Skip to main content

Control of Chains of Mass Points in a Frictional Environment

  • Conference paper
  • First Online:
IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design

Part of the book series: IUTAM Bookseries (closed) ((IUTAMBOOK,volume 32))

  • 1357 Accesses

Abstract

This paper is devoted to the adaptive control of worm-systems, which are inspired by biological ideas. We introduce a certain type of mathematical models of finite DOF worm-like locomotion systems: modeled as a chain of k interconnected (linked) point masses in a common straight line (a discrete straight worm). We assume that these systems contact the ground via (1) spikes and then (2) stiction combined with Coulomb sliding friction (modification of a Karnopp friction model). In general, one cannot expect to have complete information about a sophisticated mechanical or biological system, only structural properties (known type of actuator with unknown parameters) are known. Additionally, in a rough terrain, unknown or changing friction coefficients lead to uncertain systems, too. The consideration of uncertain systems leads to the use of adaptive control. Gaits from the kinematical theory (preferred motion patterns to achieve movement) can be tracked by means of adaptive controllers (λ-trackers). Simulations are aimed at the justification of theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 30(7), 1083–1138 (1994)

    Google Scholar 

  • Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58, 389–411 (2005)

    Article  Google Scholar 

  • Behn, C.: Ein Beitrag zur adaptiven Regelung technischer Systeme nach biologischem Vorbild. Cuvillier, Göttingen (2005)

    Google Scholar 

  • Behn, C., Steigenberger, J.: Improved adaptive controllers for sensory systems – first attempts. In: Awrejcewicz, J. (ed.) Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems, pp. 161–178. Springer, New York (2009)

    Google Scholar 

  • Behn, C., Zimmermann, K.: Adaptive λ-tracking for locomotion systems. Robot. Auton. Syst. 54, 529–545 (2006)

    Article  Google Scholar 

  • Behn, C., Steigenberger, J., Zimmermann, K.: Biologically inspired locomotion systems – improved models for friction and adaptive control. In: Bottasso, C.L., Masarati, P., Trainelli, L. (eds.) Proceedings ECCOMAS Thematic Conference in Multibody Dynamics, Milano, Italy, 20p (2007). Electronical publication

    Google Scholar 

  • Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Google Scholar 

  • Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford (1993)

    Google Scholar 

  • Huang, J.: Modellierung, Simulation und Entwurf biomimetischer Roboter basierend auf apedaler undulatorischer Lokomotion. ISLE, Ilmenau (2003)

    Google Scholar 

  • Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. ASME J. Dyn. Syst. Meas. Control 107(1), 100–103 (1985)

    Article  Google Scholar 

  • Olsson, H., Åström, K.J., Canudas de Wit, C., Gräfert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4, 176–195 (1998)

    MATH  Google Scholar 

  • Ostrowski, J.P., Burdick, J.W., Lewis, A.D., Murray, R.M.: The mechanics of undulatory locomotion: the mixed kinemtic and dynamic case. In: Proceedings IEEE International Conference on Robotics and Automation, Nagoya, Japan (1995)

    Google Scholar 

  • Steigenberger, J.: On a class of biomorphic motion systems. Preprint No. M12/99. Faculty of Mathematics and Natural Sciences, TU Ilmenau (1999)

    Google Scholar 

  • Steigenberger, J.: Modeling Artificial Worms. Preprint No. M02/04. Faculty of Mathematics and Natural Sciences, TU Ilmenau (2004)

    Google Scholar 

  • Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion – With a Focus on Non-pedal Motion Systems. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Behn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Behn, C., Zimmermann, K. (2013). Control of Chains of Mass Points in a Frictional Environment. In: Wiercigroch, M., Rega, G. (eds) IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design. IUTAM Bookseries (closed), vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5742-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5742-4_33

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5741-7

  • Online ISBN: 978-94-007-5742-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics