Fish Scales as Mineral-Based Composites

  • Hermann Ehrlich
Part of the Biologically-Inspired Systems book series (BISY, volume 4)


Structural elements called “scales” in fish have a structure and chemical content closer to teeth than to any other scale type. Scales exist in many shapes and sizes, and serve as protection (mechanical and anti-bacterial), camouflage, and plumage for marine fishes. In addition to protective properties, scales provide these animals with locomotive and, in the case of lateral lines, sensory abilities. A fish’s locomotion is aided by the shape of scales, which help create a laminar flow of water around the animal. These properties are partially determined by the hierarchically composite-based structure of scales. Discussed in this chapter are numerous mineral-based composites and unique biological materials such as enamel, enameloid, dentines, cosmine, ganoine, hyaline and their derivatives. Also discussed is the diversity and structure of extinct and extant fish scales, scutes and denticles.


Tooth Enamel Fish Scale Enamel Matrix Enamel Formation Bony Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agassiz L (1833–1844) Recherches sur les poissonsfossiles. Imprimerie Petitpierre, Neuchatel (Suisse)Google Scholar
  2. Baudelot ME (1873) Recherches sur la structure et le developpement des ecailles des poisons osseux. Arch Zool Exp Gen 2:87–244; 429–480Google Scholar
  3. Baume LJ (1980) The biology of pulp and dentine: a historic, terminologic–taxonomic, histologic–biochemical, embryonic and clinical survey. In: Myers HM (ed) Monographs in oral science, vol 8. Karger, BaselGoogle Scholar
  4. Bemis WE, Findeis EK, Grande L (1997) An overview of Acipenseriformes. Environ Biol Fish 48:25–71CrossRefGoogle Scholar
  5. Bendix–Almgreen SE (1983) Carcharodon megalodon from the upper Miocene of Denmark, with comments on elasmobranch tooth enameloid: coronoiin. Bull Geol Soc Denmark 32:1–32Google Scholar
  6. Bendix-Almgreen SE, Bang BS (1997) Aspects of enameloid ontogeny in fossils and recent selachians with comments on enameloids and their occurrence during early lower vertebrate phylogeny. In: The first European workshop on Vertebrate Palaeontology, Geological Museum, Copenhagen University. Dansk geologisk Forening, on-line series no. 1, pp 1–5Google Scholar
  7. Bertin L (1944) Modifications proposees dans la nomenclature des ecailles et des nageoires. Bull Soc Zool Fr 69:198–202Google Scholar
  8. Borgen UJ (1989) Cosmine resorption structures on three osteolepid jaws and their biological significance. Lethaia 22:413–424CrossRefGoogle Scholar
  9. Borgen UJ (1992) The function of the cosmine pore canal system. In: Mark–Kurik E (ed) Fossil fishes as living animals. Academy of Sciences of Estonia, Tallinn, pp 141–150Google Scholar
  10. Chen PY, Schirer J, Simpson A et al (2011) Predation versus protection: fish teeth and scales evaluated by nanoindentation. J Mater Res 26:1–12CrossRefGoogle Scholar
  11. Currey JD, Abeysekera RM (2003) The microhardness and fracture surface of the petrodentine of Lepidosiren (Dipnoi), and of other mineralised tissues. Arch Oral Biol 48:439–447CrossRefGoogle Scholar
  12. Daget J, Gayet M, Jeunier FJ et al (2001) Major discoveries on the dermal skeleton of fossil and recent polypteriformes: a review. Fish Fish 2(2):113–124CrossRefGoogle Scholar
  13. Dapar MLG, Torres MAJ, Fabricante PC et al (2012) Scale morphology of the Indian goatfish, Parupeneus indicus (Shaw, 1803) (Perciformes: Mullidae). Adv Environ Biol 6(4):1426–1432Google Scholar
  14. Denison RH (1974) The structure and evolution of teeth in lungfishes. Fieldiana (Geology) 33:31–58Google Scholar
