Marine Elastin

  • Hermann Ehrlich
Part of the Biologically-Inspired Systems book series (BISY, volume 4)


Elastic function for a lifetime in animals, including marine vertebrates is determined by the structural protein elastin. Extracellular matrix is the space where a monomer, tropoelastin, is rapidly transformed into its final polymeric form. Desmosine and isodesmosine serve as crosslinking molecules, binding the polymeric chains of amino acids into the 3D network of elastin. Elastin is located within such tissues and organs as skin, arteria, heart, notochord and swimbladder in marine fish. Interestingly, the lamprey possesses only elastin-like fibrillar proteins. The whale heart and aorta are the largest elastin-containing structures known in Nature.


Aortic Arch Lower Critical Solution Temperature Harbour Seal Weddell Seal Ventral Aorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaron BB, Gosline JM (1980) Optical properties of single elastin fibres indicate random protein conformation. Nature 287:865–867CrossRefGoogle Scholar
  2. Aaron BB, Gosline JM (1981) Elastin as a random–network elastomer: a mechanical and optical analysis of single elastin fibres. Biopolymers 20:1247–1260CrossRefGoogle Scholar
  3. Agnisola C, Tota B (1994) Structure and function of the fish cardiac ventricle: flexibility and limitations. Cardioscience 5(3):145–153Google Scholar
  4. Almine JF et al (2010) Reproduced from Almine JF, Bax DV, Mithieux SM et al (2010) Elastin-based materials. Chem Soc Rev 39:3371–3379. Copyright (2010) with permission of The Royal Society of ChemistryGoogle Scholar
  5. Anwar RA (1966) Comparison of elastins from various sources. Can J Biochem 44:725–730CrossRefGoogle Scholar
  6. Anwar RA, Oda G (1966) The biosynthesis of desmosine and isodesmosine. J Biol Chem 241:4638–4641Google Scholar
  7. Benjamin M, Norman D, Santer RM et al (1983) Histological, histochemical and ultrastructural studies on the bulbus arteriosus of the stickle–backs, Gasterosteus aculeatus and Pungitius pungitius (Pisces: Teleostei). J Zool (Lond) 200:325–346CrossRefGoogle Scholar
  8. Bochicchio B, Pepe A, Tamburro AM (2001) On (GGLGY) synthetic repeating sequences of lamprin and analogous sequences. Matrix Biol 20:243–250CrossRefGoogle Scholar
  9. Braun MH et al (2003) Republished with permission of The Company of Biologists Ltd, from Braun MH, Brill RW, Gosline JM et al (2003) Form and function of the bulbus arteriosus in yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans): static properties. J Exp Biol 206:3311–3326. Copyright (2003) permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  10. Bushnell PG, Jones DR, Farrell AP (1992) The arterial system. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology. Academic, New YorkGoogle Scholar
  11. Conticello VP, Carpenter Desai HE (2012) Reprinted from Conticello VP, Carpenter Desai HE (2012) Elastins. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference, vol 9: polymers in biology and medicine, Elsevier, pp 71–103. Copyright © 2012, Elsevier B.V. All rights reserved. Reprinted with permissionGoogle Scholar
  12. Chalmers GWG, Gosline JM, Lillie MA (1999) The hydrophobicity of vertebrate elastins. J Exp Biol 202:301–314Google Scholar
  13. Cheng JK, Wagenseil JE (2012) Extracellular matrix and the mechanics of large artery development. Biomech Model Mechanobiol. doi: 10.1007/s10237-012-0405-8 Google Scholar
  14. Chow M, Boyd CD, Iruela–Arispe M et al (1989) Characterization of elastin protein and mRNA from salmonid fish (Oncorhynchus kitsutch). Comp Biochem Physiol B 93:835–845Google Scholar
  15. Chung MI, Miao M, Stahl RJ et al (2006) Sequences and domain structures of mammalian, avian, amphibian and teleost tropoelastins: clues to the evolutionary history of elastins. Matrix Biol 25(8):492–504CrossRefGoogle Scholar
  16. DeMont ME, Wright GM (1993) With kind permission from Springer Science+Business Media: DeMont ME, Wright GM (1993) Elastic arteries in a primitive vertebrate: mechanics of the lamprey ventral aorta. Experientia 49(1):43–46. Copyright © Birkhäuser Verlag Basel, 1993Google Scholar
  17. Dobrin PB (1997) Chapter 3: physiology and pathophysiology of blood vessels. In: Sidawy ANSB, DePalma RG (eds) The basic science of vascular disease. Futura Publishing, New YorkGoogle Scholar
