Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 362 Accesses

Abstract

In this chapter, the structural and vibrational properties of chromyl azide were studied from a theoretical point of view using density functional theory (DFT) methods. The initial geometry was fully optimized at different theory levels and the harmonic wavenumbers were evaluated at the same levels. These results show that for the compound, a stable molecule was theoretically determined in the gas phase. Also, the characteristics and nature of the Cr–O and Cr ← O bonds for the stable structure were studied through the Wiberg’s indexes calculated by means of the natural bond orbital (NBO) study. On the other hand, the corresponding topological properties of the electronic charge density were analyzed using Bader’s atoms in the Molecules theory (AIM). The results were used to predict the infrared and Raman spectra and the molecular geometry of the compound, for which there are no experimental data. Besides, a complete assignment of all observed bands in the infrared spectrum for the compound was performed combining DFT calculations with Pulay′s scaled quantum mechanics force field (SQMFF) methodology. Therefore, these calculations gave us a precise knowledge of the normal modes of vibration taking into account the type of coordination adopted by azide ligands of this compound as monodentate. In this chapter, the scaled force constants and the scaling factors are also reported together with a comparison of the obtained values for similar compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.D. Fair, R.F. Walker, Physics and Chemistry of the Inorganic Azides (Vol. 1) and the Technology of the Inorganic Azides (Vol. 2)

    Google Scholar 

  2. R. Vince, S. Daluge, J. Med. Chem. 17(6), 578 (1974)

    Article  CAS  Google Scholar 

  3. M.R. Darvich, A. Olyai, A. Shabanikia, D. Farkhani, Iran J. Chem. Chem. Eng. 22(2), 49–53 (2003)

    CAS  Google Scholar 

  4. K.A. Jensen, C. Pedersen, Acta Chem. Scand. 15, 1104–1108 (1961)

    Article  CAS  Google Scholar 

  5. R. Sreekumar, R. Padmakumar, P. Rugmini, J. Chem. Commun. 12, 1133 (1997)

    Google Scholar 

  6. E.H. Younk, A. Barry Kunz, Int. J. Quantum Chem. 63(3), 615–621 (1998)

    Article  Google Scholar 

  7. W. Zhu, X. Xu, H. Xiao, J. Phys. Chem. Solids 68(9), 1762–1769 (2007)

    Article  CAS  Google Scholar 

  8. R.T.M. Fraser, Anal. Chem. 31(9), 1602–1603 (1959)

    Article  CAS  Google Scholar 

  9. J.I. Bryant, J. Chem. Phys. 42(7), 2270–2273 (1965)

    Article  CAS  Google Scholar 

  10. N. Chalermsan, P. Vijchulata, P. Chirattanayuth, S. Sintuwanit, S. Surapat, A. Engkagul, Kasetsart J. (Nat. Sci.) 38, 38 (2004)

    Google Scholar 

  11. E. Qamirani, M.H. Razavi, Wu Xin; J. M. Davis, L. Kuo, W. T. Hein, Am. J.Physiology, 2006, 290(4), H1617

    Google Scholar 

  12. G.E. Pringles, D.E. Noakes, Acta Crystallogr. B24, 262 (1968)

    Google Scholar 

  13. E.D. Stevens, H. Hope, Acta Crystallogr. A33, 723–729 (1977)

    CAS  Google Scholar 

  14. S.R. Aghdaee, A.I.M. Rae, Acta Crystallogr. B40, 214–218 (1984)

    CAS  Google Scholar 

  15. H.L. Krauss, F. Schwarzbach, Chem. Ber. 94, 1205 (1961)

    Article  CAS  Google Scholar 

  16. H.L. Krauss, K. Stark, Z. Naturforsch. 17, 345 (1962)

    Google Scholar 

  17. H. Stammreich, K. Kawai, Y. Tavares, Spectrochim. Acta 75, 438 (1959)

    Article  Google Scholar 

  18. C.J. Marsden, L. Hedberg, K. Hedberg, Inorg. Chem. 21, 1113 (1982)

    Article  Google Scholar 

  19. R.J. French, L. Hedberg, K. Hedberg, G.L. Gard, B.M. Johnson, Inorg. Chem. 22, 892 (1982)

    Article  Google Scholar 

  20. S.D. Brown, G.L. Gard, T.M. Lohehr, J. Chem. Phys. 21, 1115 (1982)

    Google Scholar 

  21. A.E. Reed, L.A. Curtis, F. Weinhold, Chem. Rev. 88(6), 899 (1988)

    Article  CAS  Google Scholar 

  22. J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)

    Article  CAS  Google Scholar 

  23. A.E. Reed, F. Weinhold, J. Chem. Phys. 83, 1736 (1985)

    Article  CAS  Google Scholar 

  24. R.F.W. Bader, Atoms in Molecules, A Quantum Theory (Oxford University Press, Oxford, 1990). ISBN 0198558651

    Google Scholar 

  25. Tables of inter-atomic distances and configurations in molecules and anions, Edit. L. E. Sutton, 1958, p. 49

    Google Scholar 

  26. R.J. Gillespie (ed.), Molecular Geometry (Van Nostrand-Reinhold, London, 1972)

    Google Scholar 

  27. R.J. Gillespie, I. Bytheway, T.H. Tang, R.F.W. Bader, Inorg. Chem. 35, 3954 (1996)

    Article  CAS  Google Scholar 

  28. F. Biegler-Köning, J. Schönbohm, D. Bayles, AIM2000; a program to analyze and visualize atoms in molecules. J. Comput. Chem. 22, 545 (2001)

    Article  Google Scholar 

  29. S. Wojtulewski, S.J. Grabowski, J. Mol. Struct. 621, 285 (2003)

    CAS  Google Scholar 

  30. S.J. Grabowski, Monat. für Chem. 133, 1373 (2002)

    Article  CAS  Google Scholar 

  31. R.F.W. Bader, J. Phys. Chem. A 102, 7314 (1998)

    Article  CAS  Google Scholar 

  32. P.L.A. Popelier, J. Phys. Chem. A 1998, 102 (1873)

    Google Scholar 

  33. U. Koch, P.L.A. Popelier, J. Phys. Chem. 99, 9747 (1995)

    Article  CAS  Google Scholar 

  34. G.L. Sosa, N. Peruchena, R.H. Contreras, E.A. Castro, J. Mol. Struct. (THEOCHEM) 401, 77 (1997)

    Article  CAS  Google Scholar 

  35. G.L. Sosa, N. Peruchena, R.H. Contreras, E.A. Castro, J. Mol. Struct. (THEOCHEM) 577, 219 (2002)

    Article  CAS  Google Scholar 

  36. S. Wojtulewski, S.J. Grabowski, J. Mol. Struct. 645, 287 (2003)

    Article  CAS  Google Scholar 

  37. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, 1977, p. 1019

    Google Scholar 

  38. M. Chaabouni, T. Chausse, J.L. Pascal, J. Potier, J. Chem. Research 5, 72 (1980)

    Google Scholar 

  39. S.A. Brandán, Theoretical vibrational study of the chromyl perchlorate, CrO2(ClO4)2. J. Mol. Struc. (THEOCHEM) 908, 19 (2009)

    Article  Google Scholar 

  40. S.D. Brown, G.L. Gard, Inorg. Chem. 12, 483 (1973)

    Article  CAS  Google Scholar 

  41. A. Ben Altabef, S.A. Brandán, A new vibrational study of chromyl fluorosulphate, CrO2(SO3F)2 by using DFT calculations. J. Mol. Struc. 981, 146 (2010)

    Article  CAS  Google Scholar 

  42. S.A. Brandán, A. Ben Altabef, E.L. Varetti, Spectrochim. Acta 51A, 669 (1995)

    Google Scholar 

  43. S.A. Brandán, M.L. Roldán, C. Socolsky, A. Ben Altabef, Spectrochim. Acta, Part A 2008, 69 (1027)

    Google Scholar 

  44. P. Pulay, G. Fogarasi, F. Pang, J.E. Boggs, J. Am. Chem. Soc. 101(10), 2550 (1979)

    Article  CAS  Google Scholar 

  45. G. Fogarasi, P. Pulay, in Vibrational Spectra and Structure, vol 14, ed. by J.E. Durig (Elsevier, Amsterdam, 1985), p. 125

    Google Scholar 

  46. T. Sundius, J. Mol. Struct. 218, 321 (1990)

    Article  CAS  Google Scholar 

  47. T. Sundius, MOLVIB: A Program for Harmonic Force Field Calculation, QCPE Program No. 604 (1991)

    Google Scholar 

  48. S. Bell, T.J. Dines, J. Phys. Chem. A 104, 11403 (2000)

    Article  CAS  Google Scholar 

  49. M. Sowinska, J. Myrczek, A. Bartecki, J. Mol. Struct. 218, 267 (1990)

    Article  CAS  Google Scholar 

  50. A.B. Nielsen, A.J. Holder, GaussView, User′s Reference (GAUSSIAN Inc., Pittsburgh, 2000–2003)

    Google Scholar 

  51. Gaussian 03, Revision B.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian Inc., Pittsburgh, 2003)

    Google Scholar 

  52. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  53. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  54. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1

    Google Scholar 

Download references

Acknowledgments

This work was subsidized with grants from CIUNT (Consejo de Investigaciones, Universidad Nacional de Tucumán). The author thanks Prof. Tom Sundius for his permission to use MOLVIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia A. Brandán .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Brandán, S.A. (2013). Structural and Vibrational Properties of Chromyl Azide. In: A Structural and Vibrational Investigation into Chromylazide, Acetate, Perchlorate, and Thiocyanate Compounds. SpringerBriefs in Molecular Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5754-7_1

Download citation

Publish with us

Policies and ethics