  15. Dias EV, Vega CS, Canhete MVU (2010) Microstructure of paleoniscid fish scales from Irati Formation, Permian (Cisuralian) of Paraná Basin. Braz J Geosci 6(2):69–75Google Scholar
  16. Donoghue P, Sansom I, Downs J (2006) Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J Exp Zool B Mol Dev Evol 306B:278–294CrossRefGoogle Scholar
  17. Enax J, Prymak O, Raabe D et al (2012) Structure, composition, and mechanical properties of shark teeth. J Struct Biol 178(3):290–299CrossRefGoogle Scholar
  18. Francillon-Vieillot H, de Buffrénil V, Castanet J, Géraudie J, Meunier FJ, Sire JY, Zylberberg L, de Ricqlès A (1990) Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG (ed) Skeletal biomineralization: patterns, processes and evolutionary trends, vol 1. Van Nostrand Reinhold, New York, pp 471–530Google Scholar
  19. Gemballa S, Bartsch P (2002) Architecture of the integument in lower teleostomes: functional morphology and evolutionary implications. J Morphol 253:290–309. Copyright © 2002 Wiley-Liss, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  20. Giraud MM, Castanet J, Meunier FJ et al (1978) The fibrous structure of coelacanth scales: a twisted “plywood”. Tissue Cell 10:671–686CrossRefGoogle Scholar
  21. Goodrich ES (1907) On the scales of fish, living and extinct, and their importance in classification. Proc Zool Soc London 77(4):751–773CrossRefGoogle Scholar
  22. Green JL (2009) Enamel–reduction and orthodentine in Dicynodontia (Therapsida) and Xenarthra (Mammalia): an evaluation of the potential ecological signal revealed by dental microwear. ProQuest dissertations and theses, North Carolina State University, North Carolina, RaleighGoogle Scholar
  23. Gross W (1967) Über Thelodontier–Schuppen. Palaeontographica Abt A 127:1–67Google Scholar
  24. Hay OP (1912) On an important species of Edestus: with description of a new species Edestus mints. Proc US Natl Mus 42:31–38Google Scholar
  25. Herold RC (1970) Vasodentine and mantle dentine in teleost fish teeth: a comparative microradiographic analysis. Arch Oral Biol 15(1):71–85CrossRefGoogle Scholar
  26. Hofer B (1889) Ueber den Bau und die Entwicklung der Cycloid und Ctenoidschuppen. Sitzber Ges Morph Phys Munchen 6:103–118Google Scholar
  27. Hu JC, Chun YH, Al Hazzazzi T et al (2007) Enamel formation and amelogenesis imperfecta. Cell Tissue Organ 186(1):78–85CrossRefGoogle Scholar
  28. Huysseune A, Sire JY (1998) Evolution of patterns and processes in teeth and tooth–related tissues in non–mammalian vertebrates. Eur J Oral Sci 106:437–481Google Scholar
  29. Ishiyama M, Sasagawa I, Akai J (1984) The inorganic content of pleromin in tooth plates of the living holocephalan, Chimaera phantasma, consists of a crystalline calcium phosphate known as β–Ca3(PO4)2 (Whitlockite). Arch Histol Jpn 47:89–94CrossRefGoogle Scholar
  30. Ishiyama M, Yoshie S, Teraki Y et al (1991) Ultrastructure of pleromin a highly mineralized tissue comprising crystalline calcium phosphate known as whitlockite, in holocephalian tooth plates. In: Suga S, Nakahara H (eds) Mechanisms and phylogeny of mineralization in biological systems. Springer, BerlinGoogle Scholar
  31. Jawad LA (2005) Comparative scale morphology and squamation patterns in triplefins (Pisces: Teleostei: Perciformes: Tripterygiidae). Tuhinga 16:137–167Google Scholar
  32. Kawasaki K (2011) The SCPP gene family and the complexity of hard tissues in vertebrates. Cell Tissue Organ 194(2–4):108–112CrossRefGoogle Scholar
  33. Kawasaki K, Suzuki T, Weiss KM (2004) Genetic basis for the evolution of vertebrate mineralized tissue. Proc Natl Acad Sci U S A 101(31):11356–11361. Copyright (2004) National Academy of Sciences, U.S.A. Reprinted with permissionGoogle Scholar
  34. Kerr T (1952) The scales of primitive living actinopterygians. Proc Zool Soc London 122:55–78CrossRefGoogle Scholar
  35. Kondo S, Kuwahara Y, Kondo M et al (2001) The medaka rs–3 locus required for scale development encodes ectodysplasin–a receptor. Curr Biol 11:1202–1206CrossRefGoogle Scholar
  36. Landreneau EB (2011) Scales and scale–like structures. Dissertation, Texas A&M University, College StationGoogle Scholar
  37. Linde A (1995) Dentin mineralization and the role of odontoblasts in calcium transport. Connect Tissue Res 33:163–170CrossRefGoogle Scholar
  38. Mandl L (1839) Recherches sur la structure intime des ecailles des poissons. Ann Sci Nat 2:337–371Google Scholar
  39. Margolis HC, Beniash E, Fowler CE (2006) Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 85(9):775–793. Copyright © 2006 by International & American Associations for Dental Research. Reprinted by Permission of SAGE PublicationsGoogle Scholar
  40. Märss T (2011) A unique Late Silurian Thelodus squamation from Saaremaa (Estonia) and its ontogenetic development. Estonian J Earth Sci 60:137–146CrossRefGoogle Scholar
  41. Märss T, Turner S, Karatajute–Talimaa V (2007) Handbook of paleoichthyology, vol 1B, ‘Agnatha’ II Thelodonti. Verlag Dr Friedrich Pfeil, MunichGoogle Scholar
  42. Maxwell EE, Caldwell MW, Lamoureux DO (2011) The structure and phylogenetic distribution of amniote plicidentine. J Vertebr Paleontol 31:553–561CrossRefGoogle Scholar
  43. Meinke DK (1984) A review of cosmine: its structure, development, and relationships to the other forms of the dermal skeleton in osteichthyans. J Vertebr Paleontol 4:45–470CrossRefGoogle Scholar
  44. Meinke DK (1986) Morphology and evolution of the dermal skeleton in lungfishes. J Morphol 190:133–149. Copyright © 1986 Wiley-Liss, Inc. Reprinted with permissionGoogle Scholar
  45. Meunier FJ (1980) Les relations isopedine – tissu osseux dans le post-temporal et les ecailJes de la ligne laterale de Latimeria chalumnae (Smith). Zoologica Scripta 9:307–317. Copyright © 2008, John Wiley and Sons. Reprinted with permissionGoogle Scholar
  46. Meunier FJ (1983) Les tissus osseux des Ostéichthyens. Structure, genèse, croissance et évolution. Archives et Documentations, Micro–Edition, Institut d’Ethnologie, Museum National d’Histoire Naturelle, Paris, SN, 82–600–328Google Scholar
  47. Meunier FJ (1984) Spatial organization and mineralization of the basal plate of elasmoid scales in osteichthyans. Am Zool 24:953–964Google Scholar
  48. Meunier FJ (2011) Reprinted from: Meunier FJ (2011) The Osteichtyes, from the Paleozoic to the extant time, through histology and palaeohistology of bony tissues. C R Palevol 10:347–355, Copyright (2011), with permission from ElsevierGoogle Scholar
  49. Miura J, Kubo M, Nagashima T, Takeshige F (2012) Ultra-structural observation of human enamel and dentin by ultra-high-voltage electron tomography and the focus ion beam technique. J Electron Microsc (Tokyo) 61(5):335–341CrossRefGoogle Scholar
  50. Mondéjar–Fernández J, Clément G (2012) Squamation and scale microstructure evolution in the Porolepiformes (Sarcopterygii, Dipnomorpha) based on Heimenia ensis from the Devonian of Spitsbergen. J Vertebr Paleontol 32:267–284CrossRefGoogle Scholar
  51. Moradian–Oldak J (2009) The regeneration of tooth enamel. Dimens Dent Hyg 7(8):12–15Google Scholar
  52. Moradian–Oldak J, Paine ML (2008) Mammalian: enamel formation. In: Astrid S, Sigel H, Sigel RKO (eds) Metal ions in life sciences. Wiley, ChichesterGoogle Scholar
  53. Motta PJ (1987) A quantitative analysis of ferric iron in butterflyfish teeth (Chaetodontidae, Perciformes) and the relationship to feeding ecology. Can J Zool 65(1):106–112CrossRefGoogle Scholar
  54. Nanci A (2003) Enamel: composition, formation and structure. In: Nanci A (ed) Ten Cate’s oral histology: development, structure, and function harcourt health. Elsevier Mosby, St. LouisGoogle Scholar
  55. Ørvig T (1951) Histologic studies of Placoderms and fossil Elasmobranchs. I: the endoskeleton, with remarks on the hard tissues of lower vertebrates in general. Ark Zool 2(2):321–454Google Scholar
  56. Ørvig T (1967) Phylogeny of tooth tissues: evolution of some calcified tissues in early vertebrates. In: Miles AEW (ed) Structural and chemical organization of teeth, vol I. Academic, New YorkGoogle Scholar
  57. Ørvig T (1968) The dermal skeleton; general considerations. In: Ørvig T (ed) Current problems of lower vertebrate phylogeny. Proceedings of the 4th Nobel symposium. Almqvist and Wiskell, StockholmGoogle Scholar
  58. Ørvig T (1969) Cosmine and cosmine growth. Lethaia 2:241–260CrossRefGoogle Scholar
  59. Ørvig T (1978) Microstructure and growth of the dermal skeleton in fossil actinopterygian fishes: Nephrotus and Colobodus, with remarks on the dentition in other forms. Zool Scr 7:297–326CrossRefGoogle Scholar
  60. Patterson RT, Wright C, Chang AS et al (2002) Brit. Columbia fish–scale atlas. Palaeontol Electron 4(1):88Google Scholar
  61. Reif WE (1982) Evolution of dermal skeleton and dentition in vertebrates: the odontode regulation theory. In: Hecht MK, Wallace B, Prauce GT (eds) Evolutionary biology, vol 15. Plenum Press, New York, pp 287–368CrossRefGoogle Scholar
  62. Reif WE, Richter M (2001) Revisiting the lepidomorial and odontode regulation theories of dermo–skeletal morphogenesis. Neues Jahr Geol Paläont 219:285–304Google Scholar
  63. Reisz RR, Krupinina NI, Smith MM (2004) Dental histology in Ichnomylax karatajae sp. Nov., an early Devonian dipnoan from the Taymyr Peninsula, Siberia, with a discussion on petrodentine. J Vertebr Paleontol 24(1):18–25CrossRefGoogle Scholar
  64. Richter M, Smith MM (1995) A microstructural study of the ganoine tissue of selected lower vertebrates. Zool J Linnean Soc 114:173–212CrossRefGoogle Scholar
  65. Sansom IJ, Smith MM, Smith MP (1996) Scales of thelodont and shark-like fishes from the Ordovician of Colorado. Nature 379:628–630CrossRefGoogle Scholar
  66. Sasagawa I (2002) Reprinted from: Sasagawa I (2002) Mineralization patterns in elasmobranch fish. Microsc Res Tech 59:396–407. Copyright © 2002 Wiley-Liss, Inc., with permission from John Wiley and Sons)Google Scholar
  67. Sasagawa I, Ishiyama M, Akai J (2006) Cellular influence in the formation of enameloid during odontogenesis in bony fishes. Mater Sci Eng C 26:630–634CrossRefGoogle Scholar
  68. Sasagawa I, Ishiyama M, Yokosuka H et al (2009) Tooth enamel and enameloid in actinopterygian fish. Front Mater Sci Chin 3:174–182CrossRefGoogle Scholar
  69. Sasagawa et al (2012) With kind permission from Springer Science + Business Media: Sasagawa I, Yokosuka H, Ishiyama M et al (2012) Fine structural and immunohistochemical detection of collar enamel in the teeth of Polypterus senegalus, an actinopterygian fish. Cell Tissue Res 347(2):369–381. Copyright © 2012, Springer-VerlagGoogle Scholar
  70. Schmidt WJ (1948) Polarisationsoptische untersuchung schmelzartiger aussenschichten des zahnbeins von fischen. III. Das durodentin von myliobatis. Cell Tissue Res 34(2):165–178Google Scholar
  71. Schmidt WJ (1959) Durodentin bei einem devonischen fisch (Laccognathus Panderi Gross). Cell Tissue Res 49:493–514Google Scholar
  72. Schmidt WJ (1969) Die schmelznatur der eisenoxidhaltigen kappe auf teleostier–zähnen. Cell Tissue Res 93:447–450Google Scholar