  18. Faury G (2001) Reprinted from Faury G (2001) Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol Biol (Paris) 49(4):310–325, Copyright (2001), with permission from ElsevierGoogle Scholar
  19. Fernandes RJ, Eyre DR (1999) The elastin–like protein matrix of lamprey branchial cartilage is cross–linked by lysyl pyridinoline. Biochem Biophys Res Commun 261(3):635–640CrossRefGoogle Scholar
  20. Ferri S (1980) Reprinted from Ferri S (1980) Elastic system fibers (oxytalan, elaunin and elastic fibers) in the skin of a freshwater teleost: optical and electron microscopy study. Arch Anat Microsc Morphol Exp 69(4):259–266. Copyright (1980) Masson, with permission from ElsevierGoogle Scholar
  21. Franzblau C, Lent RW (1968) Studies on the chemistry of elastin. Brookhaven Symp Biol 21(2):358–377Google Scholar
  22. Fritze O, Romero B, Schleicher M et al (2012) Age–related changes in the elastic tissue of the human aorta. J Vasc Res 49(1):77–86CrossRefGoogle Scholar
  23. Gosline JM (1978) The temperature–dependent swelling of elastin. Biopolymers 17:697–707CrossRefGoogle Scholar
  24. Gosline JM, French CJ (1979) Dynamic mechanical properties of elastin. Biopolymers 18:2091–2103CrossRefGoogle Scholar
  25. Gosline JM, Shadwick RE (1996) Republished with permission of The Company of Biologists Ltd, from Gosline JM, Shadwick RE (1996) The mechanical properties of fin whale arteries are explained by novel connective tissue designs. J Exp Biol 199(Pt 4):985–997. Copyright (1996); permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  26. Greenlee TK, Ross R Jr, Hartman JL (1966) The fine structure of elastic fibers. J Cell Biol 30:59–65CrossRefGoogle Scholar
  27. Greenwald SE (2007) Ageing of the conduit arteries. J Pathol 211(2):157–172CrossRefGoogle Scholar
  28. Greenwald SE, Ryder GC, Martyn CN (2001) The aorta: built to last a lifetime? Engineering in Medicine and Biology Society. In: Proceedings of the 23rd annual international conference of the IEEE, vol 1. Istanbul, pp 180–183Google Scholar
  29. Gundiah N, Ratcliffe MB, Pruitt LA (2007) Determination of strain energy function for arterial elastin: experiments using histology and mechanical tests. J Biomech 40(3):586–594CrossRefGoogle Scholar
  30. Gundiah N, Ratcliffe MB, Pruitt LA (2009) The biomechanics of arterial elastin. J Mech Behav Biomed Mater 2(3):288–296CrossRefGoogle Scholar
  31. He D, Chung M, Chan E et al (2007) Comparative genomics of elastin: sequence analysis of a highly repetitive protein. Matrix Biol 26(7):524–540CrossRefGoogle Scholar
  32. Icardo JM (2013) Reprinted from Icardo JM (2013) Collagen and elastin histochemistry of the teleost bulbus arteriosus: false positives. Acta Histochem 115(2):185–189. Copyright (2013), with permission from ElsevierGoogle Scholar
  33. Icardo JM, Colvee E (2011) The atrioventricular region of the teleost heart. A distinct heart segment. Anat Rec (Hoboken) 294(2):236–242CrossRefGoogle Scholar
  34. Icardo JM, Colvee E, Cerra MC et al (1999) Bulbus arteriosus of the antarctic teleosts. II. The red–blooded Trematomus bernacchii. Anat Rec 256:116–126CrossRefGoogle Scholar
  35. Isokawa K, Takagi M, Toda Y (1988) Ultrastructural cytochemistry of trout arterial fibers as elastic components. Anat Rec 220:369–375CrossRefGoogle Scholar
  36. Isokawa K, Takagi M, Toda Y (1990) Ultrastructural and cytochemical study of elastic fibers in the ventral aorta of a teleost, Anguilla japonica. Anat Rec 226(1):18–26CrossRefGoogle Scholar
  37. Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828Google Scholar
  38. Le Brun AP, Chow J, Bax DV et al (2012) Molecular orientation of tropoelastin is determined by surface hydrophobicity. Biomacromolecules 13(2):379–386CrossRefGoogle Scholar
  39. Licht JH, Harris WS (1973) The structure, composition and elastic properties of the teleost bulbus arteriosus in the carp, Cyprinus carpio. Compar Biochem Physiol A Physiol 46:699–704CrossRefGoogle Scholar
  40. Lillie MA, Gosline JM (1990) The effects of hydration on the dynamic mechanical properties of elastin. Biopolymers 29:1147–1160CrossRefGoogle Scholar
  41. Lillie MA, Gosline JM (1996) Swelling and viscoelastic properties of osmotically stressed elastin. Biopolymers 39:641–652CrossRefGoogle Scholar
