Advertisement

Marine Keratins

  • Hermann Ehrlich
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 4)

Abstract

Keratins represent the largest subgroup among all intermediate filament proteins. These structural proteins are mechanically robust and chemically unreactive. This is due to tight packing of protein chains in the form of alpha-helices or β-sheets into supercoiled polypeptide chains crosslinked with disulphide bonds. This chapter is dedicated to keratins of marine fish, birds, reptilian and mammalian origin. Keratin-like biological materials from hagfish slime are also discussed.

Keywords

Intermediate Filament Marine Turtle Gray Whale Feather Keratin Intermediate Filament Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aebi U, Haner M, Engel A (1988) Unifying principles in intermediate filament (IF) structure and assembly. Protoplasma 145:73–81CrossRefGoogle Scholar
  2. Alexander NJ (1970) Comparison of alpha and beta keratin in reptiles. Z Zellforsch Mikrosk Anat 110(2):153–165Google Scholar
  3. Alibardi L (2002) Immunocytochemical observations on the cornification of soft and hard epidermis in the turtle Chrysemys picta. Zoology (Jena) 105:31–44CrossRefGoogle Scholar
  4. Alibardi L (2005) Proliferation in the epidermis of chelonians and growth of the horny scutes. J Morphol 265:52–69CrossRefGoogle Scholar
  5. Alibardi L (2006) Ultrastructural and immunohistochemical observations on the process of horny growth in chelonian shells. Acta Histochem 108:149–162CrossRefGoogle Scholar
  6. Alibardi L, Toni M (2006) Immunolocalization and characterization of beta–keratins in growing epidermis of chelonians. Tissue Cell 38:53–63CrossRefGoogle Scholar
  7. Alibardi L, Toni M (2007a) Immunological characterization of a newly developed antibody for localization of a beta–keratin in turtle epidermis. J Exp Zool 308B:200–208CrossRefGoogle Scholar
  8. Alibardi L, Toni M (2007b) Reprinted from Alibardi L, Toni M (2007b) Characterization of keratins and associated proteins involved in the corneification of crocodilian epidermis. Tissue Cell 39(5):311–323. Copyright © 2007, with permission from ElsevierGoogle Scholar
  9. Alibardi L, Toni M (2007c) Beta–keratins of reptrilian scales share a central amino–acid sequence termed core–box. Res J Biol Sci 2(3):329–339Google Scholar
  10. Alibardi L, Spisni E, Toni M (2004) Differentiation of the epidermis in turtle: an immunocytochemical, autoradiographic and electrophoretic analysis. Acta Histochem 106(5):379–395CrossRefGoogle Scholar
  11. Arora R, Bhatia S, Sehrawat A et al (2008) Genetic polymorphism of type 1 intermediate filament wool keratin gene in native Indian sheep breeds. Biochem Genet 46(9–10):549–556CrossRefGoogle Scholar
  12. Bawden CS, McLaughlan C, Nesci A et al (2001) A unique type I keratin intermediate filament gene family is abundantly expressed in the inner root sheaths of sheep and human hair follicles. J Invest Dermatol 116:157–166CrossRefGoogle Scholar
  13. Blackstad TW (1963) The skin and the slime gland. In: Brodal A, Fänge R (eds) The biology of myxine. Universitetsforlaget, OsloGoogle Scholar
  14. Block RJ (1951) Chemical classification of keratins. Ann N Y Acad Sci 53:608–612CrossRefGoogle Scholar
  15. Bonser RHC (1996) The mechanical properties of feather keratin. J Zool (Lond) 239:477–484CrossRefGoogle Scholar
  16. Bonser RHC (2001) The mechanical performance of medullary foam from feathers. J Mater Sci Lett 20:941–942CrossRefGoogle Scholar
  17. Bonser RHC, Purslow PP (1995) The Young’s modulus of feather keratin. J Exp Biol 198:1029–1033Google Scholar
  18. Bonser RHC, Saker L, Jeronimidis G (2004) Toughness anisotropy of feather keratin. J Mater Sci 39:2895–2896CrossRefGoogle Scholar
  19. Bousquet O, Ma L, Yamada S et al (2001) The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro. J Cell Biol 155:747–754CrossRefGoogle Scholar
  20. Braun C, Northcutt RG (1998) Cutaneous exteroreceptors and their innervation in hagfishes. In: Jorgensen L, Weber M (eds) The biology of hagfishes. Chapman & Hall, LondonGoogle Scholar
  21. Brenner L, Squires PL, Garry M et al (1985) A measurement of human hair oxidation by Fourier transform infrared spectroscopy. J Forensic Sci 30:420–426Google Scholar
  22. Brodie P, Vikingsson G (2009) On the feeding mechanisms of the Sei Whale (Balaenoptera borealis). J Northwest Atl Fish Sci 42:49–54CrossRefGoogle Scholar
  23. Cameron GJ, Wess TJ, Bonser RHC (2003) Young’s modulus varies with differential orientation of keratin in feathers. J Struct Biol 143:118–123CrossRefGoogle Scholar
  24. Clarke JA, Ksepka DT, Salas–Gismondi R et al (2010) Fossil evidence for evolution of the shape and color of penguin feathers. Science 330:954–957CrossRefGoogle Scholar
  25. Coulombe PA, Omary MB (2002) ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14(1):110–122CrossRefGoogle Scholar
  26. Coulombe PA, Tong X, Mazzalupo S et al (2004) Great promises yet to be fulfilled: defining keratin intermediate filament function in vivo. Eur J Cell Biol 83(11–12):735–746CrossRefGoogle Scholar
  27. Cousteau JY, Paccalet Y (1988) Whales. H.N. Abrams, New YorkGoogle Scholar
  28. Crewther WG, Fraser RDB, Lennox FG et al (1965) The chemistry of keratins. In: Anfinsen CB, Anson ML, Edsall JT, Richards FM (eds) Advances in protein chemistry. Academic, New YorkGoogle Scholar
  29. Crick FHC (1952) Is alpha–keratin a coiled coil? Nature 170:882–883CrossRefGoogle Scholar
  30. Crystall B (2000) Monstrous mucus. New Sci 2229:38–41Google Scholar
  31. D’Alba L, Saranathan V, Clarke JA et al (2011) Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers. Biol Lett 7(4):543–546, rsbl20101163, by permission of the Royal Society. Copyright © 2011, The Royal SocietyCrossRefGoogle Scholar
  32. D’Alba L, Kieffer L, Shawkey MD (2012) Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers. J Exp Biol 215(Pt 8):1272–1277CrossRefGoogle Scholar
  33. Dalla Valle L, Nardi A, Gelmi C et al (2009a) Beta–keratins of the crocodilian epidermis: composition, structure, and phylogenetic relationships. J Exp Zool B Mol Dev Evol 312(1):42–57CrossRefGoogle Scholar
  34. Dalla Valle L, Nardi A, Toni M et al (2009b) Beta–keratins of turtle shell are glycine–proline–tyrosine rich proteins similar to those of crocodilians and birds. J Anat 214(2):284–300CrossRefGoogle Scholar
  35. Deméré TA, McGowen MR, Berta A et al (2008) Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 57(1):15–37, by permission of Oxford University PressCrossRefGoogle Scholar
  36. Dobb MG, Rogers GE (1967) Electron microscopy of fibrous keratins. Symposium on fibrous proteins 1:267–278Google Scholar
  37. Downing SW, Salo WL, Spitzer RH, Koch EA (1981a) The hagfish slime gland: a model system for studying the biology of mucus. Science 214:1143–1145CrossRefGoogle Scholar
  38. Downing SW, Spitzer RH, Salo WL et al (1981b) Hagfish slime gland thread cells: organization, biochemical features, and length. Science 212:326–328CrossRefGoogle Scholar
  39. Downing SW, Spitzer RH, Koch EA et al (1984) The hagfish slime gland thread cell. I. A unique cellular system for the study of intermediate filaments and intermediate filament–microtubule interactions. J Cell Biol 98:653–669CrossRefGoogle Scholar
  40. Eliason CM, Shawkey MD (2012) A photonic heterostructure produces diverse iridescent colours in duck wing patches. J R Soc Interface 9(74):2279–2289, by permission of the Royal Society. Copyright © 2011, The Royal SocietyCrossRefGoogle Scholar
  41. Er Rafik M, Briki F, Burghammer M et al (2006) In vivo formation of the hard alpha–keratin intermediate filament along a hair follicle: evidence for structural polymorphism. J Struct Biol 154:79–88CrossRefGoogle Scholar
  42. Eschricht DF, Reinhardt J (1866) Recent memoirs on the cetacean. In: Flower WH (ed) On the greenland right whale. The Ray Soc, LondonGoogle Scholar
  43. Ewoldt RH et al (2011) Reprinted from Ewoldt RH, Winegard TM, Fudge DS (2011) Non-linear viscoelasticity of hagfish slime. Int J Non-Linear Mech: Special issue on non-linear mechanics of biological structures 46(4):627–636. Copyright (2011), with permission from ElsevierGoogle Scholar
  44. Fan WJW (1965) The fine structure of thread cell differentiation in the slime glands of the Pacific hagfish, Polistrotrema stouti. Anat Rec 151:348Google Scholar
  45. Fernholm B (1981) Thread cells from the slime glands of hagfish (Myxinidae). Acta Zool 62:137–145CrossRefGoogle Scholar
  46. Ferry JD (1941) A fibrous protein from the slime of the hagfish. J Biol Chem 138:263–268. Copyright © 1941, by the American Society for Biochemistry and Molecular BiologyGoogle Scholar
  47. Flitney EW, Kuczmarski ER, Adam SA et al (2009) Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments. FASEB J 23:2110–2119CrossRefGoogle Scholar
  48. Flower WH (1883) On whales, past and present, and their probable origin. Nature 28:199–202Google Scholar
  49. Fraser RDB, Parry DAD (2008) Molecular packing in the feather keratin filament. J Struct Biol 162:1–13CrossRefGoogle Scholar
  50. Fraser RD, Parry DA (2011) The structural basis of the filament–matrix texture in the avian/reptilian group of hard β–keratins. J Struct Biol 173(2):391–405CrossRefGoogle Scholar
  51. Fraser RDB, MacRae TP, Rogers GE (1972) Keratins: their composition, structure and biosynthesis. Charles C Thomas, SpringfieldGoogle Scholar
  52. Freeburg WE, Brault S, Mayo C et al (2009) Whale baleen trace element signatures: a predictor of environmental life history? American Geophysical Union, Fall Meeting 2009, abstract Nr. B32B–05Google Scholar
  53. Fudge DS (2001) Hagfishes: champions of slime. Nat Aust 27:60–69Google Scholar
  54. Fudge DS, Gosline JM (2004) Molecular design of the alpha–keratin composite: insights from a matrix–free model, hagfish slime threads. Proc Biol Sci 271:291–299CrossRefGoogle Scholar
  55. Fudge DS, Gardner KH, Forsyth VT et al (2003) The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys J 85:2015–2027CrossRefGoogle Scholar
  56. Fudge DS, Levy N, Chiu S et al (2005) Composition, morphology and mechanics of hagfish slime. J Exp Biol 208:4613–4625CrossRefGoogle Scholar
  57. Fudge DS, Szewciw LJ, Schwalb AN (2009a) Morphology and development of blue whale baleen: an annotated translation of Tycho Tullberg’s classic 1883 paper. Aquat Mamm 35:226–252CrossRefGoogle Scholar
  58. Fudge DS, Winegard T, Ewoldt RH et al (2009b) From ultra-soft slime to hard α-keratins: the many lives of intermediate filaments. Integr Comp Biol 49(1):32–39, by permission of Oxford University Press. Copyright © 2009, Oxford University Press. ReprintedCrossRefGoogle Scholar
  59. Fudge et al (2010) Hagfish slime threads as a biomimetic model for high performance protein fibres. Bioinspir Biomim 5:035002. doi: 10.1088/1748-3182/5/3/035002. Copyright © 2014 IOP Publishing. Reproduced with permission. All rights reservedCrossRefGoogle Scholar
  60. Gaskin DE (1982) The ecology of whales and dolphins. Heinemann, PortsmouthGoogle Scholar
  61. Glotzer M (2009) The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10:9–20CrossRefGoogle Scholar
  62. Goddard DR, Michaelis L (1935) Derivatives of keratin. J Biol Chem 112:361–371Google Scholar
  63. Gu LH, Coulombe PA (2007) Keratin function in skin epithelia: a broadening palette with surprising shades. Curr Opin Cell Biol 19(1):13–23CrossRefGoogle Scholar
  64. Halstead LB (1974) Vertebrate hard tissues. Wykeham Publications, LondonGoogle Scholar
  65. Hearle JWS (2008) An alternative model for the structural mechanics of hagfish slime threads. Int J Biol Macromol 42:420–428CrossRefGoogle Scholar
  66. Herr JE et al (2010) Republished with permission of The Company of Biologists Ltd., from Herr JE, Winegard TM, O’Donnell MJ et al (2010) Stabilization and swelling of hagfish slime mucin vesicles. J Exp Biol 213:1092–1099. doi: 10.1242/jeb.038992. © 2010. Published by The Company of Biologists Ltd.; permission conveyed through Copyright Clearance Center, Inc.
  67. Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73:749–789CrossRefGoogle Scholar
  68. Herrmann H, Kreplak L, Aebi U (2004) Isolation, characterization, and in vitro assembly of intermediate filaments. Methods Cell Biol 78:3–24CrossRefGoogle Scholar
  69. Herrmann H, Bar H, Kreplak L et al (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573CrossRefGoogle Scholar
  70. Herrmann H, Strelkov SV, Burkhard P et al (2009) Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119:1772–1783CrossRefGoogle Scholar
  71. Hesse M, Magin TM, Weber K (2001) Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 114:2569–2575Google Scholar
  72. Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31:585–593CrossRefGoogle Scholar
  73. Hobson KA, Schell DM (1998) Stable carbon and nitrogen isotope patterns in baleen from eastern Arctic bowhead whales (Balaena mysticetus). Can J Fish Aquat Sci 55(12):2601–2607CrossRefGoogle Scholar
  74. Hobson KA, Riget FF, Outridge PM et al (2004) Baleen as a biomonitor of mercury content and dietary history of North Atlantic Minke Whales (Balaenopetra acutorostrata): combining elemental and stable isotope approaches. Sci Total Environ 331:69–82CrossRefGoogle Scholar
  75. Hunter J (1787) Observations on the structure and oeconomy of whales. Phil Trans R Soc 77:371–450CrossRefGoogle Scholar
  76. Karantza V (2011) Reprinted by permission from Macmillan Publishers Ltd: Oncogene, Karantza V (2011) Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30(2):127–138. Copyright © 2011, Rights Managed by Nature Publishing GroupGoogle Scholar
  77. Kasuya T, Rice DW (1970) Notes on baleen plates and on arrangement of parasitic barnacles of gray whale. Sci Rep Whales Res Inst 22:39–43Google Scholar
  78. Kim JS, Lee CH, Coulombe PA (2010) Modeling the self–organization property of keratin intermediate filaments. Biophys J 99(9):2748–2756CrossRefGoogle Scholar
  79. Kimura T, Ozawa T (1997) Sample preparation and analysis of mitochondrial DNA from whale baleen plates. Mar Mamm Sci 13(3):495–498CrossRefGoogle Scholar
  80. Kirfel J, Magin TM, Reichelt J (2003) Keratins: a structural scaffold with emerging functions. Cell Mol Life Sci 60(1):56–71CrossRefGoogle Scholar
  81. Kirkbride KP, Tungol MW (1999) Infrared microspectroscopy of fibers. In: Robertson J, Grieve M (eds) Forensic examination of fibers, 2nd edn. Taylor & Francis Inc., Philadelphia, pp 179–222Google Scholar
  82. Kjeld M (2003) Salt and water balance of modern baleen whales: rate of urine production and food intake. Can J Zool 81(4):606–616. © 2003 Canadian Science Publishing or its licensors. Reproduced with permissionCrossRefGoogle Scholar
  83. Koch EA, Spitzer RH, Pithawalla RB et al (1991) Keratin–like components of gland thread cells modulate the properties of mucus from hagfish (Eptatretus stouti). Cell Tissue Res 264:79–86CrossRefGoogle Scholar
  84. Koch EA, Spitzer RH, Pithawalla RB et al (1994) An unusual intermediate filament subunit from the cytoskeletal biopolymer released extracellularly into seawater by the primitive hagfish (Eptatretus stoutii). J Cell Sci 107:3133–3144Google Scholar
  85. Koch EA et al (1995) Reprinted from Koch EA, Spitzer RH, Pithawalla RB et al (1995) Hagfish biopolymer: a type I/type II homologue of epidermal keratin intermediate filaments. Int J Biol Macromol 17(5):283–292. Copyright © 1995, with permission from ElsevierGoogle Scholar
  86. Kölsch A et al (2010) Republished with permission of COMPANY OF BIOLOGISTS, from Kölsch A, Windoffer R, Würflinger T, Aach T, Leube RE (2010) The keratin-filament cycle of assembly and disassembly. J Cell Sci 123(Pt 13):2266–2272. Copyright (2010); permission conveyed through Copyright Clearance Center, Inc.Google Scholar
  87. Kreplak L, Fudge D (2007) Biomechanical properties of intermediate filaments: from tissues to single filaments and back. Bioessays 29:26–35. Copyright © 2006 Wiley Periodicals, IncCrossRefGoogle Scholar