  73. Schneider JC, Laarman PW, Gowing H (2000) Age and growth methods and state averages: Chapter 9. In: Schneider JC (ed) Manual of fisheries survey methods II: with periodic updates, Fisheries special report 25. Michigan Department of Natural Resources, Ann ArborGoogle Scholar
  74. Schultze HP (1977) Ausgangsform und entwicklung der rhombischen schuppen der Osteichthyes (Pisces). Palöont Z 51:152–168CrossRefGoogle Scholar
  75. Schultze HP (1996) The scales of Mesozoic actinopterygians. In: Arratia G, Viohl G (eds) Mesozoic fishes systematic and palaeoecology. Verlag Dr. F. Pfeil, MünchenGoogle Scholar
  76. Sharif F, de Vrieze E, Metz JR et al (2011) Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales. Bone 48:704–712CrossRefGoogle Scholar
  77. Sharpe TP (2001) Reprinted from: Sharpe TP (2001) Fish scale development: hair today, teeth and scales yesterday? Curr Biol 11(18):R751–R752, Copyright (2001), with permission from ElsevierGoogle Scholar
  78. Sire J-Y (1987) Structure, formation et régénération des écailles d’un poisson téléostéen, Hemichromis bimaculatus (Perciforme, Cichlidé). Dissertation, Université Paris, ParisGoogle Scholar
  79. Sire J-Y (1988) Evidence that mineralized spherules are involved in the formation of the superficial layer of the elasmoid scale in the cichlids Hemichromis bimaculatus and Cichlasoma octofasciatum (Pisces, Teleostei): an epidermal active participation? Cell Tissue Res 253:165–171Google Scholar
  80. Sire J-Y (1990) From ganoid to elasmoid scales in the actinopterygian fishes. Neth J Zool 40:75–92CrossRefGoogle Scholar
  81. Sire J-Y (1993) Development and fine structure of the bony scutes in Corydoras arcuatus (Siluriformes, Callichthyidae). J Morphol 215:225–244Google Scholar
  82. Sire J-Y (1994) Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (holostei) with particular attention to ganoine formation. Anat Rec 240:189–207. Copyright © 1994 Wiley-Liss, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  83. Sire J-Y (1995) Ganoine formation in the scales of primitive actinopterygian fishes, lepisosteids and polypterids. Connect Tissue Res 32:535–544Google Scholar
  84. Sire J-Y (2001) Teeth outside the mouth in teleost fish: how to benefit from a developmental accident. Evol Dev 3:104–108CrossRefGoogle Scholar
  85. Sire J-Y, Akimenko M-A (2004) Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int J Dev Biol 48:233–247. Copyright (c) 2004, UBC Press. Reproduced with permissionGoogle Scholar
  86. Sire J-Y, Huysseune A (1996) Structure and development of the odontodes in an armoured catfish, Corydoras aeneus (Callichthyidae). Acta Zool (Stockh) 77:51–72CrossRefGoogle Scholar
  87. Sire J-Y, Huysseune A (2003) Formation of skeletal and dental tissues in fish: a comparative and evolutionary approach. Biol Rev 78:219–249CrossRefGoogle Scholar
  88. Sire J-Y, Géraudie J, Meunier FJ et al (1987) On the origin of ganoine: histological and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteichthyes, Brachyopterygii, Polypteridae). Am J Anat 180:391–402CrossRefGoogle Scholar
  89. Sire J-Y, Davit-Béal T, Delgado S et al (2002) The first generation teeth in non-mammalian lineages: evidence for a conserved ancestral character? Microsc Res Tech 59:408–434CrossRefGoogle Scholar
  90. Sire J-Y, Davit–Beal T, Delgado S et al (2007) The origin and evolution of enamel mineralization genes. Cell Tissue Organ 186:25–48CrossRefGoogle Scholar
  91. Sire JY et al (2009) Reprinted from: Sire JY et al (2009) Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J Anat 214:409–440, Copyright © 2009 The Authors. Journal compilation © 2009 Anatomical Society of Great Britain and Ireland, with permission from John Wiley and SonsGoogle Scholar
