Biocomposites and Mineralized Tissues

  • Hermann Ehrlich
Part of the Biologically-Inspired Systems book series (BISY, volume 4)


Bones represent a family of biological materials with complex, hierarchically organized architecture. These diverse mineralized structures are excellently adapted to the variety of mechanical functions and stresses (Weiner et al. 1999; Beniash 2011). According to modern point of view, “bone is specific to vertebrates, and originated as mineralization around the basal membrane of the throat or skin, giving rise to tooth-like structures and protective shields in animals with a soft cartilage-like endoskeleton” (Obradovic-Wagner and Aspenberg 2011). In his excellent monograph, John Long (1995) described the origin and diversity of bone structures which I will now briefly summarize. Bone can be examined as the calcified tissue that supports the skeleton, external or internal, of vertebrates and shows a broad variety of mechanical adaptations at nano- and microscales (Currey 1984, 2002; Weiner and Wagner 1998; Fratzl et al. 2004). A functionally important mechanical property of bones is stiffness, both in the whole element sense and in the material sense (Horton and Summers 2009). Main components of bone include hydroxylapatite (HAP) (as inorganic part), nanofibrillar collagen fibres that support the in vivo development of mineralised bone, and corresponding vascular tissue that supplies blood to the living cell components of bone. Since publication by Kölliker (1859), the presence of cellular and acellular types in the bone of early vertebrates is well established. In spite of that the structures of these bone types are similar, the principal difference between them are the spaces in cellular bone for the osteocytes, which occur throughout this hard tissue.


Sperm Whale Salt Gland Marine Vertebrate Tooth Plate Dermal Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abel JH, Ellis RA (1966) Histochemical and electron microscopic observations on the salt secreting glands of marine turtles. Am J Anat 118:337–357Google Scholar
  2. Abler WL (1992) The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology 18:161–183Google Scholar
  3. Abzhanov et al (2007) Reproduced with permission Development 134: Abzhanov A, Rodda SJ, McMahon AP and Tabin CJ (2007) Regulation of skeletogenic differentiation in cranial dermal bone. Development 134:3133–3144Google Scholar
  4. Acuña–Mesén RA (1984) La ultraestructura superficial de la cascara del huevo de la tortuga marina Lepidochelys olivacea Eschscholtz. Brenesia 22:299–308Google Scholar
  5. Acuña–Mesén RA (1989) Anatomia microscopica de la cascara del huevo de la tortuga Carey Eretmochelys imbricata. Brenesia 31:33–41Google Scholar
  6. Al–Bahry SN, Mahmoud IY, Al–Amri IS et al (2009) Ultrastructural features and elemental distribution in eggshell during pre and post hatching periods in the green turtle, Chelonia mydas at Ras Al–Hadd, Oman. Tissue Cell 41:214–221Google Scholar
  7. Al–Bahry SN, Mahmoud IY, Melghit K et al (2011) Analysis of elemental composition of the eggshell before and after incubation in the loggerhead turtle (Caretta caretta) in Oman. Microsc Microanal 17(3):452–60. Copyright © 2011, Microscopy Society of America. Reprinted with permissionGoogle Scholar
  8. Alerstam T, Hogstedt G (1983) The role of the geomagnetic field in the development of birds’ compass sense. Nature 306:463–465Google Scholar
  9. Alibardi L (2010a) Cornification in the claw of the amphibian Xenopus laevis and comparison with claws in amniotes. Ital J Zool 179:399–409Google Scholar
  10. Alibardi L (2010b) Cornification of the beak of Rana dalmatina tadpoles suggests the presence of basic keratin associated proteins. Zool Stud 49:51–63Google Scholar
  11. Alibardi L, Segalla A (2011) The process of cornification in the horny teeth of the lamprey involves proteins in the keratin range and other keratin–associated proteins. Zool Stud 50(4):416–425Google Scholar
  12. Allen GR (1982) A field guide to inland fishes of Western Australia. University of Western Australia Press, PerthGoogle Scholar
  13. Amano M, Yamada TK, Brownell RL Jr et al (2011) Age determination and reproductive traits of killer whales entrapped in ice off Aidomari, Hokkaido. Jpn J Mammol 92:275–282Google Scholar
  14. Amiel D, Coutts RD, Harwood FL et al (1988) The chondrogenesis of rib perichondrial grafts for repair of full thickness articular cartilage defects in a rabbit model: a one year postoperative assessment. Connect Tissue Res 18:27–39Google Scholar
  15. Anderson PSL, LaBarbera M (2008) Functional consequences of tooth design: effects of blade shape on energetics of cutting. J Exp Biol 211:3619–3626Google Scholar
  16. Andrews RM, Mathies T (2000) Natural history of reptilian development: constraints on the evolution of viviparity. Bioscience 50:227–238Google Scholar
  17. Applegate SP (1965) Tooth terminology and variation in sharks with special reference to the sand shark, Carcharias taurus rafinesque. Contib Sci Los Angel Cty Mus 86:3–18Google Scholar
  18. Arias JL, Fink DJ, Xiao S et al (1993) Biomineralization and eggshells: cell–mediated acellular compartments of mineralized extracellular matrix. Int Rev Cytol 145:217–250Google Scholar
  19. Avallone B, Balassone G, Balsamo G et al (2003) The otoliths of the antarctic teleost Trematomus bernacchii: scanning electron microscopy and X–ray diffraction studies. J Submicrosc Cytol Pathol 35(1):69–76Google Scholar
  20. Babonis LS, Brischoux F (2012) Perspectives on the convergent evolution of tetrapod salt glands. Integr Comp Biol 52(2):245–256. doi: 10.1093/icb/ics073. By permission of Oxford University Press
  21. Babonis LS, Evans DH (2011) Morphological and biochemical evidence for the evolution of salt glands in snakes. Comp Biochem Physiol A Mol Integr Physiol 160:400–411Google Scholar
  22. Babonis LS, Hyndman KA, Lillywhite HB et al (2009) Immunolocalization of Na+/K + −ATPase and Na+/K+/2Cl– cotransporter in the tubular epithelia of sea snake salt glands. Comp Biochem Physiol A Mol Integr Physiol 154:535–540Google Scholar
  23. Babonis LS, Miller SN, Evans DH (2011) Renal responses to salinity change in snakes with and without salt glands. J Exp Biol 214:2140–2156Google Scholar
  24. Baeuerlein E, Schüler D (1995) Biomineralisation: iron transport and magnetite crystal formation in Magnetospirillum gryphiswaldense. J Inorg Biochem 59(2):107Google Scholar
  25. Bain MM (1990) Eggshell strength: a mechanical/ultrastructural evaluation. Dissertation, University of Glasgow, ScotlandGoogle Scholar
  26. Baird T, Solomon SE (1979) Calcite and aragonite in the eggshell of Chelonia mydas L. J Exp Mar Biol Ecol 36:295–303Google Scholar
  27. Ballantyne JS, Robinson JW (2010) With kind permission from Springer Science + Business Media: Ballantyne JS, Robinson JW (2010) Freshwater elasmobranchs: a review of their physiology and biochemistry. J Comp Physiol B 180(4):475–493. Copyright © 2010, Springer-VerlagGoogle Scholar
  28. Bargmann W (1933) Die Zahnplatten von Chimaera monstrosa. Zeit Zell Mikr Anat 19:537–561Google Scholar
  29. Barrera F, Schmitd G, Prado Figueroa M (2001) Electrocytes presence of aluminum in weakly electric fish (Rajidae) from Bahía Blanca. Reunión Anual de la Sociedad Argentina de Neuroquímica. Cell Mol Neurobiol 21:126Google Scholar
  30. Bauer GB, Fuller M, Perry A et al (1986) Magnetoreception and biomineralization of magnetite in cetaceans. In: Kirshvink JL, Jones DS, McFadden BJ (eds) Magnetite biomineralization and magnetoreception in living organisms. Plenum Press, New YorkGoogle Scholar
  31. Bäuerlein E, Schüler D, Reszka R et al (2001) Specific magnetosomes, method for the production and use thereof. US patent 6 251 365 B1Google Scholar
  32. Bazylinski DA, Schüler D (2009) Biomineralization and assembly of the bacterial magnetosome chain. Microbe 4:124–130Google Scholar
  33. Beason RC, Semm P (1987) Magnetic responses of the trigeminal nerve system of the bobolink (Dolichonyx oryzivorus). Neurosci Lett 80:229–234Google Scholar
  34. Beason RC, Dussourd N, Deutschlander ME (1995) Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. J Exp Biol 198:141–145Google Scholar
  35. Beisel KW, Wang-Lundberg Y, Maklad A, Fritzsch B (2005) Development and evolution of the vestibular sensory apparatus of the mammalian ear. J Vestib Res 15:225–241Google Scholar
  36. Belcher E (1885) The last of the Arctic voyages; being a narrative of the expedition in H. M. S. Assistance, under the command of Captian Sir Edward Belcher, C. B., in search of Sir John Franklin, during the years 1852-53-54. Lovell Reeve, LondonGoogle Scholar
  37. Beniash E (2011) Biominerals—hierarchical nanocomposites: the example of bone. WIREs Nanomed Nanobiotechnol 3: 47–69. Copyright © 2010 John Wiley & Sons, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  38. Benirschke KJ, Henderson JR, Sweeny JC (1984) A vaginal mass, containing fetal bones, in a common dolphin, Delphlnus delphis. In: Perrin WF, Brownel RL Jr, DeMaster DP (eds) Reproduction in whales, dolphins and porpoises. Reports of the International Whaling Commission, Special Issue 6, Cambridge, UKGoogle Scholar
  39. Berenyi M (1972) Models for the formation of uric acid and urate stones. Int Urol Nephrol 4:199–204Google Scholar
  40. Berry C (2004) Hearing the sermons in stones. QJM 97(2):109–110, by permission of Oxford University PressGoogle Scholar
  41. Besmer A (1947) Die Triasfauna der Tessiner Kalkalpen XVI. Beiträge zur Kenntnis des Ichthyosauriergebisses. Schweiz Palaeontol Abh 65:1–21Google Scholar
  42. Best RC (1981) The tusk of the narwhal (Monodon monoceros L.): interpretation of its function (Mammaia: Cetacea). Can J Zool 59:2386–2393Google Scholar
  43. Betts MW (2007) The Mackenzie Inuit whale bone industry: raw material, tool manufacture, scheduling, and trade. ARCTIC 60(2):129–144. doi: 10.14430/arctic238. Reprinted with permissionGoogle Scholar
  44. Bilinski JJ, Reina RD, Spotila JR et al (2001) The effects of nest environment on calcium mobilization by leatherback turtle embryos (Dermochelys coriacea) during development. Comp Biochem Physiol Part A Mol Integr Physiol 130:152–162Google Scholar
  45. Biro D, Freeman R, Meade J (2007) Pigeons combine compass and landmark guidance in familiar route navigation. Proc Natl Acad Sci USA 104:7471–7476Google Scholar
  46. Blakemore RP (1975) Magnetotactic bacteria. Science 19:377–379Google Scholar
  47. Blumer MJF, Longato S, Fritsch H (2008) Structure, formation and role of cartilage canals in the developing bone. Ann Anat 190:305–315Google Scholar
  48. Board RG (1982) Properties of avian eggshells and their adaptive value. Biol Rev 57:1–28Google Scholar
  49. Boehm JR, Greenwell MG, Coe F (1997) Dietary management in the treatment of uric acid urolithiasis in a Pacific white–sided dolphin (Lagenorhynchus obliquidens). Proc Int Assoc Aqua Anim Med 28:134–135Google Scholar
  50. Boersma PD, Rebstock GA, Stokes DL (2004) Why penguin eggshells are so thick. The Auk 121(1):148–155. Published by the American Ornithologists’ UnionGoogle Scholar
  51. Bohannon J (2007) Michael Walker: seeking nature’s inner compass. Science 5852(318):904–907Google Scholar
  52. Bonadonna F, Bajzak C, Benhamou S et al (2005) Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance. Proc R Soc Lond B Biol Sci 272:489–495Google Scholar
  53. Bookman MA (1977) Sensitivity of the homing pigeon to an earth–strength magnetic field. Nature 267:340–342Google Scholar
  54. Borelli G, Mayer–Gostan N, De Pontual H et al (1994) Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Hear Res 79(1–2):99–104Google Scholar
  55. Boschma H (1938) On the teeth and some other particulars of the sperm whale (Physeter macrocephalus L.). Temminckia 3:151–278Google Scholar
  56. Bradford EW (1957) The structure of rostral teeth and the rostrum of Pristis Microdon. J Dent Res 36:663–668Google Scholar
  57. Brear K, Currey JD, Pond CM et al (1990) The mechanical properties of the dentine and cement of the tusk of the narwhal Monodon monoceros compared with those of other mineralized tissues. Arc Oral Biol 35:615–621Google Scholar
  58. Brear K, Currey JD, Kingsley MCS et al (1993) The mechanical design of the tusk of the narwhal (Monodon monoceros: Cetacea). J Zool 230:411–423Google Scholar
  59. Brighton CT (1994) Bone formation and repair. Brighton CT, Friedlaender GE, Lane JM, (eds). American Academy of Orthopaedic Surgeons, RosemountGoogle Scholar
  60. Brody RH, Edwards HGM, Pollard AM (2001) Chemometric methods applied to the differentiation of Fourier–transform Raman spectra of ivories. Anal Chim Acta 427:223–232Google Scholar
  61. Brongersma LD (1969) Miscellaneous notes on turtles. Proc Kronic Ned Akad Weten Ser C 72:90–102Google Scholar
  62. Burdett LG, Osborne CA (2010) Enterolith with a stingray spine nidus in an Atlantic Bottlenose dolphin (Tursiops truncatus). J Wildl Dis 46(1):311–315. Copyright © 2010, Wildlife Disease Association. Published By American Association of Zoo Veterinarians. Reprinted with permissionGoogle Scholar
  63. Burger JW, Hess WN (1960) Function of the rectal gland in the spiny dogfish. Science 131:670–671Google Scholar
  64. Bustard HR, Simkiss K, Jenkins NK et al (1969) Some analyses of artificially incubated eggs and hatchlings of green and loggerhead sea turtles. J Zool Lond 158:311–315Google Scholar
  65. Bystrow AP (1938) Zahnstruktur der Labyrinthodonten. Acta Zool Stockh 19:387–425Google Scholar
  66. Bystrow AP (1939) Zahnstruktur der Crossopterygier. Acta Zool Stockh 20:283–338Google Scholar
  67. Cadiou H, McNaughton PA (2010) Avian magnetite-based magnetoreception: a physiologist’s perspective. J R Soc Interf 7(Suppl 2):S193–S205. By permission of the Royal SocietyGoogle Scholar
  68. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. MEPS 188:263–297. Copyright © 1999 Inter-Research. Reprinted with permissionGoogle Scholar
  69. Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242Google Scholar
  70. Campana SE (2004) Photographic atlas of fish otoliths of the Northwest Atlantic Ocean. NRC Research Press, OttawaGoogle Scholar
  71. Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Aquat Sci 58:30–38Google Scholar
  72. Campana SE, Gagne JA, Mclaren JW (1995) Elemental fingerprinting of fish otoliths using Id–Icpms. Mar Ecol Progress Ser 122:115–120Google Scholar
  73. Campana SE, Jones C, McFarlane GA et al (2006) Bomb dating and age validation using the spines of spiny dogfish (Squalus acanthias). Environ Biol Fish 77:327–336Google Scholar
  74. Campbell-Malone R (2007) Biomechanics of North Atlantic right whale bone: mandibular fracture as a fatal endpoint for blunt vessel-whale collision modeling. Doctoral thesis in biological oceanography, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, Cambridge, MA, USA, p 257Google Scholar
  75. Campbell-Malone R, Barco SG, Pierre-Yves Daoust PY et al (2008) Gross and histologic evidence of sharp and blunt trauma in North Atlantic right whales (Eubalaena glacialis) killed by vessels. J Zoo Wildlife Med 39(1):37–55Google Scholar
  76. Cappetta H (1986) Types dentaires adaptatifs chez les sélaciens actuels et post–paléozoïques. Palaeovertebrata 16(2):57–76Google Scholar
  77. Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 125:441–463Google Scholar
  78. Carlström D, Engström H (1955) The ultrastructure of statoconia. Acta Otolaryngol 45:14–18Google Scholar
  79. Carr A (1967) So excellent a fishe. Natural History Press, New YorkGoogle Scholar
  80. Carr A, Kemp AR, Tibbetts IR et al (2006) Microstructure of pharyngeal tooth enameloid in the parrotfish Scarus rivulatus (Pisces:Scaridae). J Microsc 221:8–16Google Scholar
  81. Carthy RR (1992) Scanning electron microscopy (SEM) of loggerhead (Caretta caretta) eggshell structure. In: Proceedings of the eleventh annual workshop on sea turtle biology and conservation, Jekyll Island, Georgia, 26 February–2 March 1991. Compiled by M. Salmon and J. Wyneken. NOAA Tech. Memo. NMFS–SEFC–302, pp 143–144Google Scholar