  88. Kreplak L, Franbourg A, Briki F et al (2002) A new deformation model of hard alpha–keratin fibres at the nanometer scale: implications for hard alpha–keratin intermediate filament mechanical properties. Biophys J 82:2265–2274CrossRefGoogle Scholar
  89. Kreplak L, Doucet J, Dumas P et al (2004) New aspects of the alphahelix to beta–sheet transition in stretched hard alpha–keratin fibres. Biophys J 87:640–647CrossRefGoogle Scholar
  90. Krushna Padhi B, Akimenko MA et al (2006) Independent expansion of the keratin gene family in teleostean fish and mammals: an insight from phylogenetic analysis and radiation hybrid mapping of keratin genes in zebrafish. Gene 368:37–45CrossRefGoogle Scholar
  91. Lametschwandtner A, Lametschwandtner U, Patzner RA (1986) The different vascular patterns of slime glands in the hagfishes Myxine glutinosa Linnaeus and Eptatretus stouti Lockington. A scanning electron microscope study of vascular corrosion casts. Acta Zool 67:243–248CrossRefGoogle Scholar
  92. Langbein L, Rogers MA, Winter H et al (1999) The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. J Biol Chem 274:19874–19884CrossRefGoogle Scholar
  93. Langbein L, Rogers MA, Winter H et al (2001) The catalog of human hair keratins II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and type II keratins. J Biol Chem 276:35125–35132CrossRefGoogle Scholar
  94. Lauffenburger JA (1993) Republished with permission of American Institute for Conservation of Historic and Artistic Works, from Lauffenburger JA (1993) Baleen in museum collections: its sources, uses, and identification. JAIC 32(3):213–230. Copyright © 1993; permission conveyed through Copyright Clearance Center, Inc.Google Scholar
  95. Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283(5744):249–256CrossRefGoogle Scholar
  96. Lee CH, Coulombe PA (2009) Self–organization of keratin intermediate filaments into cross–linked networks. J Cell Biol 186:409–421CrossRefGoogle Scholar
  97. Leitner A, Paust T, Marti O et al (2012) Properties of intermediate filament networks assembled from keratin 8 and 18 in the presence of Mg2+. Biophys J 103:195–201CrossRefGoogle Scholar
  98. Leppi TJ (1967) Histochemical studies on mucous cells in the skin and slime glands of hagfish. Anat Rec 157:278Google Scholar
  99. Leppi TJ (1968) Morphochemical analysis of mucous cells in the skin and slime glands of hagfishes. Histochemie 16:68–78CrossRefGoogle Scholar
  100. Lim J, Fudge DS, Levy N, Gosline JM (2006) Hagfish slime ecomechanics: testing the gill–clogging hypothesis. J Exp Biol 209:702–710CrossRefGoogle Scholar
  101. Lingham–Soliar T, Bonser RHC, Wesley–Smith J (2010) Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering. Proc R Soc B 277:1161–1168CrossRefGoogle Scholar
  102. Luchtel DL, Martin AW, Deyrup–Olsen I (1991) Ultrastructure and permeability characteristics of the membranes of mucous granules of the hagfish. Tissue Cell 23:939–948CrossRefGoogle Scholar
  103. Ma L, Xu J, Coulombe PA et al (1999) Keratin filament suspensions show unique micromechanical properties. J Biol Chem 274:19145–19151CrossRefGoogle Scholar
  104. Magin TM, Vijayaraj P, Leube RE (2007) Structural and regulatory functions of keratins. Exp Cell Res 313:2021–2032CrossRefGoogle Scholar
  105. Maia R, D’Alba L, Shawkey MD (2011) What makes a feather shine? A nanostructural basis for glossy black colours in feathers. Proc Biol Sci 278(1714):1973–1980CrossRefGoogle Scholar
  106. Maia R, Macedo RH, Shawkey MD (2012) Nanostructural self–assembly of iridescent feather barbules through depletion attraction of melanosomes during keratinization. J R Soc Interface 9(69):734–743CrossRefGoogle Scholar
  107. Markl J, Schechter N (1998) Fish intermediate filament proteins in structure, function and evolution. Subcell Biochem 31:1–33Google Scholar
  108. Martini FH (1998) The ecology of hagfishes. In: Jorgensen JM, Lomholt JP, Weber RE, Malte H (eds) The biology of hagfishes. Chapman & Hall, LondonGoogle Scholar
  109. Matthews LH (1968) The whale. Crescent Books, New YorkGoogle Scholar
