Effects of Climate and Extreme Events on Wildfire Regime and Their Ecological Impacts

  • Beatriz DuguyEmail author
  • Susana Paula
  • Juli G. Pausas
  • Josè Antonio Alloza
  • Teresa Gimeno
  • Ramon V. Vallejo
Part of the Advances in Global Change Research book series (AGLO, volume 51)


Fire regime has been affected by climate changes in the past, and is expected to do so in relation to the projected climate warming in the near future. For the Mediterranean Basin, higher fire risk, longer fire season, and more frequent large, severe fires are expected. The projected increased drought for the Mediterranean Basin would make ecosystems more vulnerable to fire, and more difficult to restore after fire. Ecosystem vulnerability is assessed considering soil susceptibility to post-fire erosion, and vegetation capacity to recover after fire.

In the perspective of a more severe fire regime and harsher climate, two main strategies are proposed: (1) mitigation strategies to reduce fire impacts; and (2) adaptation strategies to improve ecosystems capacity to cope with the new climate and fire regime. The focus of adaptation will be on strategies for vegetation management to reduce fire hazard, and increase ecosystem resilience, especially in highly vulnerable areas.

Restoration techniques are proposed to increase ecosystem resilience to fire by using resprouting woody species, and by increasing the diversity of species in post-fire afforestation/reforestation projects. To face increased drought, several techniques to improve water availability and water use efficiency for introduced seedling are discussed.

Finally, the landscape dimension of fire prevention and restoration is addressed through a spatial decision support system, including a fire propagation model combined with an ecosystem vulnerability model in GIS format. The system allows assessing fire risk, identifying values at risk, and prioritizing fire prevention and post-fire restoration actions.


Fire regime Vulnerability Fire resilience Plantations Fire modeling 



This chapter has been developed from research conducted under the CIRCE EC FP6 project (ref. 036961), GRACCIE, Spanish Consolider INGENIO 2010 (CSD2007-7), FEEDBACKS, Generalitat Valenciana PROMETEO/2009/006, and FIREMAP (MCyT). CEAM is funded by the Generalitat Valenciana and BANCAJA.


  1. Abad N, Bautista S, Bladé C, Caturla RN (2000) Seeding and mulching as erosion control techniques after wildfires in the Valencia region. In: Balabanis P, Peter D, Ghazi A, Tsogas M (eds) Mediterranean desertification. Research results and policy implications. European Commission, Luxembourg, pp 419–429. EUR 19303Google Scholar
  2. Agee JK (1993) Fire ecology of pacific northwest forests. Island Press, Washington, DCGoogle Scholar
  3. Alloza JA, Vallejo R (1999) Relación entre las características meteorológicas del año de plantación y los resultados de las repoblaciones. Ecología 1:173–187Google Scholar
  4. Anderson HE (1982) Aids to determining fuel models for estimating fire behaviour. General technical report INT-122, USDA Forest Service, Intermountain Forest and Range Experiment Station, OgdenGoogle Scholar
  5. Baeza MJ, Duguy B (2009) Prevención de incendios forestales: La gestión del combustible. In: Fundación CEAM (ed) La actividad científica de la Fundación Centro de Estudios Ambientales del Mediterráneo (1991–2008). Investigación Forestal: Los Incendios Forestales. CEAM, Valencia, pp 155–157Google Scholar
  6. Baeza MJ, Vallejo VR (2008) Vegetation recovery after fuel management in Mediterranean shrublands. Appl Veg Sci 11:151–158Google Scholar
  7. Baeza MJ, Raventós J, Escarré A, Vallejo VR (2003) The effect of clearing on the control of the fire-prone species Ulex parviflorus. For Ecol Manage 186:47–59Google Scholar
  8. Bainbridge DA (2007) A guide for desert and dryland restoration: new hope for arid lands. Island Press, Washington, DCGoogle Scholar
  9. Bajocco S, Pezzatti GB, Mazzoleni S, Ricotta C (2010) Wildfire seasonality and land use: when do wildfires prefer to burn? Environ Monit Assess 164:445–452Google Scholar
  10. Barea JM, Honrubia M (2004) La micorrización dirigida de la planta forestal. In: Vallejo VR, Alloza JA (eds) Avances en el estudio de la gestión del monte mediterráneo. Fundación CEAM, Valencia, pp 215–260Google Scholar