  82. Casper BM (2006) The hearing abilities of elasmobranch fishes. Dissertation (Ph.D.), University of South Florida, FL, USA. Copyright © 2006, Casper BM. Reprinted with permissionGoogle Scholar
  83. Castanet J, Francillon-Vieillot H, Ricqlès ADE, Zylberberg L (2003) The skeletal histology of the Amphibia. In: Heatwole H, Davies M (eds) Amphibian biology, vol 5, Osteology. Surrey Beatty and Sons, Pty. Ltd, Chipping Norton, pp 1598–1683Google Scholar
  84. Chan E–H, Solomon SE (1989) The structure and function of the eggshell of the leatherback turtle (Dermochelys coriacea) from Malaysia, with notes on attached fungal forms. Anim Technol 40:91–102Google Scholar
  85. Chapskii KK (1936) The walrus of the Kara Sea. Results of an investigation of the life history, geographical distribution, and stock of walruses in the Kara Sea. Trans Arct Inst 67:1–124Google Scholar
  86. Checkley DM Jr., Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated CO2 enhances Otolith growth in young fish. Science 324(5935):1683. Copyright © 2009, American Association for the Advancement of Science. Reprinted with permission from AAASGoogle Scholar
  87. Chen et al (2008) Reprinted from Chen P-Y, Lin AYM, Lin Y-S, Seki Y, Stokes AG, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1(3):208–226. Copyright (2008), with permission from ElsevierGoogle Scholar
  88. Clark JW (1871) On the skeleton of a Narwhal (Monodon monoceros) with two fully developed tusks. Proc Zool Soc Lond VI 2:41–53Google Scholar
  89. Clifton KB, Reep RL, Mecholsky JJ Jr (2008) Quantitative fractography for estimating whole bone properties of manatee rib bones. J Mater Sci 43(6):2026–2034Google Scholar
  90. Compagno LJV (1984a) FAO species catalogue. Sharks of the world. An annotated and illustrated catalogue of shark species known to date, part 1: hexanchiformes to lamniformes. Food and Agriculture Organization of the United Nations, Rome, 249Google Scholar
  91. Compagno LJV (1984b) FAO species catalogue. Sharks of the world. An annotated and illustrated catalogue of shark species known to date, part 2: Carcharhiniformes. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  92. Compagno LJV (1988) Sharks of the order Carcharhiniformes. Princeton University Press, PrincetonGoogle Scholar
  93. Confer A, Panciera R (1995) The urinary system. In: Carlton W, McGavin MD (eds) Thompson’s special veterinary pathology, 2nd edn. Mosby–Year Book, St. LouisGoogle Scholar
  94. Cook J (1973) Blue whale: vanishing leviathan. Dodd Mead & Co., New YorkGoogle Scholar
  95. Corwin JT (1981) Peripheral auditory physiology in the lemon shark: evidence of parallel otolithic and non-otolithic sound detection. J Comp Physiol 142:379–390Google Scholar
  96. Coulombe HN, Ridgway SH, Evans WE (1965) Respiratory water exchange in two species of porpoise. Science 149:86–88Google Scholar
  97. Courtillot V, Hulot G, Alexandrescu M et al (1997) Sensitivity and evolution of sea–turtle magnetoreception: observations, modelling and constraints from geomagnetic secular variation. Terra Nova 9:203–207Google Scholar
  98. Cowan FBM (1969) Gross and microscopic anatomy of the orbital glands of Malaclemys and other emydine turtles. Can J Zool 47:723–729Google Scholar
  99. Cowan FBM (1971) The ultrastructure of the lachrymal ‘salt’ gland and the harderian gland in the euryhaline Malaclemys and some closely related stenohaline emydines. Can J Zool 49:691–697Google Scholar
  100. Cowan DF, Walker WA, Brownwell RL (1986) Pathology of small cetaceans stranded along southern California beaches. In: Bryden MM, Harrison R (eds) Research on dolphins. Clarendon Press, OxfordGoogle Scholar
  101. Coyne JA (2012) Mysteries of evolution: the narwhal’s “tusk,” or rather, tooth. Published on-line Accessed 15 May 2014. Copyright (c) 2012, Jerry Coyne
  102. Cramp RL, Hudson NJ, Holmberg A et al (2007) The effects of saltwater acclimation on neurotransmitters in the lingual salt glands of the estuarine crocodile, Crocodylus porosus. Regul Pept 140:55–64Google Scholar
  103. Cramp RL, Meyer EA, Sparks N et al (2008) Functional and morphological plasticity of crocodile (Crocodylus porosus) salt glands. J Exp Biol 211:1482–1489Google Scholar
  104. Cramp RL, De Vries I, Anderson WG (2010a) Hormone–dependent dissociation of blood flow and secretion rate in the lingual salt glands of the estuarine crocodile, Crocodylus porosus. J Comp Physiol B Biochem Syst Environ Physiol 180:825–834Google Scholar
  105. Cramp RL et al (2010b) Republished with permission of The Company of Biologists Ltd, from Cramp RL, Hudson NJ, Franklin CE (2010) Activity, abundance, distribution and expression of Na+/K+−ATPase in the salt glands of Crocodylus porosus following chronic saltwater acclimation. J Exp Biol 213:1301–1308. Copyright (2010); permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  106. Cranford TW, McKenna MF, Soldevilla MS et al (2008) Anatomic geometry of sound transmission and reception in Cuvier’s beaked whale (Ziphius cavirostris). Anat Rec 291:353–378Google Scholar
  107. Currey JD (1984) Comparative mechanical properties and histology of bone. Integr Comp Biol 24(1):5–12Google Scholar
  108. Currey JD (2002) Bones: structure and mechanics. Princeton University Press, PrincetonGoogle Scholar
  109. Currey JD (2006) Bones: structure and mechanics, chapter 6.3. Enamel. Princeton University Press, PrincetonGoogle Scholar
  110. Currey JD, Abeysekera RM (2003) The microhardness and fracture surface of the petrodentine of Lepidosiren (Dipnoi), and of other mineralized tissues. Arch Oral Biol 48:439–447Google Scholar
  111. Currey JD, Brear K, Zioupos P (1994) Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite. J Biomech 27:885–897Google Scholar
  112. Curry BE et al (1994) The occurrence of calculi in the nasal diverticula of porpoises (Phocoenidae). Mar Mamm Sci 10(1):81–86. Copyright © 2006, John Wiley and Sons. Reprinted with permissionGoogle Scholar
  113. Dantzler WH, Bradshaw SD (2009) Osmotic and ionic regulation in reptiles. In: Evans DH (ed) Osmotic and ionic regulation: cells and animals. CRC Press, Boca RatonGoogle Scholar
  114. Dauphin Y, Cuif JP, Salomé M et al (2006) Microstructure and chemical composition of giant avian eggshells. Anal Bioanal Chem 386:1761–1771Google Scholar
  115. Davenport J, Balazs GH, Faithfull JV et al (1993) A struvite faecolith in the leatherback turtle Dermochelys coriacea vandelli: a means of packaging garbage? Herpetol J 3:81–83Google Scholar
  116. Davila AF (2005) Detection and function of biogenic magnetite. Dissertation, LMU München, Fakultät für Geowissenschaften, München. Copyright © 2005, Fernandez Davila A. Reprinted with permissionGoogle Scholar
  117. Davila AF, Fleissner G, Winklhofer M et al (2003) A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys Chem Earth 28:647–652Google Scholar
  118. Davis JG, Oberholtzer JC, Burns FR et al (1995) Molecular cloning and characterization of an inner ear–specific structural protein. Science 267:1031–1034Google Scholar
  119. Davis JG, Oberholtzer JC, Burns FR et al (2002) Molecular cloning and characterization of an inner ear–specific structural protein. Eur J Biochem 269(2):688–696Google Scholar
  120. De Bufférnil V, Casinos A (1995) Observations histologiques sur le rostre de Mesoplodon densirostris (Mammalia, Cetacea, Ziphiidae): le tissu osseux le plus dense connu. Ann Sci Nat Zool Paris 16(13):21–32Google Scholar
  121. Deans MR, Peterson JM, Wong GW (2010) Mammalian Otolin: a multimeric glycoprotein specific to the inner ear that interacts with otoconial matrix protein Otoconin-90 and Cerebellin-1. PLoS ONE 5(9):e12765. Copyright © 2010 Deans et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedGoogle Scholar
  122. Debiais-Thibaud M, Borday-Birraux V, Germon I, Bourrat F, Metcalfe CJ, Casane D, Laurenti P (2007) Development of oral and pharyngeal teeth in the medaka (Oryzias latipes): comparison of morphology and expression of eve1 gene. J Exp Zool (Mol Dev Evol) 308B:693–708. © 2007 Wiley-Liss, IncGoogle Scholar
  123. Debiais–Thibaud M, Oulion S, Bourrat F et al (2011) The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula. BMC Evol Biol 11:307Google Scholar
  124. Deeming DC, Thompson MB (1991) Gas exchange across reptilian eggshells. In: Deeming DC, Ferguson MWJ (eds) Egg incubation: its effects on embyronic development in birds and reptiles. Cambridge University Press, CambridgeGoogle Scholar
  125. Deeming DC, Whitfield TR (2010) Effect of shell type on the composition of chelonian eggs. Herpetol J 20(7):165–171Google Scholar
  126. Degens ET et al (1969) With kind permission from Springer Science + Business Media: Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Mar Biol 2(2):105–113. Copyright © 1969 SpringerGoogle Scholar
  127. DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803–806Google Scholar
  128. Den Hanog JC, Van Nierop MM (1984) A study on the gut contents of six leathery turtles Dermochelys coriacea (Linnaeus) (Reptilia: Testudines: Dermochelyidae from British waters and from the Netherlands. Zool Verh Leiden 20:1–36Google Scholar
  129. Denison RH (1974) The structure and evolution of teeth in lungfishes. Fieldiana Geol 33:31–58Google Scholar
  130. Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc Biol Sci 274:1153–1158Google Scholar
  131. Dennison S, Gulland F, Haulena M et al (2007) Urate nephrolithiasis in a northern elephant seal (Mirounga angustirostris) and a california sea lion (Zalophus californianus). J Zoo Wildl Med 38(1):114–120. doi: 10.1638/05-121.1. Copyright © 2007, Wildlife Disease Association. Published By American Association of Zoo Veterinarians. Reprinted with permission
  132. Deutschlander ME, Muheim R (2010):Magnetic orientation in migratory songbirds. In: Breed MD, Moore J (eds) Encyclopedia of animal behavior. Academic, OxfordGoogle Scholar
  133. Didier DA, Stahl BJ, Zangerl R (1994) Development and growth of compound tooth plates in Callorhinchus milii (chondrichthyes, holocephali). J Morphol 222: 73–89. © 1994 Wiley-Liss, Inc. Reprinted with permissionGoogle Scholar
  134. Diebel CE, Proksch R, Green CR et al (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406:299–302Google Scholar
  135. Donoghue PC (2002) Evolution of development of the vertebrate dermal and oral skeletons: unraveling concepts, regulatory theories, and homologies. Paleobiology 28(4):474–507Google Scholar
  136. Donoghue PCJ, Sansom IJ (2002) Origin and early evolution of vertebrate skeletonization. Microsc Res Tech 59:185–218Google Scholar
  137. Donoghue PCJ, Sansom IJ, Downs JP (2006) Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J Exp Zool B Mol Dev Evol 306(3):278–294. doi: 10.1002/jez.b.21090. Copyright © 2006 Wiley-Liss, Inc., A Wiley Company. Reprinted with permission
  138. Doody JS (2011) Environmentally cued hatching in reptiles. Integr Comp Biol 51(1):49–61Google Scholar
  139. Doyle WL (1960) The principal cells of the salt gland of marine birds. Exp Cell Res 21:386–393Google Scholar
  140. Dror AA, Politi Y, Shahin H, Lenz DR, Dossena S, Nofziger C, Fuchs H, de Angelis MH Paulmichl M, Weiner S, Avraham KB (2010) Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation. J Biol Chem 285:21724–21735. © 2010 The American Society for Biochemistry and Molecular Biology. Reprinted with permissionGoogle Scholar
  141. Dunson WA (1968) Salt gland secretion in the pelagic sea snake Pelamis. Am J Physiol 215:1512–1515Google Scholar
  142. Dunson W (1969) Electrolyte excretion by the salt gland of the Galápagos marine iguana. Am J Physiol 216:995–1002Google Scholar
  143. Dunson WA (1970) Some aspects of electrolyte and water balance in three estuarine reptiles, the diamond back terrapin, American and ‘salt water’ crocodiles. Comp Biochem Physiol 32A:161–174Google Scholar
  144. Dunson WA, Dunson MK (1974) Interspecific differences in fluid 497 concentration and secretion rate of sea snake salt glands. Am J Physiol 227:430–438Google Scholar
  145. Dunson WA, Packer RK, Dunson MK (1971) Sea snakes: an unusual gland under the tongue. Science 173:437–441Google Scholar
  146. Eckert KL, Luginbuhl C (1988) Death of a giant. Mar Turtl News 43:1–3Google Scholar
  147. Eder SHK, Cadiou H, Muhamad A, McNaughton PA, Kirschvink JL, Winklhofer M (2012) Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc Nat Acad Sci 109(30):12022–12027. Copyright (2012) National Academy of Sciences, USA. Reprinted with permissionGoogle Scholar
  148. Edwards H, Schnell G, DuBois R et al (1992) Natural and induced remanent magnetism in birds. Auk 109:43–56Google Scholar
  149. Efremov JA (1940) Taphonomy: new branch of paleontology. Pan-Am Geo 174:81–93Google Scholar
  150. Ehrlich H (2010) Biological materials of marine origin. Springer, HeidelbergGoogle Scholar
  151. Ehrlich H (2011) Silica biomineralization in sponges. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht, pp 796–808Google Scholar
  152. Ehrlich H et al (2008) Reprinted from Ehrlich H, Koutsoukos PG, Demadis KD et al (2008) Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history. Micron 39(8):1062–1091. doi: 10.1016/j.micron.2008.02.004. Copyright (2008), with permission from Elsevier
  153. Ehrlich H et al (2010) Reprinted with permission from Ehrlich H, Demadis KD, Pokrovsky OS et al (2010) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110(8):4656–4689. Copyright (2010) American Chemical SocietyGoogle Scholar
  154. Eidelman N, Eichmiller FC, Zhang Y et al (2005) Position–resolved structural and mechanical properties of Narwhal tusk dental tissues, Abstract. The Preliminary Program for IADR/AADR/CADR 83rd General Session, Baltimore, MD, USA, 9–12 March 2005Google Scholar
  155. Ellis RA, Abel JH (1964) Intercellular channels in the salt–secreting glands of marine turtles. Science 144:1340–1342Google Scholar
  156. Elsdon TS, Wells BK, Campana SE et al (2008) Otolith chemistry to describe movements and life–history parameters of fishes: hypotheses, assumptions, limitations and inferences using five methods. Oceanogr Mar Biol Ann Rev 46:207–330Google Scholar
  157. Engkvist O, Ohlsen L (1979) Reconstruction of articular cartilage with free autologous perichondrial grafts. An experimental study in rabbits. Scand J Plast Reconstr Surg 13(2):269–274Google Scholar
  158. Erben HK (1970) Ultrastrukturen und mineralisation rezenter und fossiler eischalen bei vogeln und reptilien. Biomin Forschsber 1:1–65Google Scholar
  159. Erben HK, Newesely H (1972) Kristalline bausteine und mineralbestand von kalkigen eischalen. Biomin Forschsber 6:32–48Google Scholar
  160. Erway LC, Purichia NA, Netzler ER et al (1986) Genes, manganese, and zinc in formation of otoconia: labeling, recovery, and maternal effects. Scan Electron Microsc 4:1681–1694Google Scholar
  161. Espinoza EO, Mann MJ (2000) Identification guide for ivory and ivory substitutes, 3rd edn. Ivory Identification, Inc., Richmond. Reprinted with permissionGoogle Scholar
  162. Evans P (1987) Natural history of whales and dolphins. Facts on File, New YorkGoogle Scholar
  163. Evans K, Robertson K (2001) A note on the preparation of sperm whale (Physeter macrocephalus) teeth for age determination. J Cet Res Man 3:101–107Google Scholar
  164. Ewert MA (1985) Embryology of turtles. In: Gans C, Billett F, Maderson P (eds) Biology of the reptilian. Wiley, New YorkGoogle Scholar
  165. Ewert MA, Firth SJ, Nelson CE (1984) Normal and multiple eggshells in batagurine turtles and their implications for dinosaurs and other reptiles. Can J Zool 62(9):1834–1841. © 2008 Canadian Science Publishing or its licensors. Reproduced with permissionGoogle Scholar
  166. Fablet R, Daverat F, de Pontual H (2007a) Unsupervised bayesian reconstruction of individual life histories chronologies from otolith signatures: case study of Sr:Ca transects of eel 436 (Anguilla anguilla) otoliths. Can J Fish Res Aquat Sci 64:152–165Google Scholar
  167. Fablet R et al (2007b) Reprinted from Fablet R, Pujolle S, Chessel A, Benzinou A, Cao F (2007) 2D Image-based reconstruction of shape deformation of biological structures using a level-set representation. Comput Vision Image Understand 111(3):295–306. with permission from ElsevierGoogle Scholar
  168. Fablet R, Chessel A, Carbini S et al (2009) Reconstructing individual shape histories of fish otoliths: a new imagebased tool for otolith growth analysis and modeling. Fish Res 96:148–159Google Scholar
  169. Faivre D (2004) Propriétés cinétiques, minéralogiques et isotopiques de la formation de nanomagnétites a basse temperature: implication pour la détermination de critères de biogénicité. Dissertation, University of Paris, Paris, FranceGoogle Scholar
  170. Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108(11):4875–4898Google Scholar
  171. Faivre D, Böttger L, Matzanke B et al (2007) Intracellular magnetite biomineralization in bacteria proceeds via a distinct pathway involving membrane–bound ferritin and ferrous iron species. Angew Chem Int Ed 46(44):8647–8652Google Scholar
  172. Falkenberg G, Fleissner G, Schuchardt K et al (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE 5(2):e9231Google Scholar
  173. Fänge R, Fugelli K (1962) Osmoregulation in chimaeroid fishes. Nature 196:689Google Scholar
  174. Fassbinder JWE, Stanjek H, Vali H (1990) Occurrence of magnetic bacteria in soil. Nature 343:181–183Google Scholar
  175. Fay FH (1955) The Pacific walrus (Odobenus rosmarus divergens): spatial ecology life history, and population. PhD thesis, University of British Columbia, VancouverGoogle Scholar
  176. Fay FH (1982) Ecology and Biology of the Pacific Walrus, Odobenus rosmarus divergens Illiger. N Am Fauna 74:1–279. US Department of Interior, Fish and Wildlife Service, Washington, DCGoogle Scholar
  177. Feder ME et al (1982) Reprinted from Feder ME, Satel SL, Gibbs AG (1982) Resistance of the shell membrane and mineral layer to diffusion of oxygen and water in flexible-shelled eggs of the snapping turtle (Chelydra serpentina). Resp Physiol 49(3):279–291. Copyright (1982), with permission from ElsevierGoogle Scholar
  178. Feltmann CF, Slijper EJ, Vervoort W (1948) Preliminary researches on the fat–content of meat and bone of blue and fin whales. Proc R Neth Acad Arts Sci 51:604–615Google Scholar
  179. Ferguson MWJ (1982) The structure and composition of the eggshell and embryonic membranes of Alligator mississippiensis. Trans Zool Soc Lond 36:99–152. Copyright © 1982 The Zoological Society of London. Reprinted with permissionGoogle Scholar
  180. Ferguson MWJ (2010) The structure and composition of the eggshell and embryonic membranes of Alligator mississippiensis. Trans Zool Soc Lond 36:99–152Google Scholar
  181. Ferguson SH, Higdon JW, Westdal KH (2012) Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews. Aqu Biosyst 8:3Google Scholar
  182. Fernandez M, Gasparini Z (2000) Salt glands in a Tithonian metriorhynchgid crocodyliform and their physiological significance. Lethaia 33:269–276Google Scholar
  183. Fernandez MS, Moya A, Lopez L (2001) Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation. Matrix Biol 19:793–803Google Scholar
  184. Ferraris G, Fuess H, Joswig W (1986) Neutron diffraction study of MgNH4PO4•6H2O (struvite) and survey of water molecules donating short hydrogen bonds. Acta Cryst 42:253–258Google Scholar
  185. Finarelli JA, Coates MI (2012) First tooth–set outside the jaws in a vertebrate. Proc R Soc B 279:775–779. Copyright © 2012, The Royal Society. Reprinted with permission from The Royal SocietyGoogle Scholar
  186. Finger LW, King HE (1978) A revised method of operation of the single–crystal diamond cell and refinement, of the structure of NaCl at 32 kbar. Am Mineral 63:337–342Google Scholar
  187. Fischer JH, Freake MJ, Borland SC et al (2001) Evidence for the use of a magnetic map by an amphibian. Anim Behav 62(1):1–10Google Scholar
  188. Fitzgerald EMG (2006) A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales. Proc Biol Sci 273(1604):2955–2963. doi: 10.1098/rspb.2006.3664. Copyright © 2006 The Royal Society
  189. Fleissner G, Holtkamp–Rötzler E, Hanzlik M et al (2003) Ultrastructural analysis of a magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360Google Scholar
  190. Formicki K, Tański A, Winnicki A (2002) Effects of magnetic field on the direction of fish movement under natural conditions. General Assembly URCI, Maastricht, pp 1–3Google Scholar
  191. Frankel RB, Blakemore RP (1991) Iron biominerals. Plenum Press, New YorkGoogle Scholar
  192. Fraser GJ, Smith M (2011) Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism. J Exp Zool Mol Dev Evol 316B:99–112, 2011. © 2010 Wiley-Liss, IncGoogle Scholar
  193. Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR et al (2009) An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol 7(2):e1000031. doi: 10.1371/journal.pbio.1000031. Copyright © 2009 Fraser et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
  194. Fraser GJ et al (2010) Reproduced from Fraser GJ, Cerny R, Soukup V, Bronner-Fraser M, Streelman JT (2010) The odontode explosion: the origin of tooth-like structures in vertebrates. Bioessays 32(9):808–817. Copyright © 2010 WILEY Periodicals, IncGoogle Scholar
  195. Fratzl P, Gupta H, Paschalis E, Roshger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14(14):2115–2123Google Scholar
  196. Frazzetta TH (1988) The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). Zoomorphology 108:93–107Google Scholar
  197. Freake MJ, Muheim R, Phillips JB (2006) Magnetic maps in animals – a theory comes of age? Quart Rev Biol 81:327–347Google Scholar
  198. Freeman MMR, Bogoslovskaya L, Caulfield RA et al (1998) Inuit, whaling, and sustainability. Altamira Press, Walnut CreekGoogle Scholar
  199. Fritzsch B (1996) Similarities and differences in lancelet and craniate nervous systems. Isr J Zool 42:147–160Google Scholar
  200. Gauldie RW (1996) Fusion of Otoconia: a Stage in the development of the Otolith in the evolution of fishes. Acta Zool 77:1–23. Copyright © 1996, The Royal Swedish Academy of Sciences. Reprinted with permissionGoogle Scholar
  201. Gauldie RW, Dunlop D, Tse J (1986) The simultaneous occurrence of otoconia and otoliths in four teleost fish species. N Z J Mar Freshw Res 20:93–99Google Scholar
  202. Gerson HB, Hickie JP (1985) Head scarring on male narwhals (Monodon monoceros): evidence for aggressive tusk use. Can J Zool 63(9):2083–2087Google Scholar
  203. Gerstberger R, Gray DA (1993) Fine structure, innervation and functional control of avian salt glands. Int Rev Cytol 144:129–215Google Scholar
  204. Gervais P (1873) Remarques sur la Dentition du Narval. J Zool 2:498–500Google Scholar
  205. Giachelli CM (2005) Inducers and inhibitors of biomineralization: lessons from pathological calcification. Orthod Craniofac Res 8(4):229–231Google Scholar
  206. Gibbs PE (1987) A new species of Phascolosoma (Sipuncula) associated with a decaying whale’s skull trawled at 880 m depth in the southwest Pacific. NZ J Zool 14:135–137Google Scholar
  207. Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev Mineral Geochem 64:223–282Google Scholar
  208. Goldenstein DL (2002) Water and salt balance in seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton, pp 467–480Google Scholar
  209. Golub EE (2011) Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 33(5):409–417Google Scholar
  210. Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841Google Scholar
  211. Gottfried MD, Compagno LJV, Bowman SC (1996) Size and skeletal anatomy of the giant megatooth shark Carcharodon megalodon. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic, San DiegoGoogle Scholar
  212. Gould JL (1982) The map sense of pigeons. Nature 296:205–211Google Scholar
  213. Gould JL (1985) Are animal maps magnetic? In: Kirschvinkn JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum Press, New YorkGoogle Scholar
  214. Gould JL, Kirschvink JL, Defieyes KS (1978) Bees have magnetic remanence. Science 201:1026–1028Google Scholar
  215. Greig DJ, Gulland FMD, Kreuder C (2005) A decade of live California sea lion (Zalophus californianus) strandings along the central California coast: causes and trends, 1991–2000. Aquat Mamm 31:11–22Google Scholar
  216. Grigg G, Beard L (1985) Water loss and gain by eggs of Crocodylus porosus, related to incubation age and fertility. In: Grigg G, Shine R, Ehmann H (eds) Biology of Australasian frogs and reptiles. Surrey Beatty & Sons Pty Limited, Chipping Norton, pp 353–359Google Scholar
  217. Grove RA, Bildfell R, Henny CJ et al (2003) Bilateral uric acid nephro–lithiasis and ureteral hypertrophy in a free–ranging river otter (Lontra canadensis). J Wildl Dis 39:914–917Google Scholar
  218. Gudger EW (1937) Abnormal dentition in sharks, Selachii. Bull Am Mus Nat His 73:249–280Google Scholar
  219. Guillette LJ (1982) The evolution of viviparity and placentation in the high elevation, Mexican lizard Sceloporus aeneus. Herpetology 38:94–103Google Scholar
  220. Hamilton RMG (1986) The microstructure of the hen’s eggshell: a short review. Food Microstruct 5:99–110Google Scholar
  221. Hamzelou J (2012) Mystery of bird navigation system still unsolved. Published online Accessed 15 May 2014. Newscientist Life. Copyright © 2012, Reed Business Information Ltd. Reprinted with permission
  222. Hanson M, Westerberg H (1986) Occurrence of magnetic material in teleosts. Comp Biochem Physiol 86A:169–172Google Scholar
  223. Hanzlik M, Heunemann C, Holtkamp–Rötzler E et al (2000) Superparamagnetic magnetite in the upper–beak tissue of homing pigeons. Biometals 13:325–331Google Scholar
  224. Harms CA et al (2004) Struvite penile urethrolithiasis in a pygmy sperm whale (Kogia breviceps). J Wildl Dis 40(3):588–593. Copyright © 2004, Wildlife Disease Association. Published By American Association of Zoo Veterinarians. Reprinted with permissionGoogle Scholar
  225. Harrison RJ (1969) Reproduction and reproductive organs. In: Anderson HT (ed) The biology of marine mammals. Academic, New YorkGoogle Scholar
  226. Hay KA, Mansfied AW (1989) Narwhal Monodon monoceros Linnaeus, 1758. In: Ridgway SH, Harrison R (eds) Handbook of marine mammals, vol 4. Academic, San DiegoGoogle Scholar
  227. Hazard L (2001) Ion secretion by salt glands of desert iguanas (Dipsosaurus dorsalis). Physiol Biochem Zool 74(1):22–31Google Scholar
  228. Hazard LC (2004) Sodium and potassium secretion by iguana salt glands: acclimation or adaptation? In: Alberts A, Carter RL, Hayes WB, Martins E (eds) Iguanas: biology and conservation. University of California Press, Berkley, pp 84–93Google Scholar
  229. Hazon N et al (2003) Reprinted from Hazon N, Wells A, Pillans RD et al (2003) Urea based osmoregulation and endocrine control in elasmobranch fish with special reference to euryhalinity. Comp Biochem Physiol Part B Biochem Mol Biol 136(4):685–700. Copyright (2003), with permission from ElsevierGoogle Scholar
  230. Heaney PJ (1993) A proposed mechanism for the growth of chalcedony. Contrib Mineral Petrol 114:66–74Google Scholar
  231. Heizer RF (1963) Fuel in primitive society. J R Anthropol Inst G B Irel 93:186–194Google Scholar
  232. Helms JA, Schneider RA (2003) Cranial skeletal biology. Nature 423(6937):326–331Google Scholar
  233. Herbert CF (1975) In: Stonehouse B (ed) The biology of penguins. Macmillan & Co., London/BasingstoneGoogle Scholar
  234. Heulin B, Ghielmi S, Vogrin N et al (2002) Variation in eggshell characteristics and in intrauterine egg retention between two oviparous clades of the lizard Lacerta vivipara: insight into the oviparity–viviparity continuum in squamates. J Morphol 252:255–262Google Scholar
  235. Higgs ND, Little CTS, Glover AG (2011a) Bones as biofuel: the composition of whale bones with implications for deep–sea biology and palaeoanthropology. Proc R Soc B 278:9–17Google Scholar
  236. Higgs ND, Glover AG, Dahlgren TG et al (2011b) Bone–boring worms: characterizing the morphology, rate, and method of bioerosion by Osedax mucofloris (Annelida, Siboglinidae). Biol Bull 22:307–316Google Scholar
  237. Hildebrandt JP (2001) Coping with excess salt: adaptive functions of extrarenal osmoregulatory organs in vertebrates. Zoology 104:209–220Google Scholar
  238. Hincke MT, Nys Y, Gautron J et al (2012) The eggshell: structure, composition and mineralization. Front Biosci 17:1266–1280Google Scholar
  239. Hirsch KF (1983) Contemporary and fossil chelonian eggshells. Copeia 1983:382397Google Scholar
  240. Hirsch KF (1994) The fossil record of vertebrate eggs. In: Donovan SK (ed) The palaeobiology of trace fossils. Wiley, New YorkGoogle Scholar
  241. Hirsch KF (2001) Pathological amniote eggshell–fossil and modern. In: Tanke DH, Carpenter K (eds) Mesozoic vertebrate life. Indiana University Press, Bloomington/IndianapolisGoogle Scholar
  242. Hirsch KF, Packard MJ (1987) Review of fossil eggs and their shell structure. Scan Microsc 1:383–400Google Scholar
  243. Holland RA, Kirschvink JL, Doak TG et al (2008) Bats use magnetite to detect the earth’s magnetic field. PLoS ONE 3:e1676Google Scholar
  244. Holmes WN, McBean RL (1964) Some aspects of electrolyte excretion in the green turtle, Chelonia mydas mydas. J Exp Biol 41:81–90Google Scholar
  245. Holmgren S, Olsson C (2011) Autonomic control of glands and secretion: a comparative view. Auton Neurosci 165:102–112Google Scholar
  246. Horton JM, Summers AP (2009) Republished with permission of The Company of Biologists Ltd, from Horton JM, Summers AP (2009) The material properties of acellular bone in a teleost fish. J Exp Biol 212:1413–1420. Copyright (2009); permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  247. Howard EB (1983) Miscellaneous diseases. In: Howard EB (ed) Pathobiology of marine mammal diseases, vol 2. CRC Press, Boca RatonGoogle Scholar
  248. Accessed 15 May 2014. 2014 Copyright © A Reprinted with permission
  249. Hubbell GS (1996) Using tooth structure to determine the evolutionary history of the white shark. In: Klimley AP, Ainley DG (eds) The biology of the white shark, Carcharodon carcharias. Academic, San DiegoGoogle Scholar
  250. Huber DR, Dean MN, Summers AP (2008) Hard prey, soft jaws and the ontogeny of feeding mechanics in the spotted ratfish Hydrolagus colliei. J R Soc Interface 5:941–952Google Scholar
  251. Hudson DM, Lutz PL (1986) Salt gland function in the leatherback sea turtle, Dermochelys coriacea. Copeia 1986:247–249Google Scholar
  252. Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–545Google Scholar
  253. Hughes MR (2003) Reprinted from Hughes MR (2003) Regulation of salt gland, gut and kidney interactions. Comp Biochem Physiol Part A Mol Integr Physiol 136(3):507–524. Copyright (2003), with permission from ElsevierGoogle Scholar
  254. Hughes I, Thalmann I, Thalmann R (2006) Mixing model systems: using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Res 1091:58–74Google Scholar
  255. Hughes MR, Kitamura N, Bennett DC et al (2007) Effect of melatonin on salt gland and kidney function of gulls, Larus glaucescens. Gen Comp Endocrinol 151:300–307Google Scholar
  256. Ishiyama M, Teraki Y (1990) The fine structure and formation of hypermineralized petrodentine in the tooth plate of extant lungfish (Lepidosiren paradoxa and protopterus sp.). Arch Histol Cytol 53(3):307–321Google Scholar
  257. Iwasaki SI (2002) Evolution of the structure and function of the vertebrate tongue. J Anat 201:1–13Google Scholar
  258. Jackson FD, Varricchio DJ (2003) Abnormal, multilayered eggshell in birds: implications for dinosaur reproductive anatomy. J Vertebr Paleontol 23:699–702Google Scholar
  259. Jackson FD, Garrido A, Schmitt JG et al (2004) Abnormal, multilayered titanosaur (Dinosauria: Sauropoda) eggs from in situ Clutches at the Auca Mahuevo Locality, Neuquen Province, Argentina. J Vertebr Paleontol 24(4):913–922Google Scholar
  260. Jahnen–Dechent W (2004) Lot’s wife’s problem revisited: how we prevent pathological calcification. In: Baeuerlein E (ed) Biomineralization, 2nd edn. Wiley–VCH, WeinheimGoogle Scholar
  261. Janis CM, Devlin K, Warren DE, Witzmann F (2012) Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis. Proc Biol Sci 279(1740):3035–3040. doi: 10.1098/rspb.2012.0558, by permission of the Royal Society
  262. Jenkins N (1975) Chemical composition of the eggs of the crocodile (Crocodylus novaeguineae). Comp Biochem Physiol 51:891–895Google Scholar
  263. Jobert M (1869) Récherches anatomiques sur les glandes nasals des oiseaux. Ann Sci Nat Zool 11:349–368Google Scholar
  264. Jogler C, Schüler D (2009) Genetics, genomics, and cell biology of magnetosome formation in magnetotactic bacteria. Annu Rev Microbiol 63:501–521Google Scholar
  265. Johanson Z, Smith MM (2003) Placoderm fishes, pharyngeal denticles, and the vertebrate dentition. J Morphol 257:289–307. Copyright © 2003 Wiley-Liss, IncGoogle Scholar
  266. Johanson Z, Smith MM (2005) Origin and evolution of gnathostome dentitions: a question of teeth and pharyngeal denticles in placoderms. Biol Rev Camb Philos Soc 80(2):303–345Google Scholar
  267. Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918Google Scholar
  268. Kang JS, Oohashi T, Kawakami Y, Bekku Y, Izpisúa Belmonte JC, Ninomiya Y (2004) Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mech Dev 121(3):301–312Google Scholar
  269. Kang YJ, Stevenson AK, Yau PM et al (2008) Sparc protein is required for normal growth of zebrafish otoliths. J Assoc Res Otolaryngol 9:436–451Google Scholar
  270. Kaplan M (1997) Reptile rehabilitation. In: Lowell Ackerman DVM (ed) The biology husbandry, and health care of reptiles. TFH Publishing, Neptune CityGoogle Scholar
  271. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406Google Scholar
  272. Kastelein RA, Gerrits NM (1990) The anatomy of the walrus head (Odobenus rosmarus) part 1: the skull. Aquat Mamm 16(3):101–119Google Scholar
  273. Kastelein RA, Mosterd P (1989) The excavation technique for molluscs of Pacific Walruses (Odobemus rosmarus divergens) under controlled conditions. Aquat Mamm 15(1):3–5Google Scholar
  274. Kastelein RA, Gerrits NM, Dubbeldam JL (1991) The anatomy of the Walrus Head (Odobenus rosmarus), part 2: description of the muscles and of their role in geeding and haul–out behaviour. Aquat Mamm 17(3):156–180Google Scholar
  275. Katz JL, Bronzino JD (2000) The biomedical engineering handbook, chapter 18, 2nd edn. CRC Press LLC, Boca RatonGoogle Scholar
  276. Kawasaki et al (2009) Reproduced with permission of Annual Review of Kawasaki et al (2009) Biomineralization in humans: making the hard choices in life. Annu Rev Genet 43:119–142. by Annual Reviews,
  277. Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci USA 68:102–106Google Scholar
  278. Keller M, Moliner JL, Vasquez G et al (2008) Nephrolithiasis and pyelonephritis in two West Indian Manatees (Trichechus manatus spp.). J Wildl Dis 44(3):707–711Google Scholar
  279. Kemp A (2002) Growth and hard tissue remodelling in the dentition of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). J Zool 257:219–235Google Scholar
  280. Kemp A (2003) Reprinted from Kemp (2003) Ultrastructure of developing tooth plates in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Tissue Cell 35:401–426. Copyright (2003), with permission from ElsevierGoogle Scholar
  281. Khorevin VI (2008) The lagena (the third otolith endorgan in vertebrates). Neurophysiology 40:142–159Google Scholar
  282. Kingsley MCS, Ramsay MA (1988) The spiral in the tusk of the narwhal. Arctic 41:236–238Google Scholar
  283. Kirkland JI, Aguillón Martínez MC (2002) Schizorhiza: a unique sawfish paradigm from the Difunta Group, Coahuila, Mexico. Rev Mex Cienc Geol 19(1):16–24Google Scholar
  284. Kirschvink JL (1980) Magnetic material in turtles: a preliminary report and request. Marine Turtle Newlett 15:7–9Google Scholar
  285. Kirschvink JL (1982) Birds, bees, and magnetism. Trends Neurosci 5:160–167Google Scholar
  286. Kirschvink JL (1990) Geomagnetic sensitivity in cetaceans:an update with live stranding records in the United States. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans:laboratory an field Evidence. Plenum Press, New YorkGoogle Scholar
  287. Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 13:181–201Google Scholar
  288. Kirschvink JL, Hagadorn JW (2000) A grand unified theory of biomineralization. In: Bäuerlein E (ed) The biomineralization of nano– and microstructures. Wiley–VCH Verlag GmbH, BerlinGoogle Scholar
  289. Kirschvink JL, Jones DS, MacFadden BJ (1985a) Magnetite biomineralization and magnetoreception in organisms:a new biomagnetism, volume 5 of Topics in geobiology. Plenum Publ, New YorkGoogle Scholar
  290. Kirschvink JL, Walker MM, Chang S–B et al (1985b) Chains of single–domain magnetite particles in chinook salmon, Oncorhynchus tschawytscha. J Comp Physiol 157A:375–381Google Scholar
  291. Kirschvink JL, Dizon AE, Westphal JA (1986) Evidence from strandings for geomagnetic sensitivity in cetaceans. J Exp Biol 120:1–24Google Scholar
  292. Kirschvink et al (2001) Reprinted from Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11(4):462–7. Copyright (2001), with permission from ElsevierGoogle Scholar
  293. Kirschvink JL, Winklhofer M, Walker MM (2010) Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J R Soc Interface 7:S179–S191Google Scholar
  294. Kitimasak W, Thirakhupt K, Moll DL (2003) Eggshell structure of the Siamese narrow–headed turtle Chitra chitra Nutphand, 1986 (Tetundise: Trionchidae). Sci Asia 29:95–98Google Scholar
  295. Klimley AP (1993) Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar Biol 117:1–22Google Scholar
  296. Klinowska M (1985) Cetacean stranding sites relate to geomagnetic topography. Aquat Mamm 1:27–32Google Scholar
  297. Kolinko S, Jogler C, Katzmann E et al (2012) Single–cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14(7):1709–1721Google Scholar
  298. Kölliker A (1859) On the different types in the microscopic structure of the skeleton of osseous fish. Proc Biol Sci 9:656–688Google Scholar
  299. Komeili A (2007) Molecular mechanisms of magnetosome formation. Annu Rev Biochem 76:351–366Google Scholar
  300. Königsberger E, Königsberger L (2006) Solubility phenomena related to normal and biomineralization processes. In: Königsberger E, Königsberger L (eds) Biomineralization – medical aspects of solubility. Wiley, Chichester. Copyright © 2006, John Wiley and Sons. Reproduced with permission of J. Wiley in the format Republish in a book via Copyright Clearance CenterGoogle Scholar
  301. Kooistra TA, Evans DH (1976) Sodium balance in the green turtle, Chelonia mydas, in seawater and freshwater. J Comp Physiol 107:229–240Google Scholar
  302. Koussoulakou DS, Margaritis LH, Koussoulakos SL (2009) A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 5(3):226–243Google Scholar
  303. Kozel PJ, Friedman RA, Erway LC et al (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+ − ATPase isoform 2. J Biol Chem 273:18693–18696Google Scholar
  304. Kramer G (1961) Long–distance orientation. In: Marshall AJ (ed) Biology and comparative physiology of birds. Academic, LondonGoogle Scholar
  305. Kranenbarg S, van Cleynenbreugel T, Schipper H, van Leeuwen J (2005) Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.). J Exp Biol 208(18):3493–3502Google Scholar
  306. Kraus DS, Rolland RM (2007) The urban whale: North Atlantic right whales at the crossroads. Kraus DS, Rolland RM (eds). Harvard University Press, Cambridge, MAGoogle Scholar
  307. Kühnel W (1972) With kind permission from Springer Science + Business Media: Kühnel W (1972) On the innervation of the salt gland. Zeitschrift für Zellforschung und Mikroskopische Anatomie 134(3):435–438. Copyright © 1972, Springer-VerlagGoogle Scholar
  308. Lacalli TC (2004) Sensory systems in amphioxus: a window on the ancestral chordate condition. Brain Behav Evol 64:148–162Google Scholar
  309. Laidre KL, Heide-Jørgensen MP (2005) Winter feeding intensity of narwhals. Mar Mamm Sci 21(1):45–57Google Scholar
  310. Laidre KL, Heide-Jørgensen MP (2011) Life in the lead: extreme densities of narwhals in the offshore pack ice. Mar Ecol Prog Ser 423:269–278Google Scholar
  311. Laidre KL, Heide-Jørgensen MP, Dietz R, Hobbs RC, Jørgensen OA (2003) Deep-diving by narwhals, Monodon monoceros: differences in foraging behavior between wintering areas? Mar Ecol Prog Ser 261:269–281Google Scholar
  312. Lakshminarayanan R, Jin EO, Loh XJ et al (2005) Purification and characterization of a vaterite–inducing peptide, pelovaterin, from the eggshells of Pelodiscus sinensis (Chinese soft–shelled turtle). Biomacromolecules 6(3):1429–1437Google Scholar
  313. Lakshminarayanan R et al (2008) Reprinted with permission from Lakshminarayanan R, Vivekanandan S, Samy RP et al (2008) Structure, self-assembly, and dual role of a β-Defensin-like peptide from the Chinese soft-shelled turtle eggshell matrix. J Am Chem Soc 130(14):4660–4668. Copyright 2008 American Chemical SocietyGoogle Scholar
  314. Lambert et al (2011) Reproduced from Lambert O, de Buffrénil V, de Muizon C (2011) Rostral densification in beaked whales: diverse processes for a similar pattern. (La densification du rostre des baleines à bec : des processus variés pour un résultat similaire). Comptes Rendus Palevol 10(5–6):453–468. Copyright © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reservedGoogle Scholar
  315. Lang C, Schüler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio– and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7(2):144–151Google Scholar
  316. Langille RM, Hall BK (1988) With kind permission from Springer Science + Business Media: Langille RM, Hall BK (1988) The organ culture and grafting of lamprey cartilage and teeth. In Vitro Cell Dev Biol 24(1):1–8. Copyright © 1988, Tissue Culture Association, IncGoogle Scholar
  317. Leask MJM (1977) A physicochemical mechanism for magnetic field detection by migrating birds and homing pigeons. Nature 267:144–145Google Scholar
  318. Levy R, Dawson P (2006) Reconstructing a thule whalebone house using 3D imaging. J IEEE MultiMed 13:78–83Google Scholar
  319. Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. CRC Press, Boca Raton, p 248Google Scholar
  320. Lim DJ (1973) Formation and fate of the otoconia. Scanning and transmission electron microscopy. Ann Otol Rhinol Laryngol 82:23–35Google Scholar
  321. Loch C, Grando LJ, Kieser JA et al (2011) Dental pathology in dolphins (Cetacea: Delphinidae) from the southern coast of Brazil. Dis Aquat Org 94:225–234Google Scholar
  322. Locke M (2008) Structure of ivory. J Morphol 269(4):423–450Google Scholar
  323. Lohße A, Ullrich S, Katzmann E et al (2011) Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: The mamAB operon is sufficient for magnetite biomineralization. PLoS ONE 6(10):e25561Google Scholar
  324. Lohman K, Lohman CMF (1994) Acquisition of magnetic directional preference in hatchling loggerhead sea turtles. J Exp Biol 190:1–8Google Scholar
  325. Lohmann KJ (1991) Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J Exp Biol 155:31–49Google Scholar
  326. Lohmann KJ, Johnsen S (2000) Reprinted from Lohmann KJ, Johnsen S (2000) The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci 23(4):153–159. Copyright © 2000, with permission from ElsevierGoogle Scholar
  327. Lohmann KJ, Lohmann CMF (1993) A light-independent magnetic compass in the Leatherback Sea Turtle. Biol Bull 185(1):149–151. Copyright © 1993, The Marine Biological Laboratory. Reprinted with permissionGoogle Scholar
  328. Lohmann CMF, Lohmann KJ (2006) Reprinted from Lohmann CMF, Lohmann KJ (2006) Sea turtles. Cur Biol 16(18):R784–R786. Copyright © 2006, Elsevier Ltd., (Under an Elsevier user license), with permission from ElsevierGoogle Scholar
  329. Lohmann KJ, Hester JT, Lohmann CMF (1999) Long distance navigation in sea turtles. Ethol Ecol Evol 11:1–23Google Scholar
  330. Lohmann KJ, Cain SD, Dodge SA et al (2001) Regional magnetic fields as navigational markers for sea turtles. Science 294:364–366Google Scholar
  331. Lohmann KJ, Lohmann CMF, Ehrhart LM et al (2004) Geomagnetic map used in sea–turtle navigation. Nature 428:909–910Google Scholar
  332. Lohmann KJ, Putman NF, Lohmann CMF (2008) Geomagnetic imprinting:a unifying hypothesis of long–distance natal homing in salmon and sea turtles. Proc Natl Acad Sci USA 105:19096–19101Google Scholar
  333. Long JA (1995) The rise of fishes – 500 million years of evolution. University of New South Wales Press/Johns Hopkins University Press, Sydney/BaltimoreGoogle Scholar
  334. Lowenstam HA (1962) Magnetite in denticle capping in recent chitons (polyplacophora). Geol Soc Am Bull 73:435–438Google Scholar
  335. Lowy RJ, Dawson DC, Ernst SA (1989) Mechanism of ion transport by avian salt gland primary cell cultures. Am J Physiol 256:R1184–R1191Google Scholar
  336. Lü J, Unwin DM, Deeming DC et al (2011) An egg–adult association, gender, and reproduction in pterosaurs. Science (New York) 331(6015):321–324Google Scholar
  337. Lucifora LO, Menni RC, Escalante AH (2001) Analysis of dental insertion angles in the sand tiger shark, Carcharias taurus (Chondrichthyes: Lamniformes). Cybium Int J Ichtyol 25(1):23–31. Copyright © 2001 Société Française d’IchtyologieGoogle Scholar
  338. Lundberg YW et al (2006) Reprinted from Lundberg YW, Zhao X, Yamoah EN (2006) Assembly of the otoconia complex to the macular sensory epithelium of the vestibule. Brain Res 1091(1):47–57. Copyright (2006), with permission from ElsevierGoogle Scholar
  339. Lutz P (1997) Salt, water and pH balance in the sea turtle. In: Lutz P, Musick J (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 343–361Google Scholar
  340. Lychakov DV (2004) Evolution of otolithic membrane. structure of otolithic membrane in amphibians and reptilians. J Evol Biochem Physiol 40:331–342Google Scholar
  341. Lychakov DV et al (2000) Reprinted from Lychakov DV, Boyadzhieva-Mikhailova A, Christov I, Evdokimov II (2000) Otolithic apparatus in Black Sea elasmobranchs. Fish Res 46(1–3):27–38. Copyright (2000), with permission from ElsevierGoogle Scholar
  342. Magalhaes MCF, Marques PAAP, Correia RN (2006) Biomineralization – medical aspects of solubility. Wiley, ChichesterGoogle Scholar
  343. Mahanty P, Sahoo G (1999) Ultrastructural and biochemical study of egg shell calcium utilization during embryogenesis in the Olive Ridley (Lepidochelys olivacea) sea turtles. In: 19th annual sea turtle symposium, South Padre Island, Texas, USA, pp 112–113Google Scholar
  344. Maher BA (1998) Magnetite biomineralization in termites. Proc R Soc Lond Ser B 265:733–737Google Scholar
  345. Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407Google Scholar
  346. Mann S, Sparks NH, Walker MM, Kirschvink JL (1988) Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: implications for magnetoreception. J Exp Biol 140:35–49Google Scholar
  347. Marples J (1932) The structure and development of the nasal glands of birds. Proc Zool Soc London 102(4):829–844Google Scholar
  348. Marshall CB, Fletcher GL, Davies PL (2004) Hyperactive antifreeze protein in a fish. Nature 429:153Google Scholar
  349. Marx FG (2010) The more the merrier? A large cladistic analysis of mysticetes, and comments on the transition from teeth to baleen. J Mammal Evol 18:77–100. doi: 10.1007/s10914-010-9148-4 Google Scholar
  350. Mathis A, Moore FR (1988) Geomagnetism and the homeward orientation of the box turtle Terrapene Carolina. Ethology 78:265–274Google Scholar
  351. Matsunaga T, Sakaguchi T (2000) Molecular mechanism of magnet formation in bacteria. J Biosci Bioeng 90:1–13Google Scholar
  352. Maxwell EE, Caldwell MW, Lamoureux DO (2011) The structure and phylogenetic distribution of amniote plicidentine. J Vertebr Paleontol 31(3):553–561. Reprinted by permission of Taylor & Francis Ltd.
  353. McCartney AP, Savelle JM (1985) Thule Eskimo whaling in the central Canadian Arctic. ArcAnthropol 22(2):37–58Google Scholar
  354. McCartney MR, Lins U, Farina M et al (2001) Magnetic microstructure of bacterial magnetite by electron holography. Eur J Mineral 13:685–689Google Scholar
  355. McFee WE, Carl AO (2004) Struvite calculus in the vagina of a bottlenose dolphin (Tursiops truncatus). J Wildl Dis 40:125–128Google Scholar
  356. McKown RD (1998) A cystic calculus from a wild western spiny softshell turtle (Apalone Trionyx spiniferus hartwegi). J Zool Wildl Med 29(3):347Google Scholar
  357. Mead JG (1975) Anatomy of the external nasal passages and facial complex in the Delphinidae (Mammalia: Cetacea). Smith Contr Zool 207:1–72Google Scholar
  358. Melancon S, Fryer BJ, Gagnon JE et al (2008) Mineralogical approaches to the study of biomineralization in fish otoliths. Min Magaz 72:627–637Google Scholar
  359. Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS (2009) Molecular decay of the tooth gene enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet 5(9):e1000634. doi: 10.1371/journal.pgen.1000634. Copyright © 2009 Meredith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
  360. Meunier FJ, Huysseune A (1992) The concept of bone tissue in osteichthyes. Neth J Zool 42:445–458Google Scholar
  361. Meunier FJ, Sorba L, Béarez P (2004) Presence of vascularized acellular bone in the elasmoid scales of Micropogonias altipinnis (Osteichthyes, Perciformes, Sciaenidae). Cybium 28:25–31Google Scholar
  362. Meylan A (1988) From Meylan A (1988) Spongivory in Hawksbill turtles: a diet of glass. Science 239(4838):393–395. Reprinted with permission from AAASGoogle Scholar
  363. Mikhailov KE (1991) Classification of fossil eggshells of amniotic vertebrates. Acta Palaeont Polonica 36:193–238Google Scholar
  364. Mikhailov KE (1997a) Avian eggshells: an Atlas of scanning electron micrographs, British Ornitologists’. Club Occasional Publications, Nr.3, 88 pGoogle Scholar
  365. Mikhailov KE (1997b) Fossil and recent eggshell in amniotic vertebrates: fine structure, comparative morphology and classification. Spec Papers Palaeontol (56):1–80Google Scholar
  366. Milius S (2006) That’s one weird tooth. Sci News 169:186Google Scholar
  367. Miller WA (1974) Observations on the developing rostrum and rostral teeth of sawfish: Pristis perotteti and P. cuspidatus. Copeia 1974(2):311–318Google Scholar
  368. Miller JD (1982) Embryology of marine turtles. Dissertation, University of New England, Armidale, New South Wales, AustraliaGoogle Scholar
  369. Miller JD (1985) Embryology of marine turtles. In: Gans C, Billett F, Maderson P (eds) Biology of the reptilian. Wiley, New YorkGoogle Scholar
  370. Miller GW (1994) Diagnosis and treatment of uric acid renal stone diseases in Tursiops truncatus. In: Abstracts of the international association for aquatic animal medicine proceedings, Vallejo, vol 25, pp 22Google Scholar
  371. Miller JM (1999) Morphometric variation in the pharyngeal teeth of zebrafish (Danio rerio Cyprinidae) in response to varying diets. Master dissertation, Texas Tech University, Lubbock, USAGoogle Scholar
  372. Miller K, Packard GC, Packard MJ (1987) Hydric conditions during incubation influence locomotor performance of hatchling snapping turtles. J Exp Biol 127:401–412Google Scholar
  373. Mills M, Rasch R, Siebeck UE, Collin SP (2011) Exogenous material in the inner ear of the adult Port Jackson Shark, Heterodontus Portusjacksoni (Elasmbranchii). Anat Rec 294:373–378. Copyright ©2005, IOS Press All rights reservedGoogle Scholar
  374. Modesto SP, Reisz RR (2008) New material of Colobomycter pholeter, a small parareptile from the Lower Permian of Oklahoma. J Vertebr Paleontol 28:677–684Google Scholar
  375. Moliner JL (2005) Renal lithiasis and pyelonephritis in two West Indian manatees (Trichechus manatus sp). In: Abstracts of the international association for aquatic animal medicine proceedings, Seward, Alaska, USA, vol 34, pp 52Google Scholar
  376. Mora CV, Davison M, Wild JM et al (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511Google Scholar
  377. Morris WR, Kittleman LR (1967) Piezoelectric property of otoliths. Science 19:368–370Google Scholar
  378. Moss ML (1960) Osteogenesis and repair of acellular teleost bone. Anat Rec 136:246–247Google Scholar
  379. Moss ML (1961) Studies on the acellular bone of teleost fish. I. Morphological and systematic variations. Acta Anat 46:343–362Google Scholar
  380. Moss ML (1962) Studies of acellular bone of teleost fish. 2. Response to fracture under normal and acalcemic conditions. Acta Anat 48:46–60Google Scholar
  381. Moss ML (1965) Studies of acellular bone of teleost fish. 5. Histology and mineral homeostasis of fresh-water species. Acta Anat 60:262–276Google Scholar
  382. Moss ML, Freilich M (1963) Studies of acellular bone of teleost fish. 4. Inorganic content of calcified tissues. Acta Anat 55:1–8Google Scholar
  383. Motta CM, Avallone B, Balassone G, Balsamo G, Fascio U, Simoniello P, Tammaro S, Marmo F (2009) Morphological and biochemical analyses of otoliths of the ice-fish Chionodraco hamatus confirm a common origin with red-blooded species. J Anatomy 214:153–162. © 2009 The Authors. Journal compilation © 2009 Anatomical Society of Great Britain and IrelandGoogle Scholar
  384. Mouritsen H, Ritz T (2005) Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 15:406–414Google Scholar
  385. Moy Thomas JA (1939) The early evolution and relationships of the elasmobranchs. Biol Rev 14:1–26Google Scholar
  386. Muheim R (2001) Animal magnetoreception – models, physiology and behaviour. Introductory paper no 128. Department of Ecology, Animal Ecology, Lund University, Lund. Copyright © 2000, Muheim RGoogle Scholar
  387. Muheim R (2004) Magnetic orientation in migratory birds. Dissertation, Lund University, Lund. Copyright © 2004, R. Muheim. Reprinted with permissionGoogle Scholar
  388. Munday PL, Hernaman V, Dixson DL, Thorrold SR (2011) Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences 8:1631–1641. Copyright © 2011 Munday et al. This work is distributed under the Creative Commons Attribution 3.0 LicenseGoogle Scholar
  389. Munro U, Munro JA, Phillips JB et al (1997) Evidence for a magnetite–based navigational map in birds. Naturwissenschaften 84:26–28Google Scholar
  390. Murayama E, Okuno A, Ohira T, Takagi Y, Nagasawa H (2000) Molecular cloning and expression of an otolith matrix protein cDNA from the rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol 126B:511–520Google Scholar
  391. Murayama E, Takagi Y, Ohira T, Davis JG, Greene MI and Nagasawa H (2002) Fish otolith contains a unique structural protein, otolin-1. European Journal of Biochemistry 269:688–696. Copyright © 2002, John Wiley and Sons.Google Scholar
  392. Murayama E, Takagi Y, Nagasawa H (2004) Immunohistochemical localization of two otolith matrix proteins in the otolith and inner ear of the rainbow trout, Oncorhynchus mykiss: comparative aspects between the adult inner ear and embryonic otocysts. Histochem Cell Biol 121:155–166Google Scholar
  393. Murayama E, Herbomel P, Kawakami A et al (2005) Otolith matrix proteins OMP–1 and Otolin–1 are necessary for normal otolith growth and their correct anchoring onto the sensory maculae. Mech Dev 122:791–803Google Scholar
  394. Murie J (1871) Researches upon the anatomy of Pinnipedia. Part I. on the Walrus (Trichechus rosmarus, Linn.). Trans Zool Soc (Lond) 7:411–464Google Scholar
  395. Nakamura Y, Inloes JB, Katagiri T et al (2011) Chondrocyte–specific microRNA–140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol 31(14):3019–3028Google Scholar
  396. Nemec P, Altmann J, Marhold S et al (2001) Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294:366–368Google Scholar
  397. Nicolson SW, Lutz PL (1989) Reproduced with permission Nicolson SW, Lutz PL (1989) Salt gland function in the green sea turtle Chelonia mydas. J Exp Biol 144:171–184. Copyright © 1989, The Company of Biologists LimitedGoogle Scholar
  398. Nishiwaki M, Yagi T (1953) On the age and the growth of teeth in a dolphin, (Prodelphinus caeruleoalbus). Sci Rep Whales Res Inst (Tokyo) 8:133–146Google Scholar
  399. Norman SA, Garner MM, Berta S et al (2011) Vaginal calculi in a juvenile habor porpoise (Phocoena phocoena). J Zool Wildlife Med 42:335–337Google Scholar
  400. Nuamsukon S, Chuen–Im T, Rattanayuvakorn S et al (2009) Thai marine turtle eggshell: morphology, ultrastructure and composition. J Micr Soc Thai 23(1):52–56Google Scholar
  401. Nutter FB, Lee DD, Stamper MA et al (2000) Hemiovariosalpingectomy in a loggerhead sea turtle (Caretta caretta). Vet Rec 146:78–80Google Scholar
  402. Nweeia M, Eichmiller F, Orr J (2010) The narwhal tooth sensory organ system and its evolutionary and ecological significance. International Polar Year, Oslo science conference, 8–12 June, 2010Google Scholar
  403. Nweeia MT, Eidelman N, Eichmiller FC et al (2005) Hydrodynamic sensor capabilities and structural resilience of the male Narwhal tusk. In: Abstract presented at the 16th biennial conference on the biology of marine mammals, San Diego, CA, 13 December 2005Google Scholar
  404. Nweeia MT, Nutarak C, Eichmiller FC et al (2009) Considerations of anatomy, morphology, evolution, and function for narwhal dentition. In: Krupnik I, Lang MA, Miller SE (eds) Smithsonian at the poles. Smithsonian Institution Scholarly Press, WashingtonGoogle Scholar
  405. Nweeia MT, Eichmiller FC, Hauschka PV et al (2012) Vestigial tooth anatomy and tusk nomenclature for Monodon monoceros. Anat Rec (Hoboken) 295(6):1006–1016Google Scholar
  406. Nys Y, Hincke M, Arias JL et al (1999) Avian eggshell mineralization. Poult Avian Biol Rev 10:143–166Google Scholar
  407. Nys Y, Gautron J, Garcia–Ruiz JM et al (2004) Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. CR Palevol 3:549–562Google Scholar
  408. O’Leary DP, Vilches–Troya J, Dunn RF et al (1981) Magnets in guitarfish vestibular receptors. Cell Mol Life Sci 37:86–88Google Scholar
  409. Obradovic-Wagner D, Aspenberg P (2011) Where did bone come from? An overview of its evolution. Acta Orthopaed 82(4):393–398. Copyright © 2011, Informa Healthcare. Reproduced with permission of Informa HealthcareGoogle Scholar
  410. Oftedal OT (2002) The origin of lactation as a water source for parchment–shelled eggs. J Mammary Gland Biol Neoplasia 7(3):253–266Google Scholar
  411. Olsson PE, Kling P, Hogstrand C (1998) Mechanisms of heavy metal accumulation and toxicity in fish. In: Langston WJ, Bebianno MJ (eds) Metal metabolism in aquatic environments. Chapman and Hall, LondonGoogle Scholar
  412. Omelon S, Georgiou J, Henneman ZJ et al (2009) Control of vertebrate skeletal mineralization by polyphosphates. PLoS ONE 4(5):e5634. Copyright: © 2009 Omelon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedGoogle Scholar
  413. Ørvig T (1965) Palaeohistological notes. 2: certain comments on the phylogenetic significance of acellular bone in early lower vertebrates. Ark Zool 16:551–556Google Scholar
  414. Ørvig T (1967) Phylogeny of tooth tissues: evolution of some calcified tissues in early vertebrates. In: Miles AEW (ed) Structural and chemical organization of teeth, vol I. Academic, LondonGoogle Scholar
  415. Ørvig T (1976) Palaeohistological notes. 3. The interpretation of pleromin (pleromic hard tissue) in the dermal skeleton of Psammosteid heterostracans. Zool Scr 5:35–47Google Scholar
  416. Ørvig T (1977) A survey of odontodes (‘dermal teeth’) from developmental, structural, functional and phyletic points of view. In: Mahala Andrews S, Miles RS, Walker AD (eds) Problems in vertebrate evolution. Academic, New York, pp 53–75Google Scholar
  417. Ørvig T (1989) Histologic studies of ostracoderms, placoderms and fossil elasmobranchs. 6. Hard tissues of Ordovician vertebrates. Zool Scr 18:427–446Google Scholar
  418. Osborne CA, Polzin DJ, Abdullahi SU et al (1985) Struvite urolithiasis in animals and man: formation, detection, and dissolution. Adv Vet Sci Comp Med 29:1–101Google Scholar
  419. Osborne CA, Klausner JS, Polzin DE et al (1986) Etiopathogenesis of canine struvite urolithiasis. Vet Clin North Am Small Anim Pract 16:67–86Google Scholar
  420. Osmolska H (1979) Nasal salt gland in dinosaurs. Acta Paleont Polonica 25:205–215Google Scholar
  421. Outridge PM, Davis WJ, Stewart REA et al (2003) Investigation of the stock structure of Atlantic Walrus (Odobenus rosmarus rosmarus) in Canada and Greenland using dental Pb isotopes derived from local geochemical environments. Arctic 56:82–90Google Scholar
  422. Owen R (1945) Odontography: a treatise on the comparative anatomy of the teeth, vols I, 11. Hippolyte Bailliere, LondonGoogle Scholar
  423. Packard MJ (1980) Ultrastructural morphology of the shell and shell membrane of eggs of common snapping turtles (Chelydra serpentina). J Morphol 165:187–204Google Scholar
  424. Packard MJ (1994) Patterns of mobilization and deposition of calcium in embryos of oviparous, amniotic vertebrates. Israel J Zool 40:481–492Google Scholar
  425. Packard MJ, Hirsh KF (1986) Scanning electron microscopy of eggshells of contemporary reptiles. Scan Electron Microsc 4:1581–1590Google Scholar
  426. Packard MJ, Packard GC (1979) Structure of the shell and tertiary membranes of eggs of soft–shell turtles (Trionyx spiniferus). J Morphol 159:131–144Google Scholar
  427. Packard GC, Packard MJ (1980) Evolution of the cleidoic egg among reptilian antecedents of birds. Am Zool 20:351–362Google Scholar
  428. Packard MJ, Packard GC (1984) Comparative aspects of calcium metabolism in embryonic reptiles and birds. In: Seymour RS (ed) Respiration and metabolism of embryonic vertebrates. Dr. w. Junk, The HagueGoogle Scholar
  429. Packard GC, Packard MJ (1988) The physiological ecology of reptilian eggs and embryos. In: Gans C, Huey RB (eds) Biology of the reptilia, vol 16. Ecology B, Defense and Life History. Alan R. Liss, New York, pp 523–605Google Scholar
  430. Packard GC, Tracy CR, Roth JANJ (1977) The physiological ecology of reptilian eggs and embryos and the evolution of viviparity within the class reptilia. Biol Rev (Camb) 52:71–105Google Scholar
  431. Packard GC et al (1979) Reprinted from Packard GC, Taigen TL, Packard MJ, Shuman RD (1979) Water-vapor conductance of testudinian and crocodilian eggs (class reptilia). Resp Physiol 38(1):1–10. Copyright (1979), with permission from ElsevierGoogle Scholar
  432. Packard MJ, Packard GC, Boardman TJ (1981) Patterns and possible significance of water exchange by flexible–shelled eggs of painted turtles (Chrysemys picta). Physiol Zool 54:165–178Google Scholar
  433. Packard MJ, Packard GC, Boardman TJ (1982) Structure of eggshells and water relations of reptilian eggs. Herpetologica 38:136–155Google Scholar
  434. Packard MJ, Hirsch KF, Iverson JB (1984) Structure of shells from eggs of kinosternid turtles. J Morphol 181:9–20Google Scholar
  435. Panella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173(4002):1124–1127. Copyright © 1971, American Association for the Advancement of Science. Reprinted with permission from AAASGoogle Scholar
  436. Parago C (2001) Contribuição à taxonomia do gênero Psammobatis Günther, 1870 (Chondrichthyes, Rajidae): Caracterização das espécies do subgênero I de McEachran (1983) com base em padrões de coloração e espinulação. 52 p. Dissertação (Mestrado). Universidade Federal do Rio de Janeiro, UFRJ, Rio de JaneiroGoogle Scholar
  437. Pasco-Viel E, Charles C, Chevret P, Semon M, Tafforeau P et al (2010) Evolutionary trends of the pharyngeal dentition in cypriniformes (Actinopterygii: Ostariophysi). PLoS ONE 5(6):e11293. doi: 10.1371/journal.pone.0011293. Copyright © 2010 Pasco-Viel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
  438. Patterson WP (1999) Oldest isotopically characterized fish otoliths provide insight to Jurassic continental climate of Europe. Geology 27:199–202Google Scholar
  439. Patton AK, Savelle JM (2006) The symbolic dimensions of whale bone use in Thule winter dwellings. Études/Inuit/Studies 30:137–161Google Scholar
  440. Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge University Press, New YorkGoogle Scholar
  441. Perrin WF, Myrick AC Jr (eds) (1981) Age determi nation of toothed whales and sirenians. Rep Int Whal Commun (Spec. Issue No. 3):1–229Google Scholar
  442. Perrin W, Wursig B, Thewissen JGM (2002) Encyclopedia of marine mammals. Academic, BostonGoogle Scholar
  443. Perry A (1982) Magnetite in the green turtle. Pac Sci 36:514Google Scholar
  444. Perry A, Bauer GB, Dizon AE (1985) Magnetoreception and biomineralization of magnetite in amphibians and reptiles. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum Press, New YorkGoogle Scholar
  445. Petersen N, von Dobeneck T, Vali H (1986) Fossil bacterial magnetite in deep–sea sediments from the south atlantic ocean. Nature 320(6064):611–615Google Scholar
  446. Petillon J–M (2008) First evidence of a whale–bone industry in the western European Upper Paleolithic: Magdalenian artifacts from Isturitz (Pyrénées–Atlantiques, France). J Human Evol 54(5):720–726Google Scholar
  447. Petko JA, Millimaki BB, Canfield VA et al (2008) Otoc1: a novel otoconin–90 ortholog required for otolith mineralization in zebrafish. Dev Neurobiol 68:209–222Google Scholar
  448. Peyer B (1968) Comparative odontology. University of Chicago Press, ChicagoGoogle Scholar
  449. Phillips JB (1996) Magnetic navigation. J Theor Biol 180:309–319Google Scholar
  450. Phillott AD (2002) Fungal colonisation of sea turtle nests in eastern Australia. Dissertation, Central Queensland UniversityGoogle Scholar
  451. Phillott AD, Parmenter CJ (2001) The influence of diminished respiratory surface area on survival of sea turtle embryos. J Exp Zool 289:317–321Google Scholar
  452. Phillott AD, Parmenter CJ, Limpus CJ (2004) The occurrence of mycobiota in eastern Australian sea turtle nests. Mem Queensl Mus 49:701–703Google Scholar
  453. Phillott AD, Parmenter CJ, McKillup SC (2006) Calcium depletion of eggshell after fungal invasion of sea turtle eggs. Chel Conserv Biol 5(1):146–149Google Scholar
  454. Pichler FB, Dalebout ML, Baker CS (2001) Nondestructive DNA extraction from sperm whale teeth and scrimshaw. Mol Ecol Notes 1:106–109. Copyright © 2005, John Wiley and SonsGoogle Scholar
  455. Pimiento C, Ehret DJ, MacFadden BJ, Hubbell G (2010) Ancient nursery area for the extinct giant shark megalodon from the Miocene of Panama. PLoS ONE 5(5):e10552. doi: 10.1371/journal.pone.0010552. Copyright © 2010 Pimiento et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
  456. Pollinger ML (1997) Mineralogy and microstructure of dinosaur eggshells. Dissertation, Texas Tech UniversityGoogle Scholar
  457. Popper AN, Fay RR, Platt C, Sand O (2003) Sound detection mechanisms and capabilities of teleost fishes. In: Colin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer, New York, pp 3–38Google Scholar
  458. Pote KG, Ross MD (1991) Each otoconia polymorph has a protein unique to that polymorph. Comp Biochem Physiol B 98:287–295Google Scholar
  459. Pote KG, Hauer CR III, Michel H et al (1993) Otoconin–22, the major protein of aragonitic frog otoconia, is a homolog of phospholipase A2. Biochemistry 32:5017–5024Google Scholar
  460. Powlik JJ (1995) On the geometry and mechanics of tooth position in the white shark Carcharodon carcharias. J Morphol 226:277–288Google Scholar
  461. Prado Figueroa M (2005) Distribución Cuantitativa del Malondialdehido entre las Fracciones Subcelulares Obtenidas por Centrifugación Diferencial de Órganos Eléctricos de peces de la familia Rajidae y Topografía del nAChR. III Jornadas de Bioquímica y Biología Molecular de Lípidos y Lipoproteínas, Bahía Blanca, Argentina, p 101Google Scholar
  462. Prado Figueroa M (2011) The growth of chalcedony (nanocrystalline silica) in electric organs from living marine fish. In: Mastai Y (ed) Advances in crystallization processes. InTech, Rijeka, pp 285–300Google Scholar
  463. Prado Figueroa M, Cesaretti NN (2006) Silicificación en ó rganos eléctricos de peces vivientes del estuario de Bahía Blanca. In: IV Congreso Latinoamericano de Sedimentología y XI Reunión Argentina de Sedimentología, San Carlos de Bariloche, Argentina. Limarino y DF Rosetti, GD Veiga, CO, p 184Google Scholar
  464. Prado Figueroa M, Barrera F, Cesaretti NN (2005) Si4+ and chalcedony precipitation during oxidative stress in Rajidae electrocyte: a mineralogical study. In: 41th annual meeting. Argentine society for biochemistry and molecular biology research, Pinamar, Argentina, (Biocell 29), p 231Google Scholar
  465. Prado Figueroa M et al (2008) Reprinted from Prado Figueroa M, Barrera F and Cesaretti NN (2008) Chalcedony (a crystalline variety of silica): biogenic origin in electric organs from living Psammobatis extenta (family Rajidae). Micron 39(7):1027–1035. Copyright (2008), with permission from ElsevierGoogle Scholar
  466. Purdy RW (1996) Paleoecology of fossil white sharks. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias: vol 67. Academic, San DiegoGoogle Scholar
  467. Quinn TP (1980) Evidence of celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol 137A:243–248Google Scholar
  468. Quint E, Smith A, Avaron F, Laforest L, Miles J, Gaffield W, Akimenko M-A (2002) Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. PNAS 99(13):8713–8718. Copyright (2002) National Academy of Sciences, USA. Reprinted with permissionGoogle Scholar
  469. Radtke RL, Targett TF (1984) Rhythmic structural and chemicalpatterns in otoliths of Antarctic fish Notothenia larseni: their application to age determination. Polar Biol 3:203–210Google Scholar
  470. Rafferty AR, Reina RD (2012) Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles. Proc Biol Sci B 279(1737):2299–2308. doi: 10.1098/rspb.2012.0100, by permission of the Royal Society
  471. Ramsay JB, Wilga CD (2007) Morphology and mechanics of the teeth and jaws of white–spotted bamboo sharks (Chiloscyllium plagiosum). J Morphol 268:664–682Google Scholar
  472. Reddi AH (2000a) Initiation and promotion of endochondral bone formation by bone morphogenetic proteins: potential implications for Avian Tibial Dyschondroplasia. Poult Sci 79:978–981Google Scholar
  473. Reddi AH (2000b) Reprinted from Principles of Tissue Engineering, 2nd ed.: Reddi AH (2000) Morphogenesis and tissue engineering. In: Lanza R, Langer R, Vacanti JP (eds) Principles of tissue engineering, 2nd edn. Academic, San Diego. Copyright (2000), with permission from ElsevierGoogle Scholar
  474. Reeves RR, Tracey S (1980) Monodon monoceros. Mamm Species 127:1–7Google Scholar
  475. Reibisch J (1899) Über die Eizahl bei Pleronectes platessa und die Altersbestimmung dieser Form aus den Otolithen. Wiss Meeresuntcrsuch. Abt Kid N F 4:231–248Google Scholar
  476. Reiche et al (2011) Reproduced from Reiche I, Müller K, Staude A, Goebbels J, Riesemeier H (2011) Synchrotron radiation and laboratory micro X-ray computed tomography—useful tools for the material identification of prehistoric objects made of ivory, bone or antler. J Anal Atomic Spectrom 26:1802–1812. With permission of The Royal Society of ChemistryGoogle Scholar
  477. Reidarson TH, McBain J (1994) Ratio of urine levels of uric acid to creatinine as an aid in diagnosis of urate stones in bottlenose dolphins. Proc Int Assoc Aqua Anim Med 25:21Google Scholar
  478. Reina RD, Cooper PD (2000) Control of salt gland activity in the hatchling green sea turtle, Chelonia mydas. J Comp Physiol B 170:27–35Google Scholar
  479. Reina RD, Jones TT, Spotila JR (2002) Salt and water regulation by the leatherback sea turtle Dermochelys coriacea. J Exp Biol 205:1853–1860Google Scholar
  480. Retting KN, Song B, Yoon BS et al (2009) BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136:1093–1104Google Scholar
  481. Retzius G (1881) Das Gehörorgan der Wirbelthiere, vol I. Samson and Wallin, StockholmGoogle Scholar
  482. Retzius G (1884) Das Gehörorgan der Wirbeltiere: II. Das Gehörorgan der Amnioten. Samson und Wallin, StockholmGoogle Scholar
  483. Rice D (1989) The sperm whale Physeter macrocephalus Linnaeus 1758. In: Ridgway SH, Harrison R (eds) Handbook of marine mammals. Academic, LondonGoogle Scholar
  484. Right Whale Consortium (2005) North Atlantic right whale consortium photo–id, sightings, genetics, contaminants and necropsy database. New England Aquarium, BostonGoogle Scholar
  485. Ritz T, Adem S, Schulten K (2000) A model for vision–based magnetoreception in birds. Biophys J 78:707–718Google Scholar
  486. Ritz T, Thalau P, Phillips JB et al (2004) Resonance effects indicate a radical–pair mechanism for avian magnetic compass. Nature 429:177–180Google Scholar
  487. Roberts HS, Sharp RM (1985) Prefered orientation of calcite and aragonite in the reptilian eggshells. Proc R Soc Lond B Bio 255:445–455Google Scholar
  488. Rocha F, Oddone MC, Gadign OBF (2010) Egg capsules of the little skate, Psammobatis extent (Garman, 1913) (Chondrichthyes, Rajidae). Braz J Oceanogr 58(3):251–254Google Scholar
  489. Romanoff AL, Romanoff AJ (1949) The Avian egg. Wiley, NewYorkGoogle Scholar
  490. Rose ML, Hincke MT (2009) Protein constituents of the eggshell: eggshell–specific matrix proteins. Cell Mol Life Sci 66(16):2707–2719Google Scholar
  491. Ross MD, Pote KG (1984) Some properties of otoconia. Philos Trans R Soc Lond B Biol Sci 304:445–452Google Scholar
  492. Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone–eating marine worms with dwarf males. Science 305:668–671Google Scholar
  493. Ruben JA, Bennett AA (1987) The evolution of bone. Evolution 41(6):1187–1197. Evolution: international journal of organic evolution by Society for the Study of Evolution. Reproduced with permission of Society for the Study of Evolution, in the format Republish in a book via Copyright Clearance CenterGoogle Scholar
  494. Rückert–Ülkümen N, Yigitbas E (2007) Pharyngeal teeth, lateral ethmoids, and jaw teeth of fishes and additional fossils from the late Miocene (Late Khersonian/Early Maeotian) of Eastern Paratethys (Yalova, Near Üstanbul, Turkey). Turk J Earth Sci 16:211–224Google Scholar
  495. Sahoo G, Mohapatra BK, Sahoo RK et al (1996a) Ultrastructure and characteristics of eggshells of the Olive Ridley turtle (Lepidochelys olivacea) from Gahirmatha, India. Acta Anat 156:261–267Google Scholar
  496. Sahoo G, Mohapatra BK, Sahoo RK et al (1996b) Contrasting ultrastructures in the eggshells of olive ridley turtles (Lepidochelys olivacea) from Gahirmatha in Orissa. Curr Sci 70:246–249Google Scholar
  497. Sahoo G, Sahoo RK, Mohanty–Hejmadi P (1998) Calciummetabolism in olive ridley turtle eggs during embryonic development. Comp Biochem Physiol Part A 121:91–97Google Scholar
  498. Savelle (1997) Reprinted from Savelle JM (1997) The role of architectural utility in the formation of zooarchaeological whale bone assemblages. J Archaeol Sci 24(10):860–885. Copyright (1997), with permission from ElsevierGoogle Scholar
  499. Savelle JM, Habu J (2004) A processual investigation of a Thule whale bone house, Somerset Island, Arctic Canada. Arct Anthropol 41(2):204–221Google Scholar
  500. Savelle JM, McCartney AP (2003) Prehistoric bowhead whaling in the Bering Strait and Chukchi sea regions of Alaska: a zooarchaeological assessment. In: McCartney AP (ed) Indigenous ways to the present: native whaling in the Western Arctic, Canadian Circumpolar Institute: studies in whaling no. 6., pp 167–184Google Scholar
  501. Sawyer JE, Walker WA (1977) Vaginal calculi in the dolphin. J Wildl Dis 13:346–348Google Scholar
  502. Scanlon JD, Lee MSY (2002) Varanoid–like dentition in primitive snakes (Madtsoiidae). J Herpetol 36:100–106Google Scholar
  503. Schaefer SA, Buitrago-Suárez UA (2002) Odontode morphology and skin surface features of Andean astroblepid catfishes (Siluriformes, Astroblepidae). J Morphol 254:139–148. Copyright © 2002 Wiley-Liss, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  504. Scheffel A, Gruska M, Faivre D et al (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114Google Scholar
  505. Scheffer VB, Myrick AB Jr (1980) A review of studies to 1970 of growth layers in the teeth of marine mammals. Report of the International Whaling Commission (Special Issue 3), Cambridge, UK, pp 51–63. Copyright © 1980, International Whaling Commission. Reprinted with permissionGoogle Scholar
  506. Schipiani E (2003) Otoconin–22 and Calcitonin: a novel modality of regulating calcium storages in lower vertebrates? Endocrinology 144:3285–3286Google Scholar
  507. Schleich H, Kastle W (1988) Reptile eggshells. SEM Atlas, StuttgartGoogle Scholar
  508. Schmidt M (1885) Das Walross (Trichechus rosmarus). D Zool Gart Frankf 1:1–16Google Scholar
  509. Schmidt WJ (1967) Das “globularmuster” im eischalenkalk von Diomedea. Z Zellforsch 77:518–533Google Scholar
  510. Schmidt–Nielsen K (1960) The salt–secreting glands of marine birds. Circulation 21:955–967Google Scholar
  511. Schmidt-Nielsen K, Fange R (1958a) The function of the salt gland in the brown pelican. The Auk 75(3):282–289. Published by the American Ornithologists’ UnionGoogle Scholar
  512. Schmidt-Nielsen K, Fänge R (1958b) Salt glands in marine reptiles. Nature 182: 783Google Scholar
  513. Schmidt–Nielsen K, Jörgensen CB, Osaki H (1957) Secretion of hypertonic solutions in marine birds. Fed Proc 16:113–114Google Scholar
  514. Schmitt TL, Sur RG (2012) Treatment of ureteral calculus obstruction with laser lithotripsy in an Atlantic Bottlenose Dolphin (Tursiops truncatus). J Zoo Wildl Med 43:101–109Google Scholar
  515. Schönwetter M (1960) Handbuch der oologie. Akademie Verlag, BerlinGoogle Scholar
  516. Schreiber EA, Burger J (2001) Biology of marine birds. CRC Press, Boca RatonGoogle Scholar
  517. Schüler D (1999) Formation of magnetosomes in magnetotactic bacteria. J Mol Microbiol Biotechnol 1:79–86Google Scholar
  518. Schüler D (2006) Magnetoreception and magnetosomes in bacteria. (ed) Microbiology monographs, vol 3. Springer, HeidelbergGoogle Scholar
  519. Schüler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32(4):654–672Google Scholar
  520. Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180(1):159–162Google Scholar
  521. Schultze H–P (1969) Die faltenzähne der rhipidistiiden crossopterygier, der tetrapoden und der Actinopterygier–Gattung Lepisosteus; nebst einer beschreibung der zahnstruktur von onychodus (Struniiformer Crossopterygier). Palaeontograph Ital, New Series 35 65:63–137Google Scholar
  522. Schultze H–P (1970) Folded teeth and the monophyletic origin of tetrapods. Amer Mus 2408:1–10Google Scholar
  523. Scotti C, Tonnarelli B, Papadimitropoulos A et al (2010) Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci USA 107:7251–7256. Copyright (2010) National Academy of Sciences, USA. Reprinted with permissionGoogle Scholar
  524. Seitz JC (2011) Freshwater sawfish ichthyology at the Florida museum of natural history.
  525. Semm P, Beason RC (1990) Responses to small magnetic variations by the trigeminal system in bobolinks. Brain Res Bull 25:735–740Google Scholar
  526. Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 15:53–76Google Scholar
  527. Shellis RP, Berkovitz BKB (1980) Reprinted from Shellis RP and Berkovitz BKB (1980) Dentine structure in the rostral teeth of the sawfish Pristis (Elasmobranchii). Arch Oral Biol 25(5):339–343. Copyright © 1980, with permission from ElsevierGoogle Scholar
  528. Shoemaker VH, Nagy KA, Bradshaw SD (1972) Studies on the control of electrolyte excretion by the nasal gland of the lizard Dipsosaurus dorsalis. Comp Biochem Physiol 42A:749–757Google Scholar
  529. Shuttleworth TJ, Hildebrandt JP (1999) Vertebrate salt glands: short– and long–term regulation of function. J Exp Zool 283:689–701Google Scholar
  530. Silva P, Solomon RJ, Epstein FH (1990) Shark rectal gland. In: Fleischer S, Fleischer B (eds) Methods in enzymology, cellular and subcellular transport: epithelial cells. Academic, New YorkGoogle Scholar
  531. Silverman HB, Dunbar MJ (1980) Aggressive tusk use by the narwhal (Monodon monoceros L.). Nature 284:57–58Google Scholar
  532. Silyn-Roberts H, Sharp RM (1986) Crystal growth and the role of the organic network in eggshell biomineralization. Proc R Soc Lond B 227(1248):303–324. By permission of the Royal Society. Copyright © 1986, The Royal SocietyGoogle Scholar
  533. Simkiss K (1962) The sources of calcium for the ossification of the embryos of the giant leathery turtle. Comp Biochem Physiol 7:71–79Google Scholar
  534. Simkiss K, Wilbur KM (1989) Biomineralization, cell biology and mineral deposition. Academic, San DiegoGoogle Scholar
  535. Simpson JG, Gardner MB (1972) Comparative microscopic anatomy of selected marine mammals. In: Ridgway SH (ed) Mammals of the sea: biology and medicine. Charles C. Thomas Publisher, SpringfieldGoogle Scholar
  536. Sire J-Y (2001) Teeth outside the mouth in teleost fishes: how to benefit from a developmental accident. Evol Dev 3:104–108. Copyright © 2001 Wiley-Liss, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  537. Sire JY, Allizard F (2001) A fourth teleost lineage possessing extra–oral teeth: the genus atherion (teleostei; atheriniformes). Eur J Morphol 39(5):295–305Google Scholar
  538. Sire J–Y, Huysseune A (2003) Formation of dermal skeletal and dental tissues in fish: a comparative and evolutionary approach. Biol Rev Camb Philos Soc 78:219–249Google Scholar
  539. Skiles DD (1985) The geomagnetic field: its nature, history, and biological relevance. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum Press, New YorkGoogle Scholar
  540. Skinner HCW (2000) Minerals and human health, in EMU Notesin mineralogy. In: Varughan DJ, Wogelius RA (eds) Environmental mineralogy, vol 2. Eotvos University Press, BudapestGoogle Scholar
  541. Skoog T, Johanason SH (1976) The formation of articular cartilage from free perichondrial grafts. Plast Reconstr Surg 57:1–6Google Scholar
  542. Smith LH (1982) Abnormal mineralization. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, New YorkGoogle Scholar
  543. Sollner C, Burghammer M, Busch–Nentwich E et al (2003) Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302:282–286Google Scholar
  544. Solomon SE, Baird T (1976) Studies on the egg shell (oviducal and oviposited) of Chelonia mydas L. J Exp Mar Biol Ecol 22:145–160Google Scholar
  545. Solomon SE, Baird T (1977) Studies on the soft shell membranes of the egg shell of Chelonia mydas L. J Exp Mar Biol Ecol 27:83–92Google Scholar
  546. Solomon SE, Baird T (1980) The effect of fungal penetration on the eggshell of the green turtle. In: Brederoo P, de Priester W (eds) Proceedings of the seventh European congress on electron microscopy. Seventh European Congress on Electron Microscopy Foundation, Leiden, pp 434–435Google Scholar
  547. Solomon SE, Gain M (1996) The normal eggshell. In: Proceedings of the national breeders roundtable, pp 42–53. Copyright (c) 1996, Poultry Science Association, Inc. Reprinted with permissionGoogle Scholar
  548. Solomon SE, Watt JM (1985) The structure of the egg shell of the latherback turtle (Dermochelys coriacea). Anim Technol 36:19–27Google Scholar
  549. Soukup V et al (2008) Reprinted by permission from Macmillan Publishers Ltd: Nature, Soukup V, Epperlein H-H, Horácek I, Cerny R (2008) Dual epithelial origin of vertebrate oral teeth. Nature 455:795–798. Copyright (2008)Google Scholar
  550. Stewart C (1903–1906) On the membranous labyrinths of Echinorchinus, Cestracion and Rhina. J Linn Soc Zool 29:439–442Google Scholar
  551. Stewart JR (1997) Morphology and evolution of the egg of oviparous amniotes. In: Sumida SS, Martin KLM (eds) Amniote origins: completing the transition to land. Academic, San DiegoGoogle Scholar
  552. Stonehouse B (1975) The biology of penguins. MacMillan, London/Basingstone. Copyright (c) 1975, Palgrave Macmillan. Reprinted with permissionGoogle Scholar
  553. Stroud RK (1979) Nephrolithiasis in a harbor seal. J Am Vet Med Assoc 175:924–925Google Scholar
  554. Studnicka FK (1912) Die otoconien, otolithen und cupulae terminalis urn gehörorgan von ainmocoetes und von petromyzon. Anal Anz 42:529–562Google Scholar
  555. Suepaul RB, Alley MR, van Rensburg MJ (2010) Salt gland adenitis associated with bacteria in blue penguins (Eudyptula minor) from hauraki gulf (Auckland, New Zealand). J Wildl Dis Jan 46(1):46–54. Copyright © 2010, Wildlife Disease Association. Reprinted with permissionGoogle Scholar
  556. Taplin LE, Grigg GC (1981) Salt glands in the tongue of the estuarine crocodile Crocodylus porosus. Science 212:1045–1047Google Scholar
  557. Taplin LE, Grigg GC, Harlow P et al (1982) Lingual salt glands in Crocodylus acutus and C. johnstoni and their absence from Alligator mississippiensis and Caiman crocodilus. J Comp Physiol 149:43–47Google Scholar
  558. Tarlo LBH (1963) Aspidin; the precursor of bone. Nature 199:46–48Google Scholar
  559. Taub AM, Dunson WA (1967) The salt gland in a Sea Snake (Laticauda). Nature 215:995–996Google Scholar
  560. Taylor MA (2000) Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol: An Int J Paleobiol 14(1–2):15–31. Reprinted by permission of Taylor & Francis Ltd,
  561. Thalmann R, Ignatova E, Kachar B et al (2001) Development and maintenance of otoconia: biochemical considerations. Ann NY Acad Sci 942:162–178Google Scholar
  562. Tian L, Xiao B, Lin W et al (2007) Testing for the presence of magnetite in the upper–beak skin of homing pigeons. Biometals 20:197–203Google Scholar
  563. Tohse H, Takagi Y, Nagasawa H (2008) Identification of a novel matrix protein contained in a protein aggregate associated with collagen in fish otoliths. FEBS J 275:2512–2523Google Scholar
  564. Tont SA, Pearcy WG, Arnold JS (1977) Bone structure of some marine vertebrates. Mar Biol 39:191–196Google Scholar
  565. Townsend DW (1980) Microstructural growth increments in some Antarctic fish otoliths. Cybium 3e Ser 8:17–23Google Scholar
  566. Townsend FI, Ringway S (1995) Kidney stones in Atlantic bottlenose dolphins (Tursiops truncatus): composition, diagnosis and therapeutic strategies. Proc Int Assoc Aquat Anim Med 26:2–3Google Scholar
  567. Traub W, Arad T, Weiner S (1992) Growth of mineral crystals in turkey tendon collagen fibers. Connect Tissue Res 28(1–2):99–111Google Scholar
  568. Treiber CD et al (2012) Reprinted by permission from Macmillan Publishers Ltd: Nature. Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484(7394):367–370. Copyright (2012)Google Scholar
  569. Tricas TC, McCosker JE, Walker TI (1997) Sharks field guide. In: Taylor LR (ed) Sharks and rays. Harper Collins, LondonGoogle Scholar
  570. Tsukrov I, DeCew JC, Baldwin K, Campbell-Malone R, Moore MJ (2009) Mechanics of the right whale mandible: full scale testing and finite element analysis. J Exp Mar Biol Ecol 374:93–103Google Scholar
  571. Tucker A, Sharpe P (2004) The cutting–edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508Google Scholar
  572. Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446. Copyright © 2006, John Wiley and Sons. Reproduced with permissionGoogle Scholar
  573. Turner–Walker G (2012) The removal of fatty residues from a collection of historic whale skeletons in Bergen: an aqueous approach to degreasing.…/G.%20Turner-Walker
  574. Tuset VM, Lombarte A, Assis CA (2003) Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina 72S1:7–198Google Scholar
  575. Tyack PL, Johnson M, Aguilar Soto N et al (2006) Extreme diving of beaked whales. J Exp Biol 209:4238–4253Google Scholar
  576. Tyler C (1964) Wilhelm von Nathusius 1821–1899 on the avian egg–shells. The Berkshire Printing Co. Ltd., ReadingGoogle Scholar
  577. Ueda K, Maeda Y, Koyama M et al (1986) Magnetic remanences in salmonid fish. Bull Jpn Soc Sci Fish 52:166–170Google Scholar
  578. Uehara K et al (1983) With kind permission from Springer Science + Business Media: Uehara K, Miyoshi S, Toh H (1983) Fine structure of the horny teeth of the lamprey, Entosphenus japonicas. Cell Tissue Res 231(1):1–15. Copyright (c) 1983, SpringerGoogle Scholar
  579. Uhen MD (2010) The origin(s) of whales. Annu Rev Earth Planet Sci 38:189–219Google Scholar
  580. Unwin DM, Deeming DC (2008) Pterosaur eggshell structure and its implications for pterosaur reproductive biology. Zitteliana B 28:199–207Google Scholar
  581. Van Bressem MF, Van Waerebeek K, Siebert U et al (2000) Genital diseases in the peruvian dusky dolphin (Lagenorhynchus obscurus). Comp Pathol 122(4):266–277Google Scholar
  582. Venn–Watson S, Smith CR, Johnson S et al (2010a) Clinical relevance of urate nephrolithiasis in bottlenose dolphins Tursiops truncatus. Dis Aquat Organ 89(2):167–177Google Scholar