  42. Lillie MA, Chalmers GW, Gosline JM (1994) The effects of heating on the mechanical properties of arterial elastin. Connect Tissue Res 31:23–35CrossRefGoogle Scholar
  43. Lillie MA, Chalmers GW, Gosline JM (1996) Elastin dehydration through the liquid and vapour phase: a comparison of osmotic stress models. Biopolymers 39:627–639CrossRefGoogle Scholar
  44. Luisetti M, Stolk J, Iadarola P (2012) Desmosine, a biomarker for COPD: old and in the way. Eur Respir J 39(4):797–798. doi: 10.1183/09031936.00172911. Reproduced with permission of the European Respiratory Society. Copyright remains with European Respiratory Society©CrossRefGoogle Scholar
  45. McBurney KM, Keeley FW, Kibenge FSB et al (1996) Spatial and temporal distribution of lamprin mRNA during chondrogenesis of trabecular cartilage in the sea lamprey. Anat Embryol 193:419–426CrossRefGoogle Scholar
  46. Miao M et al (2006) Reprinted from Miao M, Bruce AE, Bhanji T et al (2006) Differential expression of two tropoelastin genes in zebrafish. Matrix Biol 26(2):115–124. Copyright (2006), with permission from ElsevierGoogle Scholar
  47. Miao M et al (2009) Reprinted from Miao M, Stahl RJ, Petersen LF et al (2009) Characterization of an unusual tropoelastin with truncated C-terminus in the frog. Matrix Biol 28(7):432–441, Copyright (2009), with permission from ElsevierGoogle Scholar
  48. Mistrali F, Volpin D, Garibaldi GB et al (1971) Thermodynamics of elasticity in open systems. Elastin J Phys Chem 75:142–149CrossRefGoogle Scholar
  49. Mithieux SM et al (2013) Reprinted from Mithieux SM, Wise SG, Weiss AS (2013) Tropoelastin – a multifaceted naturally smart material. Adv Drug Deliv Rev 65(4):421–428. Copyright (2013), with permission from ElsevierGoogle Scholar
  50. Montes GS (1996) Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20(1):15–27CrossRefGoogle Scholar
  51. Motta P et al (2012) Reprinted from Motta P, Habegger ML, Lang A et al (2012) Scale morphology and flexibility in the shortfin mako Isurus oxyrinchus and the blacktip shark Carcharhinus limbatus. J Morphol 273(10):1096–1110, with permission. Copyright © 2012 Wiley Periodicals, IncGoogle Scholar
  52. Ohtani K et al (2008) Reprinted from Ohtani K, Yao T, Kobayashi M et al (2008) Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. J Exp Zool B Mol Dev Evol 310(7):596–607, with permission. Copyright © 2008 Wiley-Liss, Inc., A Wiley CompanyGoogle Scholar
  53. Partridge SM (1966) Biosynthesis and nature of elastin structures. Fed Proc 25(3):1023–1029Google Scholar
  54. Partridge SM, Davis HF, Adair GS (1955) The chemistry of connective tissues. II. Soluble proteins derived from partial hydrolysis of elastin. Biochem J 61:11–17Google Scholar
  55. Partridge SM, Elsden DF, Thomas J (1963) Constitution of the cross–linkages in elastin. Nature 197:1297–1298CrossRefGoogle Scholar
  56. Perrin S, Rich CB, Morris SM et al (1999) The zebrafish swimbladder: a simple model for lung elastin injury and repair. Connect Tissue Res 40(2):105–112. Copyright © 1999, Informa Healthcare. Reprinted with permissionCrossRefGoogle Scholar
  57. Petruska JA, Sandberg LB (1968) The amino acid composition of elastin in its soluble and insoluble state. Biochem Biophys Res Commun 33(2):222–228CrossRefGoogle Scholar
  58. Piez KA (1968) Cross–linking of collagen and elastin. Annu Rev Biochem 37:547–570CrossRefGoogle Scholar
  59. Prahl S, Huggenberger S, Schliemann H (2009) Histological and ultrastructural aspects of the nasal complex in the harbour porpoise, Phocoena phocoena. J Morphol 270(11):1320–1337. Copyright © 2009 Wiley-Liss, Inc. Reprinted with permission by John Wiley and SonsCrossRefGoogle Scholar
  60. Race GJ, Edwards WLJ, Halden ER et al (1959) A large whale heart. Circulation 19:928–932. Copyright © 1959 American Heart Association, Inc. All rights reservedCrossRefGoogle Scholar
  61. Raso DS (1993) Functional morphology of laminin, collagen type IV, collagen bundles, elastin, proteoglycans in the bulbus arteriosus of the white bass, Morone chrysops (Rafinesque). Can J Zool 71:947–952CrossRefGoogle Scholar
  62. Robertson GN, McGee CAS, Dumbarton TC et al (2007) Development of the swimbladder and its innervation in the Zebrafish, Danio rerio. J Morphol 268:967–985CrossRefGoogle Scholar