  11. Bautista S, Bellot J, Vallejo VR (1996) Mulching treatment for postfire soil conservation in a semiarid ecosystem. Arid Soil Res Rehabil 10:235–242Google Scholar
  12. Bautista S, Robichaud PR, Bladé C (2009) Post-fire mulching. In: Cerdà A, Robichaud PR (eds) Fire effects on soils and restoration strategies. Science Publications, Enfield, pp 353–372Google Scholar
  13. Beer T, Williams AAJ (1995) Estimating Australian forest fire danger under conditions of doubled carbon dioxide concentrations. Clim Chang 29:169–188Google Scholar
  14. Beer T, Gill AM, Moore PHR (1988) Australian bushfire danger under changing climate regimes. In: Pearman GI (ed) Greenhouse: planning for climate change. CSIRO, MelbourneGoogle Scholar
  15. Bergeron Y, Flannigan MD (1995) Predicting the effects of climate change on fire frequency in the southeastern Canadian boreal forest. Water Air Soil Pollut 82:437–444Google Scholar
  16. Beyers JL (2004) Post-fire seeding for erosion control: effectiveness and impacts on native plant communities. Conserv Biol 18:947–956Google Scholar
  17. Beyers JL, Wohlgemuth PM, Wakeman CD, Conard SG (1998) Ryegrass seeding for postfire erosion control in chaparral – does it work? Fire Manage Notes 58:30–34Google Scholar
  18. Brown TJ, Hall BL, Westerling AL (2004) The impact of twenty-first century climate change on wildland fire danger in the Western United States: an applications perspective. Clim Chang 62:365–388Google Scholar
  19. Burdett AN (1990) Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can J For Res 20:415–427Google Scholar
  20. Burger DW, Svhra P, Harris H (1992) Treeshelter use in producing container-grown trees. HortScience 27:30–32Google Scholar
  21. Cary GJ, Banks JCG (1999) Fire regime sensitivity to global climate change: an Australian perspective. In: Innes JL, Beniston M, Verstraete MM (eds) Biomass burning and its inter-relationship with the climate system. Kluwer, Dordrecht, pp 233–246Google Scholar
  22. Castro M, Martín-Vide J, Alonso S (2005) El clima en España: Pasado, presente y escenarios de clima para el siglo XX. In: Moreno JM (ed) Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático. Secretaría General Técnica MMA, Madrid, pp 1–64Google Scholar
  23. Cerdà A, Robichaud PR (eds) (2009) Fire effects on soils and restoration strategies. Science Publications, EnfieldGoogle Scholar
  24. Chirino E, Vilagrosa A, Rubio E (2003) Efectos de la reducción del riego y la fertilización en las características morfométricas de Quercus suber. Cuadernos de la Sociedad Española de Ciencias Forestales 17:51–56Google Scholar
  25. Chirino E, Vilagrosa A, Cortina J, Valdecantos A, Fuentes D, Trubat R et al (2009) Ecological restoration in degraded drylands: the need to improve the seedling quality and site conditions in the field. In: Grossberg SP (ed) Forest management. Nova Science Publishers, Inc., New York, pp 85–158Google Scholar
  26. Choudhary MI, Shalabi AA, Al-Omran AM (1995) Water holding capacity and evaporation of calcareous soils as affected by four synthetic polymers. Commun Soil Sci Plant Anal 26(13–14):2205–2215Google Scholar
  27. Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP et al (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58Google Scholar
  28. Clark JS (1990) Twentieth-century climate change, fire suppression, and forest production and decomposition in northwestern Minnesota. Can J For Res 20:219–232Google Scholar
  29. Clarke PJ, Knox KJE, Wills KE, Campbell M (2005) Landscape patterns of woody plant response to crown fire: disturbance and productivity influence sprouting ability. Ecology 93:544–555Google Scholar
  30. Correia FW (2006) Impacto das modificações da cobertura vegetal no balanço de água na Amazônia: um estudo com modelo de circulação geral da atmosfera (MCGA). Revista Brasileira de Meteorologia 21:153–166Google Scholar
  31. Costello LR, Peters A, Giusti GA (1996) An evaluation of treeshelter effects on plant survival and growth in a Mediterranean climate. J Arboric 22:1–9Google Scholar
  32. De Luis M, González-Hidalgo JC, Raventós J (2003) Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community. Land Degrad Dev 14(2):203–213Google Scholar
  33. De Simón E, Bocio I, Ripoll MA, Navarro FB, Jiménez MN, Gallego E (2004) Microcuencas: una técnica de preparación del suelo en zonas áridas. In: Forestación en paisajes agrarios. Consejería de Agricultura y Pesca de la Junta de Andalucía, Junta de Andalucía, Granada, pp 95–118Google Scholar
  34. Debussche M, Rambal S, Lepart J (1987) Les changements de l’occupation des terres en région méditerranéenne humide: évaluation des conséquences hydrologiques. Acta Oecologica Oecologia Applicata 8:317–332Google Scholar
  35. Delitti W, Ferran A, Trabaud L, Vallejo VR (2005) Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. plant composition and productivity. Plant Ecol 177:57–70Google Scholar
  36. Díaz-Delgado R, Lloret F, Pons X, Terradas J (2002) Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology 83:2293–2303Google Scholar
  37. Domínguez S, Villar P, Peñuelas JL, Herrero N, Nicolás JL (1999) Técnicas para cultivar encinas en suelos agrícolas. Quercus 166:22–25Google Scholar
  38. Donnegan JA, Veblen TT, Sibold SS (2001) Climatic and human influences on fire history in Pike National Forest, Central Colorado. Can J For Res 31:1527–1539Google Scholar
  39. Duguy B (2003) Interacción de la historia de usos del suelo y el fuego en condiciones mediterráneas. Respuesta de los ecosistemas y estructura del paisaje. Tesis Doctoral, Facultad de Ciencias, Universidad de Alicante, AlicanteGoogle Scholar
  40. Duguy B, Alloza JA, Röder A, Vallejo R, Pastor F (2007a) Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain). Int J Wildland Fire 16(5):619–632Google Scholar
  41. Duguy B, Rovira P, Vallejo R (2007b) Land-use history and fire effects on soil fertility in eastern Spain. Eur J Soil Sci 58(1):83–91Google Scholar
  42. Duguy B, Vallejo R (2008) Land use and fire history effects on post-fire vegetation dynamics in eastern Spain. J Veg Sci 19(1):97–108Google Scholar
  43. Duguy B, Alloza JA, Vallejo R, Fulé PZ, Sisk TD (2009) Parameterization of a spatial decision support system for forest management and restoration in Mediterranean fire-prone landscapes. In: Proceedings of 94th Ecological Society of America (ESA) annual meeting, Albuquerque, New Mexico, USA, 2–7 Aug 2009Google Scholar
  44. Duguy B, Alloza JA, Baeza J, De la Riva J, Echeverría M, Ibarra P, Llovet J, Pérez-Cabello F, Rovira P, Vallejo VR (2012) Modelling the ecological vulnerability to forest fires in Mediterranean ecosystems using geographic information technologies. Environ Manag 50(6):1012–1026Google Scholar
  45. Espelta JM (1996) La regeneració de boscos d’alzina (Quercus ilex L.) i pi blanc (Pinus halepensis Mill.): Estudi experimental de la resposta de les plàntules a la intensitat de llum i a la disponibilitat d’aigua. PhD thesis, Universitat Autònoma de Barcelona (UAB), BellaterraGoogle Scholar
  46. Estrela MJ, Valiente JA, Corell D, Fuentes D, Valdecantos A (2009) Prospective use of collected fog water in the restoration of degraded burned areas under dry Mediterranean conditions. Agr Forest Meteorol 149:1896–1906Google Scholar
  47. Fernandes PM (2006) Silvicultura preventiva e gestão de combustíveis: opções e optimização. Departamento Florestal, Universidade de Trás os montes e Alto Douro, Vila RealGoogle Scholar
  48. Ferran A, Serrasolsas I, Vallejo VR (1991) Soil evolution after fire on Quercus ilex and Pinus halepensis forests. In: Teller A, Mathy P, Jeffers JNR (eds) Response of forest ecosystems to environmental changes. Elsevier, London, pp 397–405Google Scholar
  49. Finney MA (1998) FARSITE: fire area simulator – model development and evaluation. USDA Forest Service, Research paper RMRS-RP-4. Fort CollinsGoogle Scholar
  50. Finney MA (2001a) Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. For Sci 47(2):219–228Google Scholar
  51. Finney MA (2001b) Spatial strategies for landscape fuel treatments. In: Bento J, Botelho H (eds) Workshop on tools and methodologies for fire danger mapping. Universidad de Tras-os-montes el Alto-Douro, Departamento Forestal, Vila Real, pp 157–163Google Scholar
  52. Finney MA (2003) Calculation of fire spread rates across random landscapes. Int J Wildland Fire 12(2):167–174Google Scholar
  53. Finney MA (2004) Landscape fire simulation and fuel treatment optimization. In: Hayes JL, Ager AA, Barbour JR (eds) Methods for integrated modeling of landscape change. Interior Northwest landscape analysis system. Ch. 9. General technical report PNW-GTR-610. USDA Forest Service, Pacific Northwest Research Station, Portland, pp 117–131Google Scholar
  54. Finney MA (2006) An overview of FlamMap fire modeling capabilities. In: Andrews PL, Butler BW (eds) Fuels management-how to measure success: conference proceedings. RMRS-P-41. USDA Forest Service, Rocky Mountain Research Station, Portland, pp 213–220Google Scholar
  55. Finney MA (2007) A computational method for optimising fuel treatment locations. Int J Wildland Fire 16:702–711Google Scholar
  56. Finney MA, Seli RC, McHugh CW, Ager AA, Bahro B, Agee JK (2007) Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int J Wildland Fire 16:712–727Google Scholar
  57. Flannigan MD, Harrington JB (1988) A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80). J Appl Meteorol 27:441–452Google Scholar
  58. Flannigan MD, Van Wagner CE (1991) Climate change and wildfire in Canada. Can J For Res 21:66–72Google Scholar
  59. Flannigan MD, Bergeron Y, Engelmark O, Wotton BM (1998) Future wildfire in circumboreal forests in relation to global warming. J Veg Sci 9:469–476Google Scholar
  60. Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262:221–229Google Scholar
  61. Flannigan MD, Amiro BD, Logan KA, Stocks BJ, Wotton BM (2005a) Forest fires and climate change in the 21st century. Mitig Adapt Strat Glob Chang 11(4):847–859Google Scholar
  62. Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ (2005b) Future area burned in Canada. Clim Chang 72:1–16Google Scholar
  63. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18(5):483–507Google Scholar
  64. Fonseca D (1999) Manipulación de las características morfo-estructurales de plantones de ­especies forestales mediterráneas producidas en vivero. Master thesis. CIHEAM-IAMZ, ZaragozaGoogle Scholar
  65. Forman RTT (1995) Some general principles of landscape and regional ecology. Landsc Ecol 10(3):133–142Google Scholar
  66. Forman RTT, Collinge SK (1996) The “spatial solution” to conserving biodiversity in landscapes and regions. In: DeGraaf RM, Miller RI (eds) Conservation of faunal diversity in forested landscapes. Chapman and Hall, London, pp 537–568Google Scholar
  67. Founda D, Giannakopoulos C (2009) The exceptionally hot summer of 2007 in Athens, Greece – a typical summer in the future climate? Glob Planet Chang 67:227–236Google Scholar
  68. Fried JS, Torn MS, Mills E (2004) The impact of climate change on wildfire severity: a regional forecast for northern California. Clim Chang 64:169–191Google Scholar
  69. Fuentes D, Valdecantos A, Vallejo VR (2004) Plantación de Pinus halepensis Mill. y Quercus ilex subsp. ballota (Desf) Samp. en condiciones mediterráneas secas utilizando microcuencas. Cuadernos Sociedad Española Ciencias Forestales 17:157–161Google Scholar
  70. Fulé PZ (2008) Does it make sense to restore wildland fire in changing climate? Restor Ecol 16(4):526–531Google Scholar
  71. Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Climate 3:941–963Google Scholar
  72. Giovannini G, Lucchesi S (1997) Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Sci 162:479–486Google Scholar
  73. Good P, Moriondo M, Giannakopoulos C, Bindi M (2008) The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies. Int J Wildland Fire 17:155–165Google Scholar
  74. Hiers JK, Laine SC, Bachant JJ, Furman JH, Greene WW Jr, Compton V (2003) Simple spatial modeling tool for prioritizing prescribed burning activities at the landscape scale. Conserv Biol 17(6):1571–1578Google Scholar
  75. Hirsch K, Kafka V, Tymstra C et al (2001) Fire-smart forest management: a pragmatic approach to sustainable forest management in fire-dominated ecosystems. For Chron 77(2):357–363Google Scholar
  76. Hobbs RJ, Norton DA (1996) Towards a conceptual framework for restoration ecology. Restor Ecol 4:93–110Google Scholar
  77. Hüttermann A, Zommorodi M, Reise K (1999) Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil Tillage Res 50:295–304Google Scholar
  78. IPCC (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  79. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386Google Scholar
  80. Keeler-Wolf T (1995) Post-fire emergency seeding and conservation in Southern California Shrublands. In: Keeley JE, Scott T (eds) Brushfires in California wildlands: ecology and resource management. International Association of Wildland Fire, FairfieldGoogle Scholar
  81. Keeley JE (2004) Ecological impacts of wheat seeding after a Sierra Nevada wildfire. Int J Wildland Fire 13:73–78Google Scholar
  82. Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18:116–126Google Scholar
  83. Keeley JE, Zedler PH (2009) Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model. Ecol Appl 19:69–94Google Scholar
  84. Keeley JE, Fotheringham CJ, Morais M (1999) Reexamining fire suppression impacts on brushland fire regimes. Science 284:1829–1832Google Scholar
  85. Kipfmueller KF, Swetnam TW (2000) Fire-climate interactions in the Selway-Bitterroot wilderness area. USDA Forest Service Proceedings RMRS-P-15-Vol-5. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, OgdenGoogle Scholar
  86. Knight DH (1987) Parasites, lightning and the vegetation mosaic in wilderness landscapes. In: Turner MG (ed) Landscape heterogeneity and disturbance. Springer, New York, pp 59–84Google Scholar
  87. Krawchuk MA, Moritz MA, Parisien MA, Van Dorn J, Hayhoe K (2009) Global pyrogeography: the current and future distribution of wildfire. PLoS One 4:e5102Google Scholar
  88. Kruse R, Bend E, Bierzychudek P (2004) Native plant regeneration and introduction of non-natives following post-fire rehabilitation with straw mulch and barley seeding. For Ecol Manage 196:299–310Google Scholar
  89. LaCroix JJ, Ryu SR, Zheng D et al (2006) Simulating fire spread with landscape management scenarios. For Sci 5:522–529Google Scholar
  90. Landis TD, Tinus RW, Mcdonald SE, Barnett JP (1990) Containers and growing media, vol 2. The container tree nursery manual. Agricultural handbook 674. USDA Forest service, Washington, DCGoogle Scholar
  91. Littell JS, McKenzie D, Peterson DL, Westerling AL (2009) Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol Appl 19:1003–1021Google Scholar
  92. Lloret F (2008) Régimen de incendios y regeneración. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, pp 103–128Google Scholar
  93. Lloret F, Calvo E, Pons X, Díaz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landsc Ecol 17:745–759Google Scholar
  94. Loehle C (2004) Applying landscape principles to fire hazard reduction. For Ecol Manage 198:261–267Google Scholar
  95. MacDonald LH (1989) Rehabilitation and recovery following wildfires: a synthesis. In: Proceedings of the symposium on fire and watershed management. General technical report PSW-109. USDA Forest Service, Sacramento, pp 141–144, 26–28 October 1988Google Scholar
  96. Martell DL (2001) Forest fire management. In: Johnson EA (ed) Forest fire behaviour and ecological effects. Academic, Orlando, pp 527–575Google Scholar
  97. Millan MM, Estrela MJ, Miró J (2005) Rainfall components: variability and spatial distribution in a Mediterranean area (Valencia Region). J Climate 18:2682–2705Google Scholar
  98. Minnich RA (1983) Fire mosaics in southern California and northern Baja California. Science 219:1287–1294Google Scholar
  99. Minnich RA (2001) An integrated model of two fire regimes. Conserv Biol 15:1549–1553Google Scholar
  100. Montero JL, Alcanda P (1993) Reforestación y biodiversidad. Montes 33:57–76Google Scholar
  101. Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567Google Scholar
  102. Moreno JM (2005) Impactos sobre los riesgos naturales de origen climático. Riesgo de incendios forestales. In: Moreno JM (ed) Evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, Madrid, pp 581–615Google Scholar
  103. Moreno JM (2009) Impacts on potential wildfire risk due to changes in climate. In: Päivinen R (ed) Living with wildfires: what science can tell us. European Forest Institute, Joensuu, pp 53–58Google Scholar
  104. Moreno JM, Oechel WC (1994) The role of fire in Mediterranean-type ecosystems. Springer, New YorkGoogle Scholar
  105. Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95Google Scholar
  106. Morvan N, Burel F, Baudry J, Tréhen P, Bellido A, Delettre Y et al (1995) Landscape and fire in Brittany heathlands. Landsc Urban Plann 31:81–88Google Scholar
  107. Mouillot F (2001) Analyse et modélisation de la dynamique des paysages Méditerranéens soumis à incendies: cas de la Corse. Thèse de Doctorat, Université de CorseGoogle Scholar
  108. Mouillot F, Rambal S, Joffre R (2002) Simulating the effects of climate change on fire frequency and the dynamics of a Mediterranean maquis woodland. Glob Chang Biol 8:423–437Google Scholar
  109. Napper C (2006) Burned Area Emergency Response Treatments Catalog (BAER). USDA forest service, watershed, soil, air management, 0625 1801 – SDTDC, San Dimas.
