Soil Decontamination

Chapter
Part of the Environmental Pollution book series (EPOL, volume 23)

Abstract

All relevant decontamination approaches are introduced in this chapter. In particular, the widely used technical devices for soil washing, bioremediation and thermal treatment are explained in detail by using flow charts and a number of pictures. The approaches are also discussed in relation to the soil properties and contaminant parameters which are important for the selection of these strategies. Furthermore, the soil washing principle considers extraction methods involving solubilising agents. Regarding bioremediation, biochemical details about the kinetic of the degradation processes for pollutants like BTEX aromates, TPH and PAH are also included. The problem of material reuse after thermal treatment is a further point of consideration. In relation to the techniques, necessary soil preparation steps such as screening, magnetic separation and light fraction removal are introduced. Apart from the common techniques mentioned, the idea of phytoremediation is discussed, taking all relevant approaches such as phytoextraction and phytodegradation into account. Besides measures oriented towards decontamination, the phytostabilisation method aimed at a physical stabilisation of the damaged soil is mentioned. Moreover, the electrokinetic treatment of contaminated soils is also a part of this chapter, in which technical devices and the dependence on soil ­properties and contaminant characteristics are discussed. In general, advantages and disadvantages in conjunction with the different approaches are contrasted. Accordingly, the description of the decontamination measures makes it possible to obtain a comprehensive overview of the possibilities to remediate polluted soils. Information about treatment centres completes the chapter.

Keywords

Bioremediation Contaminant treatability Electroremediation Phytoremediation Soil washing Thermal treatment 