  583. Venn–Watson SK, Townsend FI, Daniels RL et al (2010b) Hypocitraturia in common Bottlenose Dolphins (Tursiops truncatus): assessing a potential risk factor for urate nephrolithiasis. Comp Med 60:149–153Google Scholar
  584. Verpy E, Leibovici M, Petit C (1999) Characterization of otoconin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biominerals. Proc Natl Acad Sci USA 96:529–534Google Scholar
  585. Vickaryous MK, Hall BK (2008) Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. J Morphol 269:398–422. Copyright © 2007 Wiley-Liss, Inc., A Wiley Company. Reprinted with permissionGoogle Scholar
  586. Vignieri S (2012) Republished with permission of AAAS, from Vignieri S (2012) Magnetic sense. Neurosci Sci Signal 5(226):ec153; permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  587. Viguier C (1882) Le sens d’orientation et ses organes chez les animaux et chez l’homme. Rev Phil France et de l’E′ tranger 14:1–36Google Scholar
  588. Vilches-Troya J, Dunn RF, O’Leary DP (1984) Relationship of the vestibular hair cells to magnetic particles in the otolith of the guitarfish sacculus. J Comput Neurol 226(4):489–494. Copyright © 1984 Alan R. Liss, IncGoogle Scholar
  589. Vilstrup T (1951) Structure and function of the membranous sacs of the labyrinth in acanthias vulgaris. Ejnar Munksgaard, CopenhagenGoogle Scholar
  590. von Baer KE (1837) Anatomische und zoologische Untersuchungen über das Walross (Trichenus rosmarus) und Vergleichung dieses Thiers mit andern See–Säugethieren. Mém de l’Acad Impér des Sciences de Saint–Pétersbourg, 6th sér. Sci Math Phys et Nat 4:96–236Google Scholar
  591. von Schreiber JCD (1774) Die Säugethiere in Abbildungen nach der Natur. Wolfgang Walther, Erlangen, pp 1775–1855Google Scholar
  592. Walcott C (1978) Annomalies in the earth’s magnetic field increase the scatter of pigeon’s vanishing bearings. In: Schmidt–König K, Keeton WTZ (eds) Animal migration, navigation, and homing. Springer, BerlinGoogle Scholar
  593. Walcott C, Green RP (1974) Orientation of homing pigeons altered by a change in the direction of the applied magnetic field. Science 184:180–182Google Scholar
  594. Walker MM (1998) On a wing and a vector: a model for magnetic field navigation by homing pigeons. J Theor Biol 192:341–349Google Scholar
  595. Walker MM, Kirschvink JL, Chang SBR et al (1984) A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares. Science 224:751–753Google Scholar
  596. Walker MM et al (1988) Republished with permission of The Company of Biologists Ltd, from Walker MM, Quinn TP, Kirschvink JL, Groot C (1988) Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka. J Exp Biol 140:51–63. Copyright (1988); permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  597. Walker MM et al (1992) Republished with permission of The Company of Biologists Ltd, from Walker MM, Kirschvink JL, Ahmed G, Dizon AE (1992) Evidence that fin whales respond to the geomagnetic field during migration. J Exp Biol 171:67–78. Copyright (1992); permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  598. Walker CE, Diebel CV, Haugh PM et al (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376Google Scholar
  599. Walker MM, Dennis TE, Kirschvink JL (2002) The magnetic sense and its use in long–distance navigation by animals. Curr Opin Neurobiol 12:735–744Google Scholar
  600. Walker MM et al (2007) Reprinted from Walker MM, Diebel CE, Kirschvink JL (2007) Magnetoreception In: Hara TJ, Zielinski B (eds) Sensory systems neuroscience. Fish physiology series, vol 25, pp 523. Elsevier Academic, Amsterdam, p. 369. Copyright (2007), with permission from ElsevierGoogle Scholar
  601. Walsh MT, Murru FL (1987) Urogenital sinus calculi in a Sand Tiger Shark (Odontaspis taurus). J Wildl Dis 23(3):428–431Google Scholar
  602. Wang Y, Kowalski PE, I T et al (1998) Otoconin–90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2. Proc Natl Acad Sci USA 95:15345–15350Google Scholar
  603. Wangkulangkul S, Thirakhupt K, Chantrapornsyl S (2000) Comparative study of eggshell morphology in wild and captive Olive ridley turtles Lepidochelys olivacea at Phuket, Thailand. In: Pilcher N, Ismail G (eds) Sea turtles of the Indo–Pacific: research, management and conservation. Asean Academic Press, LondonGoogle Scholar
  604. Warren AA, Davey L (1992) Folded teeth in temnospondyls—a preliminary study, Alcheringa. Aust J Palaeontol 16:107–132Google Scholar
  605. Warren A, Turner S (2006) Tooth histology patterns in early tetrapods and the presence of “dark dentine”. Trans R Soc Edinb Earth Sci 96:113–130Google Scholar
  606. Wei JD, Knittel I, Lang C et al (2011) Magnetic properties of single biogenic magnetite nanoparticles. J Nanopart Res 13(8):3345–3352Google Scholar
  607. Weiner S, Wagner H (1998) The material bone: structure mechanical function relations. Annu Rev Mater Sci 28(1):271–298Google Scholar
  608. Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255Google Scholar
  609. Weisburd S (1984) Whales and dolphins use magnetic ‘roads’. Sci News 126:389Google Scholar
  610. Wesson JA, Ward MD (2007) Pathological biomineralization of kidney stones. Elements 3:415–421Google Scholar
  611. Whitenack LB (2008) The biomechanics and evolution of shark teeth. PhD thesis, University of South Florida, Tampa, FL. Copyright © 2008, Whitenack LB. Reprinted with permissionGoogle Scholar
  612. Whitenack LB, Motta PJ (2010) Performance of shark teeth during puncture and draw: implications for the mechanics of cutting. Biol J Linn Soc 100:271–286. Copyright © 2010 The Linnean Society of London. Reprinted with permissionGoogle Scholar
  613. Whitenack LB et al (2010) Reprinted from Whitenack LB, Simkins Jr. DC, Motta PJ, Hirai M, Kumar A (2010) Young’s modulus and hardness of shark tooth biomaterials. Arch Oral Biol 55(3):203–209. Copyright © 2010, with permission from ElsevierGoogle Scholar
  614. Whitenack LB, Simkins DC, Motta PJ (2011) Biology meets engineering: the structural mechanics of fossil and extant shark teeth. J Morphol 272:169–179. Copyright © 2011 Wiley-Liss, IncGoogle Scholar
  615. Whitfield TT, Riley BB, Chiang MY, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 223:427–458Google Scholar
  616. Wicke B (1863) Chemisch–physiologische Notizen. Ann Chem Pharm 125:78–80Google Scholar
  617. Wiley TR, Simpfendorfer CA, Faria VV et al (2008) Range, sexual dimorphism and bilateral asymmetry of rostral tooth counts in the smalltooth sawfish Pristis pectinata Latham (Chondrichthyes: Pristidae) of the southeastern United States. Zootaxa 1810:51–59Google Scholar
  618. Wilson DE, Reeder DM (eds) (2005) Mammal species of the world. A taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  619. Wilson LE, Chin K, Jackson FD, Bray ES (2014) “I. Introduction to eggshells” Fossil eggshell: fragments from the past. Published on-line: Accessed 15 May 2014. Copyright © 2014, by the Regents of the University of California. Reprinted with permission
  620. Wiltschko W, Wiltschko R (1972) Magnetic compass of european robins. Science 205:1027–1029Google Scholar
  621. Wiltschko W, Wiltschko R (1981) Disorientation of inexperienced young pigeons after transportation in total darkness. Nature 291:433–434Google Scholar
  622. Wiltschko W, Wiltschko R (1988) Magnetic orientation in birds. In: Johnston RF (ed) Current ornithology. Plenum Press, New YorkGoogle Scholar
  623. Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Zoophysiology. Springer, BerlinGoogle Scholar
  624. Wiltschko W, Munro U, Wiltschko R et al (2002) Magnetite–based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behaviour. J Exp Biol 205:3031–3037Google Scholar
  625. Wiltschko W, Munro U, Ford H et al (2009) Avian orientation:the pulse effect is mediated by the magnetite receptors in the upper beak. Proc Biol Sci 276:2227–2232Google Scholar
  626. Winkler JD (2006) Testing phylogenetic implications of eggshell characters in side–necked turtles (Testudines: Pleurodira). Zoology (Jena) 109(2):127–136Google Scholar
  627. Winklhofer M, Holtkamp–Rötzler E, Hanzlik M et al (2001) Clusters of superparamagnetic magnetite particles in the upper–beak skin of homing pigeons:evidence of a magnetoreceptor? Eur J Mineral 13:659–669Google Scholar
  628. Witzmann F (2009) Comparative histology of sculptured dermal bones in basal tetrapods, and the implications for the soft tissue dermis. Palaeodiversity 2:233–270Google Scholar
  629. Wongdee K, Krishnamra N, Charoenphandhu N (2012) Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related? J Physiol Sci 62(4):299–307Google Scholar
  630. Woo SL, Kwan MK, Lee TQ et al (1987) Perichondrial autograft for articular cartilage. Acta Orthop Scand 58:510–515Google Scholar
  631. Woodall PF (1984) The structure and some functional aspects of the eggshell of the broad–shelled river tortoise Chelodinia expansa (Testudinata: Chelidae). Aust J Zool 32:7–14Google Scholar
  632. Woodhouse CD, Rennie CJ (1991) Observations of vaginal calculi in dolphins. J Wildl Dis 27:421–427Google Scholar
  633. Wroe S, Huber DR, Lowry M, McHenry C, Moreno K, Clausen P, Ferrara TL, Cunningham E, Dean MN, Summers AP (2008) Three-dimensional computer analysis of white shark jaw mechanics: how hard can a great white bite? J Zool 276:336–342. © 2008 The Authors. Journal compilation © 2008 The Zoological Society of LondonGoogle Scholar
  634. Wu LQ, Dickman JD (2012) Neural correlates of a magnetic sense. Science 336:1054–1057Google Scholar
  635. Wyeth RC (2010) Should animals navigating over short distances switch to a magnetic compass sense? Front Behav Neurosci 4:42–46Google Scholar
  636. Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YW (2010) Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 239:2659–2673. © 2010 Wiley-Liss, IncGoogle Scholar
  637. Yano A, Ogura M, Sato A et al (1997) Effect of modified magnetic field on the ocean migration of maturing chum salmon, Oncorhynchus keta. Mar Biol 129:523–530Google Scholar
  638. Yaoi Y, Kikuyama S, Hayashi H et al (2001) Immunocytochemical localization of secretory phospholipase A(2)-like protein in the pituitary gland and surrounding tissue of the bullfrog, Rana catesbeiana. J Histochem Cytochem 49:631–637Google Scholar
  639. Young JD (1950) The structure and some physical properties of the testudinian egg shell. Proc Zool Soc Lond 120:455–469Google Scholar
  640. Young GC (2008) With kind permission from Springer Science + Business Media: Young GC (2008) Early evolution of the vertebrate eye—fossil evidence. Evol Educ Outreach 1(4):427–438. Copyright © 2008, Springer Science + Business Media, LLCGoogle Scholar
  641. Yuki M, Sugimoto N, Takahashi K et al (2006) Enterolithiasis in a cat. J Fel Med Surg 8:349–352Google Scholar
  642. Zangerl R (1981) Handbook of paleoichthyology. Chondrichthyes I: paleozoic elasmobranchii. Gustav Fischer Verlag, Stuttgart/New YorkGoogle Scholar
  643. Zangerl R, Winter HF, Hansen MC (1993) Comparative microscopic dental anatomy in the Petalodontida (Chondrichthyes, Elasmobranchii). Fieldiana Geol Ser 26:1–43Google Scholar
  644. Zaslansky P (2008) Dentin. In: Fratzl P (ed) Collagen: structure and mechanics. Springer, New YorkGoogle Scholar
  645. Zeidel JD, Mathai JC, Campbell JD, Ruiz WG, Apodaca GL, Riordan J, Zeidel ML (2005) Selective permeability barrier to urea in shark rectal gland. Am J Physiol-Renal Physiol 289:F83–F89. ©The American Physiological Society (APS). Reprinted with permissionGoogle Scholar
  646. Zerbini AN, Cesar M, Santos O (1997) First record of the pygmy killer whale Feresa attenuate (Gray, 1874) for the Brazilian coast. Aquat Mamm 23(2):105–109Google Scholar
  647. Zhang Z, Zhang YW, Gao H (2011) On optimal hierarchy of load–bearing biological materials. Proc R Soc B 278:519–525Google Scholar
  648. Zhao X, Yang H, Yamoah EN, Lundberg YW (2007) Gene targeting reveals the role of Oc90 as the essential organizer of the otoconial organic matrix. Dev Biol 304:508–524Google Scholar
  649. Zhao X, Jones SM, Yamoah EN, Lundberg YW (2008) Otoconin–90 deletion leads to imbalance but normal hearing: a comparison with other otoconia mutants. Neuroscience 153:289–299Google Scholar
  650. Zioupos P (2005) In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix. Eur J Morphol 42(1/2):31–41Google Scholar
  651. Zioupos P, Currey JD (1996) Pre–failure toughening mechanisms in the dentine of the narwhal tusk: microscopic examination of stress/strain induced microcracking. J Mater Sci Lett 15:991–994Google Scholar
  652. Zioupos P, Currey JD, Casinos A et al (1997) Mechanical properties of the rostrum of the whale Mesoplodon densirostris, a remarkably dense bony tissue. J Zool Lond 241:725–737Google Scholar
  653. Zustin et al (2010) Reprinted from Am J Pathol 177(3): Zustin J, Akpalo H, Gambarotti M et al (2010) Phenotypic diversity in chondromyxoid fibroma reveals differentiation pattern of tumor mimicking fetal cartilage canals development. Am J Pathol 177(3):1072–1078. Copyright (2010), with permission from American Society for Investigative Pathology. Published by Elsevier IncGoogle Scholar
  654. Zylberberg et al (1998) Reprinted from Zylberberg L, Traub W, de Buffrenil V, Allizard F, Arad T, Weiner S (1998) Rostrum of a toothed whale: ultrastructural study of a very dense bone. Bone 23(3):241–247. Copyright (1998), with permission from ElsevierGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Experimental PhysicsTU Bergakademie FreibergFreibergGermany

Personalised recommendations