  110. Pannkuk CD, Robichaud PR (2003) Effectiveness of needle cast at reducing erosion after forest fires. Water Resour Res 39(12):1333–1342Google Scholar
  111. Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Chang 63(3):337–350Google Scholar
  112. Pausas JG, Bradstock RA (2007) Fire persistence traits of plants along a productivity and disturbance gradient in Mediterranean shrublands of SE Australia. Glob Ecol Biogeogr 16:330–340Google Scholar
  113. Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110:215–226Google Scholar
  114. Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59(7):593–601Google Scholar
  115. Pausas JG, Lloret F (2007) Spatial and temporal patterns of plant functional types under simulated fire regimes. Int J Wildland Fire 16:484–492Google Scholar
  116. Pausas J, Vallejo VR (1999) The role of fire in European Mediterranean ecosystems. In: Chuvieco E (ed) Remote sensing of large wildfires in the European Mediterranean Basin. Springer, Berlin, pp 3–16Google Scholar
  117. Pausas JG, Vallejo VR (2008) Bases ecológicas para convivir con los incendios forestales en la Región Mediterránea: decálogo. Ecosistemas 17(2):128–129Google Scholar
  118. Pausas JG, Bladé C, Valdecantos A, Seva JP, Fuentes D, Alloza JA et al (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice – a review. Plant Ecol 171:209–220Google Scholar
  119. Peñuelas JL (1995) Medios de producción: substratos y contenedores. In: Ballester-Olmos JF (ed) Producción de plantas forestales. Universidad Politécnica de Valencia, Valencia, pp 101–122Google Scholar
  120. Peñuelas JL, Ocaña L (1996) Cultivo de plantas forestales en contenedor, principios y fundamentos. MAPA, Mundi-Prensa, MadridGoogle Scholar
  121. Pérez-Devesa M, Cortina J, Vilagrosa A (2004) Factors affecting Quercus suber establishment in dense shrublands. In: The proceedings of LINKECOL. Linking community and ecosystem ecology: recent advances and future challenges. European Science Foundation Conference, Palma de MallorcaGoogle Scholar
  122. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Chang 38(3):345–357Google Scholar
  123. Pitman AJ, Narisma GT, McAneney J (2007) The impact of climate change on the risk of forest and grassland fires in Australia. Clim Chang 84:383–401Google Scholar
  124. Price C, Rind D (1994) Possible implications of global climate change on global lightning distributions and frequencies. J Geophys Res 99:10823–10831Google Scholar
  125. Querejeta JI, Roldán A, Albaladejo J, Castillo V (2000) Soil physical properties and moisture content affected by site preparation in the afforestation of a semiarid rangeland. Soil Sci Soc Am J 64:2087–2096Google Scholar
  126. Rambal S, Hoff C (1998) Mediterranean ecosystems and fire: the threats of global change. In: Moreno JM (ed) Large forest fires. Backhuys Publishers, Leiden, pp 187–213Google Scholar
  127. Regato P (2008) Adapting to global change: Mediterranean forests. IUCN Centre for Mediterranean Cooperation, MalagaGoogle Scholar
  128. Robichaud PR, Beyers JL, Neary DG (2000) Evaluating the effectiveness of postfire rehabilitation treatments. General technical report RM-GTR-63. USDA Forest Service, Fort CollinsGoogle Scholar
  129. Röder A, Hill J, Duguy B, Alloza JA, Vallejo VR (2008) Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain). Remote Sens Environ 112(1):259–273Google Scholar
  130. Rubio E, Vilagrosa, A, Cortina, J, Bellot J (2001) Modificaciones morfofisiológicas en plantones de Pistacia lentiscus y Quercus rotundifolia como consecuencia del endurecimiento hídrico en vivero. Efectos sobre supervivencia y crecimiento en campo. In: SECF-Junta de Andalucía (ed) III Congreso Forestal Español: Montes para la sociedad del Nuevo milenio, vol II. Gráficas Coria, Sevilla, pp 527–532Google Scholar
