemistry in upland lakes to catchment characteristics. Hydrobiologia 506–509: 83–91.CrossRefGoogle Scholar
  26. Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Ovreas, A. L. Reysenbach, V. H. Smith & J. T. Staley, 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4: 102–112.PubMedCrossRefGoogle Scholar
  27. Mazaris, A. D., M. Moustaka-Gouni, E. Michaloudi & D. Bobori, 2010. Biogeographical patterns of freshwater micro- and microorganisms: a comparison between phytoplankton, zooplankton and fish in the eastern Mediterranean. Journal of Biogeography 37: 1341–1351.CrossRefGoogle Scholar
  28. Meybeck, M. & R. Helmer, 1996. An introduction to water quality. In Chapman, D. (ed.), Water quality assessments, 2nd ed. Taylor & Francis, New York: 1–22.Google Scholar
  29. Michaloudi, E., M. Moustaka-Gouni, S. Gkelis & K. Pantelidakis, 2009. Plankton community structure during an ecosystem disruptive algal bloom of Prymnesium parvum. Journal of Plankton Research 31: 301–309.CrossRefGoogle Scholar
  30. Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: general synthesis. Island Press and World Resources Institute, Washington, DC.Google Scholar
  31. Moustaka-Gouni, M., 1993. Phytoplankton succession and diversity in a warm monomictic, relatively shallow lake: Lake Volvi, Macedonia, Greece. Hydrobiologia 249: 33–42.CrossRefGoogle Scholar
  32. Moustaka-Gouni, M., K. A. Kormas, P. Polykarpou, S. Gkelis, D. Bobori & E. Vardaka, 2010. Polyphasic evaluation of Aphanizomenon issatschenkoi and Raphidiopsis mediterranea in a Mediterranean lake. Journal of Plankton Research 32: 927–936.CrossRefGoogle Scholar
  33. Padisák, J., G. Borics, I. Grigorszky & E. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.CrossRefGoogle Scholar
  34. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  35. Perry, J. & E. Vanderklein, 1996. Water quality: management of a natural resource. Blackwell Science, USA.Google Scholar
  36. Quinn, G. P. & M. J. Keough, 2002. Experimental design and data analysis. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  37. Reche, I., E. Pulido-Villena, R. Morales-Baquero & E. O. Casamayor, 2005. Does ecosystem size determine aquatic bacterial richness? Ecology 86: 1715–1722.CrossRefGoogle Scholar
  38. Reynolds, C. A., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111–142.CrossRefGoogle Scholar
  39. Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369(370): 11–26.CrossRefGoogle Scholar
  40. Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.CrossRefGoogle Scholar
  41. Rojo, C., E. Ortega-Mayagoitia & M. Alvarez-Cobelas, 2000. Lack of pattern among phytoplankton assemblages. Or what does the exception to the rule mean? Hydrobiologia 424: 133–139.CrossRefGoogle Scholar
  42. Rosenberg, M. S., 2001. PASSAGE. Pattern analysis, spatial statistics and geographic exegesis. Version 1.0. Arizona StateUniversity, Tempe, AZ.Google Scholar
  43. Silva, T., B. Vinçon-Leite, B. J. Lemaire, B. Tassin & N. Nascimento, 2011. Modelling cyanobacteria in urban lakes: an integrated approach including watershed hydrologic modeling. Urban waters: resource or risk? WWW-YES-2011 Proceedings: 78–85.Google Scholar
  44. Soininen, J., M. Kokocinski, S. Estlander, J. Kotanen & J. Heino, 2007. Neutrality, niches, and determinants of plankton metacommunity structure across boreal wetland ponds. Ecoscience 14: 146–154.CrossRefGoogle Scholar
  45. Sommaruga, R. & E. O. Casamayor, 2009. Bacterial ‘cosmopolitanism’ and importance of local environmental factors for community composition in remote high-altitude lakes. Freshwater Biology 54: 994–1005.CrossRefGoogle Scholar
  46. Sommer, U., 1989. The role of competition for resources in phytoplankton species succession. In Sommer, U. (ed.), Plankton Ecology – Succession in Plankton Communities. Springer, Berlin: 57–106.Google Scholar
  47. Stomp, M., J. Huisman, G. G. Mittelbach, E. Litchman & C. A. Klausmeier, 2011. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92: 2096–2107.PubMedCrossRefGoogle Scholar
  48. Utermöhl, H., 1958. Zur Vervollkommnung der quantitative Phytoplanktonmethodik. Mitteilungen Internationale Vereinigung Theorie Angewandte Limnologie 9: 1–38.Google Scholar
  49. Van Egeren, S. J., S. I. Dodson, B. Torke & J. T. Maxted, 2011. The relative significance of environmental and anthropogenic factors affecting zooplankton community structure in South Wisconsin Till Plain lakes. Hydrobiologia 668: 137–146.CrossRefGoogle Scholar
  50. Watson, S. B., E. McCauley & J. A. Dawning, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of different nutrient status. Limnology Oceanography 42: 487–495.CrossRefGoogle Scholar
  51. Weijters, M. J., J. H. Janse, R. Alkemade & J. T. A. Verhoeven, 2009. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquatic Conservation 19: 104–112.CrossRefGoogle Scholar
  52. Wetzel, R. G., 2001. Limnology, 3rd ed. Academic Press, San Diego, CA, USA.Google Scholar
  53. Whitaker, R. J., D. W. Grogan & J. W. Taylor, 2003. Geographic barriers isolate endemic populations of hyper-thermophilic archaea. Science 301: 976–978.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Matina Katsiapi
    • 1
  • Antonios D. Mazaris
    • 2
  • Evangelia Charalampous
    • 1
  • Maria Moustaka-Gouni
    • 1
  1. 1.Department of BotanyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Ecology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations