Permafrost and Methane

  • G. Thomas Farmer
  • John Cook


Permafrost is defined as permanently frozen ground, except the upper part usually thaws during summer months. Most of the permafrost on Earth is in areas that were glaciated during the last ice age and are still cold enough to keep the ground frozen. There is a tremendous quantity of methane trapped in permafrost that is being released as the permafrost melts. Methane is 25 times more potent as a greenhouse gas than carbon dioxide, to which it eventually converts in the atmosphere. Methane clathrates are potentially the cause of relatively sudden climate changes in the geologic past (PETM) and today represent a potential clathrate gun hypothesis for future sudden climate change.


Methane Permafrost Line Periglacial Ice Exothermic NSIDC PETM Thermal Maximum Andes Frozen Gun Peat Clathrates Paleocene Eocene EIA Glaciation Pleistocene Drilling Natural Gas 

Additional Readings

  1. Alley, R. B. (2000). The two-mile time machine: Ice cores, abrupt climate change, and our future. Princeton: Princeton University Press.Google Scholar
  2. Christensen, T. R., et al. (2004). Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters, 31, L04501. doi: 10.1029/2003GL018680.CrossRefGoogle Scholar
  3. EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–628. doi: 10.1038/nature02599.CrossRefGoogle Scholar
  4. Hinrichs, K. U., et al. (2003). Molecular fossil record of elevated methane levels in late Pleistocene coastal waters. Science, 299, 1214–1217. doi: 10.1126/science.1079601.CrossRefGoogle Scholar
  5. Intergovernmental Panel on Climate Change. (2001). Climate change 2001: The scientific basis. Cambridge: Cambridge University Press.Google Scholar
  6. Intergovernmental Panel on Climate Change. (2007). Climate change 2007: The scientific basis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Kennett, J. P., et al. (2003). Methane hydrates in Quaternary climate change: The clathrate gun hypothesis. Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
  8. Lamb, H. H. (1972). Climate past, present and future (Vol. 1). London: Methuen & Co Ltd.Google Scholar
  9. Ruddiman, W. (2003). The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61, 261–293. doi: 10.1023/B:CLIM.0000004577.17928.fa.CrossRefGoogle Scholar
  10. Schmidt, G. A., & Shindell, D. T. (2003). Atmospheric composition, radiative forcing and climate change as a consequence of a massive methane release from gas hydrates. Paleoceanography, 18. doi: 10.1029/2002PA000757.
  11. Severinghaus, J. P., & Brook, E. J. (1999). Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286, 930–934. doi: 10.1126/science.286.5441.930.CrossRefGoogle Scholar
  12. Wang, W. C., et al. (1976). Greenhouse effects due to man-made perturbation of trace gases. Science, 194, 685–690.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • G. Thomas Farmer
    • 1
  • John Cook
    • 2
  1. 1.Farmer EnterprisesLas CrucesUSA
  2. 2.School of PsychologyThe University of QueenslandSt LuciaAustralia

Personalised recommendations