References

  1. Acar, Y. B., & Alshawabkeh, A. N. (1993). Principles of electrokinetic remediation. Environmental Science and Technology, 27, 2638–2648.CrossRefGoogle Scholar
  2. Alexander, M. (2001). Bioavailability of organic compounds sequestered in soils. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  3. Anonymus. (2008). Soil washing on the Olympic Park. www.london2012.com/blog/2008/07/soi-washing-on-the-olympic-park.php. Accessed 15 Sept 2011.
  4. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  5. Bandyopadhyay, S., Bhattacharya, S. K., & Majumdar, P. (1994). Engineering aspects of bioremediation. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste contaminated soils. New York: Marcel Dekker.Google Scholar
  6. Baum, C., Hrynkiewicz, K., Leinweber, P., & Meißner, R. (2006). Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix x dasyclados). Journal of Plant Nutrition and Soil Science, 169, 516–522.CrossRefGoogle Scholar
  7. Black, H. (1995). Absorbing possibilities: Phytoremediation. Environmental Health Report, 103, 1106–1108.Google Scholar
  8. Bradl, H. B. (2005). Heavy metals in the environment. Amsterdam: Elsevier.Google Scholar
  9. Bradl, N. C., & Weil, R. R. (2008). The nature and properties of soils (Pearson international edition). Upper Saddle River: Pearson Prentice Hall.Google Scholar
  10. Burghardt, W., Hiller, D. A., Hintzke, M., Meuser, H., & Wessel, R. (1991). Abiotic and biotic properties of a thermally treated soil. Notes of the German Soil Society, 66, 609–612 (in German).Google Scholar
  11. Chu, W. (2003). Remediation of contaminated soils by surfactant-aided soil washing. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 7, 19–24.CrossRefGoogle Scholar
  12. CL:AIRE. (2007). Understanding soil washing. Technical bulletin, TB 13. Contaminated land: Applications in Real Environments. www.claire.co.uk. Accessed 10 Sept 2011.
  13. Cosio, C., Vollenweider, P., & Keller, C. (2005). Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environmental and Experimental Botany, 58, 64–74.CrossRefGoogle Scholar
  14. DEC (DEME Environmental Contractors). (2011). Mobile soil washing plant. Antwerpen, Belgium.Google Scholar
  15. Dennis, R. M., Dworkin, D., & Zupko, A. J. (1994). Soil-washing processes for site remediation. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste contaminated soils. New York: Marcel Dekker.Google Scholar
  16. Dickinson, N. M. (2006). Phytoremediation of industrially-contaminated sites using trees. NATO Series IV: Earth and Environmental Sciences, 68, 229–240.Google Scholar
  17. Dos Santos Utmazian, M., & Wenzel, W. W. (2007). Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. Journal of Plant Nutrition and Soil Science, 170, 265–272.CrossRefGoogle Scholar
  18. EPA (Environmental Protection Agency USA). (1990). Engineering bulletin: Solvent extraction treatment (EPA/540/2-90/013), Cincinnati.Google Scholar
  19. Eschenbach, A., Mescher, H., Wienberg, R., & Mahro, B. (2001). Humification of PAH and TNT during bioremediation – Evaluation of long term risk and sustainability. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  20. Fan, C. Y., & Tafuni, A. N. (1994). Engineering application of biooxidation process for treating petroleum-contaminated soil. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste contaminated soils. New York: Marcel Dekker.Google Scholar
  21. Feitkenhauer, H., Hebenbrock, S., Deppe, U., Märkl, H., & Antranikian, G. (2001). Degradation of xenobiotica at elevated temperatures. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  22. Fletcher, R. D. (1994). Practical considerations during bioremediation. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste contaminated soils. New York: Marcel Dekker.Google Scholar
  23. Garcia, G., Conesa, H. M., & Faz, A. (2002). Phytoremediation of zinc polluted soils by Mediterranean pant species: Usefulness of bioaccumulation and tolerance capabilities. 4th WG2 workshop, Bordeaux, France.Google Scholar
  24. Genske, D. D. (2003). Urban land – Degradation, investigation, remediation. Berlin: Springer.Google Scholar
  25. Gordon, M., Choe, N., Duffy, J., Ekuan, G., Heilman, P., Muiznieks, I., Ruszaj, M., Shurtleff, B. B., Strand, S., Wilmoth, J., & Newman, L. A. (1998). Phytoremediation of trichloroethylene with hybrid poplars. Environmental Health Perspectives, 106, 1001–1004.Google Scholar
  26. Grotenhuis, T. J., & Rijnaarts, H. H. (2011). In situ remediation technologies. In F. A. Swartjes (Ed.), Dealing with contaminated sites. Dordrecht: Springer.Google Scholar
  27. Heely, D. A., Werk, E. S., & Kowalski, R. G. (1994). Bioremediation and reuse of soils containing No. 5 fuel oil in New England using an aboveground treatment cell: A case study. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste contaminated soils. New York: Marcel Dekker.Google Scholar
  28. Hupe, K., Koning, M., Lüth, J. C., Heerenklage, J., & Stegmann, R. (2001). Optimisation of microbial soil treatment. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  29. Kahle, P., Criegee, C., & Lennartz, B. (2002). Willow stands as an alternative method for the reduction of leachate at contaminated sites – Numerical investigations. Journal of Plant Nutrition and Soil Science, 165, 501–505.CrossRefGoogle Scholar
  30. Kanaly, R. A., & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons. Journal of Bacteriology, 182, 2059–2067.CrossRefGoogle Scholar
  31. Karthikeyan, R., & Kulakow, P. A. (2003). Soil plant microbe interactions in phytoremediation. In D. T. Tsao et al. (Eds.), Phytoremediation. Berlin: Springer.Google Scholar
  32. Karvounis, Y., & Kelepertsis, A. (2000). Chemical clean up and properties of soils polluted with heavy metals near mining areas. Proceedings Vol. 3. Paper presented at 1st international conference on soils of urban, industrial, traffic and mining areas, Essen, Germany.Google Scholar
  33. Kästner, M., & Richnow, H. H. (2001). Formation of residues of organic pollutants within the soil matrix – Mechanisms and stability. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  34. Kästner, M., Streibich, S., Beyrer, M., Richnow, H. H., & Fritsche, W. (1999). Formation of bound residues during microbial degradation of 14C anthracene in soil. Applied and Environmental Microbiology, 65, 1834–1842.Google Scholar
  35. Khan, F. I., Husain, T., & Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71, 95–122.CrossRefGoogle Scholar
  36. Kiene, A., Miehlich, G., & Gröngröft, A. (2001). Influence of oil-contamination on N-mineralisation in soils. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  37. King, R. F., Royle, A., Putwain, P. D., & Dickinson, N. M. (2006). Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial. Environmental Pollution, 143, 318–326.CrossRefGoogle Scholar
  38. Koning, M., Cohrs, I., & Stegmann, R. (2001). Development and application of an oxygen-controlled high-pressure aeration system for the treatment of TPH-contaminated soils in high biopiles (a case study). In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  39. Kuzovkina, Y. A., & Quigley, M. F. (2005). Willows beyond wetlands: Uses of Salix L. species for environmental projects. Water, Air, and Soil Pollution, 162, 183–204.CrossRefGoogle Scholar
  40. Lageman, R. (2007, December 9). Applications of electro-remediation and (electro) bioremediation. Presentation at the Environmental Symposium Tel Aviv, Israel.Google Scholar
  41. Lajoie, C. A., & Strom, P. F. (1994). Biodegradation of polynuclear aromatic hydrocarbons in coal tar oil contaminated soil. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste contaminated soils. New York: Marcel Dekker.Google Scholar
  42. Levin, L., Viale, A., & Forchiassin, A. (2003). Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. International Biodeterioration and Biodegradation, 52, 1–5.CrossRefGoogle Scholar
  43. Lindström, K., Jussila, M. M., Hintsa, H., Kaksonen, A., Mokelke, L., Mäkeläinen, K., Pitkäjärvi, J., & Suominen, L. (2003). Potential of the GalegaRhizobium galegae system for bioremediation of oil-contaminated soil. Biotechnology, 41, 11–16.Google Scholar
  44. Liphadzi, M. S., & Kirkham, M. B. (2006). Heavy-metal displacement in chelate-treated soil with sludge during phytoremediation. Journal of Plant Nutrition and Soil Science, 169, 737–744.CrossRefGoogle Scholar
  45. Lotter, S., Heerenklage, J., & Stegmann, R. (2001). Carbon balance and modelling of oil degradation in soil bioreactors. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  46. Mahro, B., Müller, R., & Kasche, V. (2001). Bioavailability – The key factor of soil bioremediation. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  47. Marks, R. E., Acar, Y. B., & Gale, R. J. (1994). In situ remediation of contaminated soils containing hazardous mixed wastes by electrokinetic remediation and other competitive technologies. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste contaminated soils. New York: Marcel Dekker.Google Scholar
  48. Meers, E., Vervaeke, P., Tack, F. M. G., Lust, N., Verloo, M. G., & Lesage, E. (2003). Field trial experiment: phytoremediation with Salix sp. on a dredged sediment disposal site in Flanders, Belgium. Remediation Journal, 12, 115–120.Google Scholar
  49. Meuser, H. (2010). Contaminated urban soils. Dordrecht: Springer.CrossRefGoogle Scholar
  50. Meuser, H., & Makowsky, L. (2009). Feasibility study on phytoextraction of heavy metals in a sludge field derived from lake dredging nearby Hanover, Germany. Presentation SUITMA conference, New York.Google Scholar
  51. Middeldorp, P., & Langenhoff, A. (2002). In situ clean up technologies. In S. N. Agathos & W. Reineke (Eds.), Biotechnology for the environment: Soil bioremediation. Dordrecht: Kluwer Academic Publisher.Google Scholar
  52. Milner, M. J., & Kochian, L. V. (2008). Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Annals of Botany, 102, 3–13.CrossRefGoogle Scholar
  53. Mirsal, I. A. (2004). Soil Pollution – Origin, monitoring & remediation. Berlin: Springer.Google Scholar
  54. Müller, R., & Mahro, B. (2001). Bioaugmentation: Advantages and problems using micro organisms with special abilities in soil decontamination. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  55. Nathanail, C. P., & Bardos, R. P. (2004). Reclamation of contaminated land. Chichester: Wiley.CrossRefGoogle Scholar
  56. Nathanail, J. F., Bardos, P., & Nathanail, C. P. (2002). Contaminated land management ready reference. Richmond: EPP Publications/Land Quality Press.Google Scholar
  57. Neeße, T. (2001). New developments in soil washing technology. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  58. NJDEP. (1998). Revised guidance document for the remediation of contaminated soils. Department of Environmental Protection State of New Jersey, USA.Google Scholar
  59. Norris, R. D. (1994). Handbook of bioremediation. Boca Raton: Lewis Publisher.Google Scholar
  60. Page, M. M., & Page, C. L. (2002). Electroremediation of contaminated soils. Journal of Environmental Engineering, 128, 208–219.CrossRefGoogle Scholar
  61. Paul, E., & Clark, F. (1996). Soil microbiology and biochemistry. San Diego: Academic.Google Scholar
  62. Pearl, M., Pruijn, M., & Bovendeur, J. (2006). The application of soil washing to the remediation of contaminated soils. Land Contamination and Reclamation, 14, 713–726.CrossRefGoogle Scholar
  63. Probstein, R. F. (1994). Physicochemical hydrodynamics – An introduction. New York: Wiley.CrossRefGoogle Scholar
  64. Radwan, S., Sorkhon, N., & El-Nemri, I. (1995). Oil biodegradation around roots. Nature, 376, 302–308.CrossRefGoogle Scholar
  65. Sere, G., Schwartz, C., Ouvrard, S., Sauvage, C., Renat, J. C., & Morel, J. L. (2008). Soil construction: A step for ecological reclamation of derelict lands. Journal of Soils and Sediments, 7, 1–7.Google Scholar
  66. Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals. Heidelberg: Springer.Google Scholar
  67. Simon, F. G., Meggyes, T., & McDonald, C. (2002). Advanced groundwater remediation: Active and passive technologies. London: Thomas Telford.CrossRefGoogle Scholar
  68. SITA. (2009). SITA remediation. Information brochure, Herne, Germany. www.sitaremediation.com. Accessed 1 Sept 2011.
  69. SUMATECS. (2008). Sustainable management of trace elements contaminated soils – Development of a decision tool system and its evaluation for practical application (Final Research Report, No. SN-01/20), Vienna, Austria.Google Scholar
  70. Tamura, H., Honda, M., Sato, T., & Kamachi, H. (2005). Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum). Journal of Plant Research, 118, 355–359.CrossRefGoogle Scholar
  71. Tiehm, A., & Stieber, M. (2001). Strategies to improve PAH bioavailability: Additions of surfactants, ozonation and application of ultrasound. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  72. Tiehm, A., Stieber, M., Werner, P., & Frimmel, F. H. (1997). Surfactant-enhanced mobilization and biodegradation of polycyclic hydrocarbons in manufactured gas plant soil. Environmental Science and Technology, 31, 2570–2576.CrossRefGoogle Scholar
  73. Trapp, S., & Karlson, U. (2001). Aspects of phytoremediation of organic pollutants. Journal of Soils and Sediments, 1, 1–7.CrossRefGoogle Scholar
  74. Vandecasteele, B., De Vos, B., & Tack, F. M. G. (2002). Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. The Science of the Total Environment, 299, 191–205.CrossRefGoogle Scholar
  75. Vandecasteele, B., Meers, E., Vervaeke, P., De Vos, B., Quataert, P., & Tack, F. M. G. (2005). Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere, 58, 995–1,002.CrossRefGoogle Scholar
  76. Vipulanandan, C., Wang, S., & Krishnan, S. (1994). Biodegradation of phenol. In D. L. Wise & D. J. Trantolo (Eds.), Remediation of hazardous waste contaminated soils. New York: Marcel Dekker.Google Scholar
  77. Voss, J., Altrogge, M., Goliske, D., Kranz, O., Nünnecke, D., Petersen, D., & Waller, E. (2001). Degradation of chlorinated arenes by electroreduction. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin: Springer.Google Scholar
  78. Werther, J., Malerius, O., & Schmidt, J. (2001). Ways to improve the efficiency of soil washing. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  79. Wick, L. Y., Springael, D., & Harms, H. (2001). Bacterial strategies to improve the bioavailability of hydrophobic organic pollutants. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  80. Wilichowski, M. (2001). Remediation of soils by washing processes – An historical overview. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  81. Winterberg, R. (2001). Humification as a remediation strategy for TNT contaminations: Applications and limitations. In R. Stegmann, G. Brunner, W. Calmano, & G. Matz (Eds.), Treatment of contaminated soil. Berlin/New York: Springer.Google Scholar
  82. Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139–156.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty A&LUniversity of Applied SciencesOsnabrückGermany

Personalised recommendations