  110. Meredith RW, Gatesy J, Cheng J et al (2010) Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc R Soc B 278:993–1002. doi: 10.1098/rspb.2010.1280, rspb20101280. By permission of the Royal Society. Copyright © 2011, The Royal Society
  111. Moll R, Divo M, Langbein L (2008) The human keratins: biology and pathology. Histochem Cell Biol 129:705–733CrossRefGoogle Scholar
  112. Nerini M (1984) A review of gray whale feeding ecology. In: Jones ML, Swartz SL, Leatherwood S (eds) The gray whale Eschrichtius robustus. Academic, OrlandoGoogle Scholar
  113. Newby WW (1946) The slime glands and thread cells of the hagfish, Polistrotrema stouti. J Morphol 78:397–409CrossRefGoogle Scholar
  114. Noishiki Y, Ito H, Miyamoto T et al (1982) Application of denatured wool keratin derivatives to an antithrombogenic biomaterial: vascular graft coated with a heparinized keratin derivative. Kobunshi Ronbunshu 39(4):221–227CrossRefGoogle Scholar
  115. Norlén L et al (2007) Reprinted from Norlén L et al (2007) Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography. Exp Cell Res 313(10):2217–2227. Copyright © 2007, with permission from ElsevierGoogle Scholar
  116. O’Connor S (1987) The identification of osseous and keratinaceous materials at York, archaeological bone, antler and ivory. Occasional papers 5. United Kingdom Institute for Conservation, LondonGoogle Scholar
  117. Pauling L, Corey RB (1951) The structure of hair, muscle, and related proteins. Proc Natl Acad Sci U S A 37:261–271CrossRefGoogle Scholar
  118. Pautard FG (1963) Mineralization of keratin and its comparison with the enamel matrix. Nature 199:531CrossRefGoogle Scholar
  119. Pfeiffer CJ (1993) Cellular structure of terminal baleen in various mysticete species. Aquat Mamm 18:67–73Google Scholar
  120. Pivorunas A (1979) The feeding mechanisms of baleen whales. Am Sci 67:432–440Google Scholar
  121. Pollard TD, Cooper JA (2009) Actin a central player in cell shape and movement. Science 326:1208–1212CrossRefGoogle Scholar
  122. Prum RO (2006) Anatomy, physics, and evolution of avian structural colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1, Mechanisms and measurements. Harvard University Press, CambridgeGoogle Scholar
  123. Prum RO, Dufresne ER, Quinn T et al (2009) Development of colour–producing b–keratin nanostructures in avian feather barbs. J R Soc Interface 6:S253–S265CrossRefGoogle Scholar
  124. Qin Z, Buehler MJ (2012) Computational and theoretical modeling of intermediate filament networks: structure, mechanics and disease. Acta Mech Sin 28:941–950CrossRefGoogle Scholar
  125. Qin Z, Kreplak L, Buehler MJ (2009) Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS One 4(10):e7294CrossRefGoogle Scholar
  126. Rice DW, Wolman AA (1971) The life history and ecology of the gray whale (Eschrichtius robustus). Special publication (American Society of Mammalogists), no 3. American Society of Mammalogists, Stillwater, p 196Google Scholar
  127. Rosenbaum HC, Egan MG, Clapham PJ et al (1997) An effective method for isolation of DNA from historical specimens of baleen. Mol Ecol 6:667–681CrossRefGoogle Scholar
  128. Rosenthal FC (1829) Ueber die barten des Schnabel–Walfisches (Balaena rostrata). Abhandl der Kon Akad der Wiss zu Berlin 127–132Google Scholar
  129. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3(2):999–1014. © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license. http://creativecommons.org/licenses/by/3.0/
  130. Russell D, Andrews PD, James J et al (2004) Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. J Cell Sci 117:5233–5243CrossRefGoogle Scholar
  131. Ruud JT (1940) The surface structure of the baleen plates as a possible clue to age in whales. Hvalradets Skr 23:1–24Google Scholar
  132. Saranathan V, Forster JD, Noh H et al (2012) Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species. J R Soc Interface 9(75):2563–2580, by permission of the Royal Society. Copyright © 2011, The Royal SocietyCrossRefGoogle Scholar
  133. Schaffeld M, Markl J (2004) Fish keratins. Methods Cell Biol 78:627–671CrossRefGoogle Scholar
  134. Schaffeld M, Löbbecke A, Lieb B, Markl J (1998) Tracing keratin evolution: catalog, expression patterns and primary structure of shark (Scyliorhinus stellaris) keratins. Eur J Cell Biol 77:69–80CrossRefGoogle Scholar
  135. Schaffeld M, Schultess J, Haberkamp M et al (2001) Intermediate filament protein evolution in fish: sequences from lamprey, shark, bichir, sturgeon and trout. Biol Cell 93:235Google Scholar
  136. Schaffeld M, Höffling S, Markl J (2004) Sequence, evolution and tissue expression patterns of an epidermal type I keratin from the shark Scyliorhinus stellaris. Eur J Cell Biol 83:359–368CrossRefGoogle Scholar
  137. Schweizer J, Bowden PE, Coulombe PA et al (2006) New consensus nomenclature for mammalian keratins. JCB 174:169–174CrossRefGoogle Scholar
  138. Shawkey MD, Maia R, D’Alba L (2011) Proximate bases of silver color in anhinga (Anhinga anhinga) feathers. J Morphol 272(11):1399–1407CrossRefGoogle Scholar
  139. Sivaramakrishnan S, DeGiulio JV, Lorand L et al (2008) Micromechanical properties of keratin intermediate filament networks. PNAS 105(3):889–894. Copyright (2008) National Academy of Sciences, USA. Reprinted with permissionCrossRefGoogle Scholar
  140. Solomon SE, Hendrickson JR, Hendrickson LP (1986) The structure of the carapace and plastron of juvenile turtles, Chelonia mydas (the green turtle) and Caretta caretta (the loggerhead turtle). J Anat 145:123–131Google Scholar
  141. Spitzer RH, Koch EA (1998) Hagfish skin and slime glands. In: Jorgensen JM, Lomholt JP, Weber RE, Malte H (eds) The biology of hagfishes. Chapman & Hall, London, pp 109–132CrossRefGoogle Scholar
  142. Spitzer RH, Downing SW, Koch EA et al (1984) Hagfish slime gland thread cells. II. Isolation and characterization of intermediate filament components associated with the thread. J Cell Biol 98:670–677CrossRefGoogle Scholar
  143. Spitzer RH, Koch EA, Downing SW (1988) Maturation of hagfish gland thread cells: composition and characterization of intermediate filament polypeptides. Cell Motil Cytoskeleton 11:31–45CrossRefGoogle Scholar
  144. St Aubin DJ, Stinson RH, Geraci JR (1984) Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons. Can J Zool 62:193–198CrossRefGoogle Scholar
  145. Stavenga DG, Tinbergen J, Leertouwer HL et al (2011) Kingfisher feathers––colouration by pigments, spongy nanostructures and thin films. J Exp Biol 214(Pt 23):3960–3967CrossRefGoogle Scholar
  146. Steinert PM, Marekov LN, Parry DA (1993) Conservation of the structure of keratin intermediate filaments: molecular mechanism by which different keratin molecules integrate into preexisting keratin intermediate filaments during differentiation. Biochemistry 32:10046–10056CrossRefGoogle Scholar
  147. Stevenson CH (1907) Whalebone: its production and utilization. U.S. Department of Commerce and Labor, Bureau of Fisheries document no. 626. U.S. Government Printing Office, Washington, DC. Reprinted in Bulletin from Johnny Cake Hill (Old Dartmouth Historical Society) 1965–66 (Winter):4–11Google Scholar
  148. Strahan R (1959) Slime production in Myxine glutinosa Linnaeus. Copeia 2:165–166CrossRefGoogle Scholar
  149. Strahan R (1963) The behavior of myxinoids. Acta Zool 44:73–102CrossRefGoogle Scholar
  150. Strelkov SV, Herrmann H, Geisler N et al (2001) Divide–and–conquer crystallographic approach towards an atomic structure of intermediate filaments. J Mol Biol 306:773–781CrossRefGoogle Scholar
  151. Strelkov SV, Herrmann H, Aebi U (2003) Molecular architecture of intermediate filaments. Bioessays 25:243–251CrossRefGoogle Scholar
  152. Subramanian S, Ross NW, MacKinnon SL (2008) Comparison of the biochemical composition of normal epidermal mucus and extruded slime of hagfish (Myxine glutinosa L.). Fish Shellfish Immunol 25:625–632CrossRefGoogle Scholar
  153. Sumich JL (2001) Growth of baleen of a rehabilitating gray whale calf. Aquat Mamm 27:234–238Google Scholar