  131. Ryan KC (1991) Vegetation and wildland fire: implications of global climate change. Environ Int 17:169–178Google Scholar
  132. Saura-Mas S, Paula S, Pausas JG, Lloret F (2010) Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies. Int J Wildland Fire 19:783–794Google Scholar
  133. Schmidt DA, Taylor AH, Skinner CN (2008) The influence of fuel treatment and landscape arrangement on simulated fire behavior, Southern Cascade range, California. For Ecol Manage 255(8–9):3170–3184Google Scholar
  134. Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103:13,116–13,120Google Scholar
  135. Seva JP, Valdecantos A, Cortina J, Vallejo VR (2004) Different techniques for afforestation with Quercus ilex ssp. ballota (Desf.) Samp. in degraded lands (Comunidad Valenciana). Cuadernos Sociedad Española Ciencias Forestales 17:233–238Google Scholar
  136. Sisk TD, Prather JW, Hampton HM, Aumack EN, Xu Y, Dickson BG (2006) Participatory landscape analysis to guide restoration of ponderosa pine ecosystems in the American Southwest. Landsc Urban Plann 78:300–310Google Scholar
  137. Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM, Yang Q et al (1998) Climate change and forest fire potential in Russian and Canadian boreal forests. Clim Chang 38:1–13Google Scholar
  138. Stratton RD (2004) Assessing the effectiveness of landscape fuel treatments on fire growth and behavior. J For 102:32–40Google Scholar
  139. Swetnam TW (1993) Fire history and climate change in giant sequoia groves. Science 262:885–889Google Scholar
  140. Swetnam TW, Betancourt JL (1998) Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J Climate 11:3128–3147Google Scholar
  141. Torn MS, Fried JS (1992) Predicting the impact of global warming on wildfire. Clim Chang 21:257–274Google Scholar
  142. Trabaud L (1994) Post-fire plant community dynamics in the Mediterranean Basin. In: Moreno JM, Oechel WC (eds) The role of fire in Mediterranean-type ecosystems. Springer, New York, pp 1–15Google Scholar
  143. Trigo RM et al (2006) Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int J Climatol 26:1741–1757Google Scholar
  144. Turner MG (1987) Landscape heterogeneity and disturbance. Springer, New YorkGoogle Scholar
  145. Turner MG, Romme WH (1994) Landscape dynamics in crown fire ecosystems. Landsc Ecol 9(1):59–77Google Scholar
  146. Turner MG, Hargrove WW, Gardner RH, Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J Veg Sci 5:731–742Google Scholar
  147. Valdecantos A, Fuentes D, Cortina J (2004) Utilización de biosólidos en la restauración forestal. In: Vallejo VR, Alloza JA (eds) Avances en el estudio de la gestión del monte Mediterráneo. Fundación CEAM, Valencia, pp 313–344Google Scholar
  148. Valdecantos A, Baeza MJ, Vallejo VR (2009) Vegetation management for promoting ecosystem resilience in fire-prone mediterranean shrublands. Restor Ecol 17(3):414–421Google Scholar
  149. Vallejo VR (1996) Presentación. In: Vallejo VR (ed) La restauración de la cubierta vegetal en la Comunidad Valenciana. Fundación CEAM, Valencia, pp 3–7Google Scholar
  150. Vallejo VR, Alloza JA (1998) The restoration of burned lands: the case of Eastern Spain. In: Moreno JM (ed) Large forest fires. Backhuys Publishers, Leiden, pp 91–108Google Scholar
  151. Vallejo VR, Bautista S, Cortina J (2000) Restoration for soil protection after disturbances. In: Trabaud L (ed) Life and environment in the Mediterranean. WIT Press, Boston, pp 301–343Google Scholar
  152. Vallejo VR, Aronson J, Pausas JG, Cortina J (2006) Restoration of Mediterranean woodlands. In: van Andel J, Aronson J (eds) Restoration ecology: the new frontier. Blackwell Publishing, Malden, pp 193–207Google Scholar