  92. Smith MM (1984) Petrodentine in extant and fossil dipnoan dentitions: microstructure, histogenesis and growth. Proc Linnean Soc NSW 107:367–407Google Scholar
  93. Smith MM (1985) The patterns of histogenesis and growth of tooth plates in larval stages of extant lungfish. J Anat 140:627–643Google Scholar
  94. Smith MM (1995) Heterochrony in the evolution of enamel in vertebrates. In: McNamara KJ (ed) Evolutionary change and heterochrony. Wiley, ChichesterGoogle Scholar
  95. Smith MM, Hobdell MH, Miller WA (1972) The structure of the scales of Latimeria chalumnae. J Zool 167:501–509. Copyright © 2009, John Wiley and Sons. Reprinted with permission from John Wiley and Sons.)Google Scholar
  96. Suga S (1984) The role of fluoride and iron in mineralization of fish enameloid. In: Fearnhead RW, Suga S (eds) Tooth enamel. Elsevier Science Publishers BV, AmsterdamGoogle Scholar
  97. Suga S, Wada K, Taki Y et al (1989) Iron concentration in teeth of tetra-odontiform fish and its phylogenetic significance. J Dent Res 68:1115–1123CrossRefGoogle Scholar
  98. Suga S, Taki Y, Wada K et al (1991) Evolution of fluoride and iron concentrations in the enameloid of fish teeth. In: Suga S, Nakahara H (eds) Mechanisms and phylogeny of mineralization in biological systems. Springer, TokyoCrossRefGoogle Scholar
  99. Thesleff I, Sharpe P (1997) Signalling networks regulating dental development. Mechanisms Dev 67:111–123CrossRefGoogle Scholar
  100. Thomson KS (1975) On the biology of cosmine. Bulletin of the peabody museum of natural history, vol 40. Peabody Museum of Natural History, Yale University: New Haven. Courtesy of the Peabody Museum of Natural History, Yale University, New Haven, CTGoogle Scholar
  101. Turner S (1984) Studies of Palaeozoic Thelodonti (Craniata: Agnatha), 2 vols. Unpublished PhD thesis, University of Newcastle-upon-Tyne, UKGoogle Scholar
  102. Valiukevicius J, Burrow CJ (2005) Diversity of tissues in acanthodians with Nostolepis–type histological structure. Acta Palaeontol Pol 50:635–649Google Scholar
  103. Vickaryous MK, Sire J-Y (2009) The integumentary skeleton of tetrapods: origin, evolution, and development. J Anat 214:441–464. © 2009 The Authors. Journal compilation © 2009 Anatomical Society of Great Britain and Ireland. Reprinted with permission from John Wiley and SonsGoogle Scholar
  104. Williamson WC (1849) On the microscopic structure of scales and teeth of some ganoid and placoid fish. Phil Trans R Soc Lond Ser B Biol Sci 139:435–475CrossRefGoogle Scholar
  105. Williamson WC (1851) Investigations into the structure and development of the scales and bones of fishes. Philos Trans R Soc Lond 141:643–702CrossRefGoogle Scholar
  106. Witzmann F (2011) Morphological and histological changes of dermal scales during the fish–to–tetrapod transition. Acta Zool (Stockholm) 92:281–302CrossRefGoogle Scholar
  107. Young GC, Karatajute–Talimaa VN, Smith MM (1996) A possible Late Cambrian vertebrate from Australia. Nature 383:810–812CrossRefGoogle Scholar
  108. Zaslansky P (2008) Dentin. In: Fratzl P (ed) Collagen: structure and mechanics. Springer, New YorkGoogle Scholar
  109. Zylberberg L, Géraudie J, Meunier FJ et al (1992) Biomineralisation in the integumental skeleton of the living lower vertebrates. In: Hall BK (ed) Bone – bone metabolism and mineralisation, vol 4. CRC Press Inc., Boca Raton, pp 171–224Google Scholar
  110. Zylberberg L, Sire J-Y, Nanci A (1997) Immunodetection of amelogenin-like proteins in the ganoine of experimentally regenerating scales of Calamoichthys calabaricus, a primitive actinopterygian fish. Anat Rec 249:86–95. Copyright © 1997 Wiley-Liss, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Experimental PhysicsTU Bergakademie FreibergFreibergGermany

Personalised recommendations