  154. Szewciw LJ, de Kerckhove DG, Grime GW et al (2010) Calcification provides mechanical reinforcement to whale baleen α-keratin. Proc R Soc B 277(1694):2597–2605, by permission of the Royal SocietyCrossRefGoogle Scholar
  155. Terakado K, Ogawa M, Hashimoto Y, Matsuzaki H (1975) Ultrastructure of the thread cells in the slime gland of Japanese hagfishes, Paramyxine atami and Eptatretus burger. Cell Tissue Res 159:311–323CrossRefGoogle Scholar
  156. Toni M et al (2007) Reprinted with permission from Toni M et al (2007) Hard (beta-)keratins in the epidermis of reptiles: composition, sequence, and molecular organization. J Proteome Res 6(9):3377–3392. Copyright © 2007, American Chemical SocietyGoogle Scholar
  157. Tullberg T (1883) Bau und entwicklung der barten bei balaenoptera sibbaldii. Nov Acta Reg Soc Sci Ups Ser III 11:1–36Google Scholar
  158. Uhen MD (2010) The origin(s) of whales. Annu Rev Earth Planet Sci 38:189–219CrossRefGoogle Scholar
  159. Utrecht WLV (1965) On the growth of the baleen plate of the fin whale and the blue whale. Bijdr Dierk 35:3–38Google Scholar
  160. Van Dyke ME (2012) Wound healing compositions containing keratin biomaterials. United States Patent 8258093Google Scholar
  161. Wagner OI et al (2007) Reprinted from Wagner OI, Rammensee S, Korde N et al (2007) Softness, strength and self-repair in intermediate filament networks. Exp Cell Res 313(10):2228–2235. Copyright (2007), with permission from ElsevierGoogle Scholar
  162. Wang N, Stamenovic D (2000) Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol 279:C188–C194Google Scholar
  163. Werth AJ (2001) How do mysticetes remove prey trapped in baleen? Bull Mus Comp Zool 156:189–203Google Scholar
  164. Windoffer R, Beil M, Magin TM et al (2011) Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. JCB 194(5):669–678. © 2011 Windoffer et al. Reprinted with permissionCrossRefGoogle Scholar
  165. Winegard TM, Fudge DS (2010) Deployment of hagfish slime thread skeins requires the transmission of mixing forces via mucin strands. J Exp Biol 213:1235–1240CrossRefGoogle Scholar
  166. Yamada S, Wirtz D, Coulombe PA (2003) The mechanical properties of simple epithelial keratins 8 and 18: discriminating between interfacial and bulk elasticities. J Struct Biol 143:45–55CrossRefGoogle Scholar
  167. Ye C et al (2010) With kind permission from Springer Science+Business Media: Ye C, Wu X, Yan P et al (2010) beta-Keratins in crocodiles reveal amino acid homology with avian keratins. Mol Biol Rep 37(3):1169–1174. Copyright © 2009, Springer Science+Business Media B.VGoogle Scholar
  168. Yin H, Dong B, Liu X et al (2012) Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw. PNAS 109:10798–10801. Reprinted with permissionCrossRefGoogle Scholar
  169. Yoon KH, Yoon M, Moir RD et al (2001) Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J Cell Biol 153:503–516CrossRefGoogle Scholar
  170. Yoshie S, Honma Y (1976) Light and scanning electron microscopic studies on the esophageal spines in the Pacific ridley turtle, Lepidochelys olivacea. Arch Histol Jpn 38(5):339–346. Copyright © International Society of Histology and CytologyCrossRefGoogle Scholar
  171. Zeh JE, Rosa C, George JC et al (2008) Age estimation for young bowhead whales (Balaena mysticetus) using annual baleen growth increments. Can J Zool 86:525–538CrossRefGoogle Scholar
  172. Zimek A, Stick R, Weber K (2003) Genes coding for intermediate filament proteins: common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes. J Cell Sci 116:2295–2302CrossRefGoogle Scholar
  173. Zintzen V, Roberts CD, Anderson MJ et al (2011) Hagfish predatory behaviour and slime defence mechanism. Sci Rep 1:131CrossRefGoogle Scholar
  174. Zorgrader CG (1720) Bloeyende Opkomst der Aloude en Hedendaaqsche Groenlandsche Visschery, plates, As Aio, Amsterdam, 81 p. The German translation printed in Leipzig, 1723Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Experimental PhysicsTU Bergakademie FreibergFreibergGermany

Personalised recommendations