  153. Vallejo VR, Serrasolses I, Alloza JA, Baeza J, Bladé C, Chirino E et al (2009) Long-term restoration strategies and techniques. In: Cerdà A, Robichaud P (eds) Fire effects on soils and restoration strategies. Science Publishers Inc., Enfield, pp 373–398Google Scholar
  154. van Andel J, Grootjans AP (2006) Concepts in restoration ecology. In: van Andel J, Aronson J (eds) Restoration ecology: the new frontier. Blackwell Publishing, Malden, pp 16–28Google Scholar
  155. Vázquez A, Moreno JM (1998) Patterns of lightning- and people-caused fires in peninsular Spain. Int J Wildland Fire 8(2):103–115Google Scholar
  156. Viegas DX, Viegas MT (1994) A relationship between rainfall and burned area for Portugal. Int J Wildland Fire 4:11–16Google Scholar
  157. Vilagrosa A, Seva JP, Valdecantos A et al (1997) Plantaciones para la restauración forestal en la Comunidad Valenciana. In: Vallejo VR (ed) La restauración de la cubierta vegetal en la Comunidad Valenciana. Fundación CEAM, Valencia, pp 435–548Google Scholar
  158. Vilagrosa A, Caturla RN, Hernández N, Cortina J, Bellot J, Vallejo VR (2001) Reforestaciones en ambiente semiárido del sureste peninsular. Resultados de las investigaciones desarrolladas para optimizar la supervivencia y el crecimiento de especies autóctonas. In: Junta de Andalucía (ed) The proceedings of the III Congreso Forestal Español. Montes para la sociedad del nuevo milenio. Junta de Andalucía, Granada, pp 213–219Google Scholar
  159. Vilagrosa A, Bellot J, Vallejo VR, Gil E (2003) Cavitation, stomatal conductance and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024Google Scholar
  160. Villar-Salvador P, Ocaña L, Peñuelas JL, Carrasco I (1999) Effect of water stress conditioning on the water relations, root growth capacity, and the nitrogen and non-structural carbohydrate concentration of Pinus halepensis Mill (Aleppo pine) seedlings. Ann For Sci 56:459–465Google Scholar
  161. Vos W (1993) Recent landscape transformation in the Tuscan Apennines caused by changing land use. Landsc Urban Plann 24:63–68Google Scholar
  162. Weber MG, Flannigan MD (1997) Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environ Rev 5:145–166Google Scholar
  163. Westerling AL, Bryant BP (2008) Climate change and wildfire in California. Clim Chang 87:231–249Google Scholar
  164. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313(5789):940–943Google Scholar
  165. Westman WE, Malanson GP (1992) Effects of climate change on Mediterranean-type ecosystems in California and Baja California. In: Peters RL, Lovejoy T (eds) Global warming and biological diversity. Yale University Press, New HavenGoogle Scholar
  166. Whisenant S (1999) Repairing damaged wildlands. Cambridge University Press, CambridgeGoogle Scholar
  167. Wiens JA, Crawford CS, Gosz JR (1985) Boundary dynamics: a conceptual framework for studying landscape ecosystems. Oikos 45:421–427Google Scholar
  168. Williams AAJ, Karoly DJ, Tapper N (2001) The sensitivity of Australian fire danger to climate change. Clim Chang 49:171–191Google Scholar
  169. Wotton BM, Flannigan MD (1993) Length of the fire season in a changing climate. For Chron 69:187–192Google Scholar
  170. Zedler PH, Gautier CR, Caster GS (1983) Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64:809–818Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Beatriz Duguy
    • 1
    • 2
    Email author
  • Susana Paula
    • 1
  • Juli G. Pausas
    • 3
  • Josè Antonio Alloza
    • 1
  • Teresa Gimeno
    • 1
  • Ramon V. Vallejo
    • 1
  1. 1.Fundacion Centro de Estudios Ambientales del Mediterráneo, CEAMValenciaSpain
  2. 2.Departamento Biologia VegetalUniversitat de BarcelonaBarcelonaSpain
  3. 3.Centro de Investigaciones sobre Desertificación, CIDE-CSICValenciaSpain

Personalised recommendations