  63. Robson P, Wright G, Sitarz E et al (1993) Characterization of lamprin, an unusual matrix protein from lamprey cartilage. Implications for evolution, structure, and assembly of elastin and other fibrillar proteins. J Biol Chem 268:1440–1447Google Scholar
  64. Robson P, Wright GM, Youson JH et al (1997) A family of non–collagen–based cartilages in the skeleton of the sea lamprey, Petromyzon marinus. Comp Biochem Physiol 118B:71–78CrossRefGoogle Scholar
  65. Robson P et al (2000) Reprinted from Robson P, Wright GW, Youson JH et al (2000) The structure and organization of lamprin genes: multiple-copy genes with alternative splicing and convergent evolution with insect structural proteins. Mol Biol Evol 17(11):1739–1752, by permission of Oxford University PressGoogle Scholar
  66. Sage H (1982) Structure–function relationships in the evolution of elastin. J Invest Dermatol 79:146s–153sCrossRefGoogle Scholar
  67. Sage H (1983) The evolution of elastin: correlation of functional properties with protein structure and phylogenetic distribution. Comp Biochem Physiol B 74(3):373–380Google Scholar
  68. Sage H, Gray WR (1976) Evolution of elastin structure. In: Sandberg LB, Gray WR, Franzblau C (eds) Elastin and elastic tissue. Plenum Press, New YorkGoogle Scholar
  69. Sage EH, Gray WR (1977) With kind permission from Springer Science+Business Media: Sage EH, Gray WR (1977) Evolution of elastin structure. Adv Exp Med Biol 79:291–312, Copyright © 1977, SpringerGoogle Scholar
  70. Sage H, Gray WR (1979) Studies on the evolution of elastin. I. Phylogenetic distribution. Comp Biochem Physiol 64B:313–327Google Scholar
  71. Sage H, Gray WR (1980) Studies on the evolution of elastin. II. Histology. Comp Biochem Physiol 66B:13–22Google Scholar
  72. Sage H, Gray WR (1981) Studies on the evolution of elastin. III. The ancestral protein. Comp Biochem Physiol 68B:473–480Google Scholar
  73. Sagstad A et al (2011) With kind permission from Springer Science+Business Media: Sagstad A, Grotmol S, Kryvi H, Krossøy C, Totland GK, Malde K, Wang S, Hansen T, Wargelius A (2011) Identification of vimentin- and elastin-like transcripts specifically expressed in developing notochord of Atlantic salmon (Salmo salar L.). Cell Tissue Res 346(2):191–202. Copyright © 2011, SpringerGoogle Scholar
  74. Sanchez–Quintana D, Hurle JM (1987) Ventricular myocardial architecture in marine fishes. Anat Rec 217(3):263–273CrossRefGoogle Scholar
  75. Sandberg LB, Weissman N, Gray WR (1971) Structural features of tropoelastin related to the sites of cross–links in aortic elastin. Biochem 10:52–57CrossRefGoogle Scholar
  76. Serafini–Fracassini A, Field JM, Spina J et al (1978) The morphological organization and ultrastructure of elastin in the arterial wall of trout (Salmo gairdneri) and salmon (Salmo salar). J Ultrastruct Res 65:1–12CrossRefGoogle Scholar
  77. Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202:3305–3313. Printed in Great Britain © The Company of Biologists Limited 1999Google Scholar
  78. Shadwick RE, Gosline JM (1994) Arterial mechanics of the fin whale suggest a unique hemodynamic design. Am J Physiol 267:R805–R818Google Scholar
  79. Shadwick RE, Gosline JM (1995) Arterial windkessels in marine mammals. In: Ellington CP, Pedley TJ (eds) Biological fluid dynamics symposia of the Society for Experimental Biology 49. Company of Biologists Ltd, Cambridge, pp 243–252Google Scholar
  80. Shimada W, Bowman A, Davis NR et al (1969) An approach to the study of the structure of desmosine and isodesmosine containing peptides isolated from the elastase digest of elastin. Biochem Biophys Res Commun 37:191–195CrossRefGoogle Scholar
  81. Soskel NT, Wolt TB, Sandberg LB (1987) Isolation and characterization of insoluble and soluble elastins. In: Cunningham LW (ed) Methods in enzymology, structural and contractile proteins, part D, extracellular matrix. Academic, OrlandoGoogle Scholar
  82. Starcher BC, Galione MJ (1976) Purification and composition of elastins from different animal species. Anal Biochem 74:441–447CrossRefGoogle Scholar
  83. Steven FS, Minns RJ, Thomas H (1974) The isolation of chemically pure elastins in a form suitable for mechanical testing. Connect Tissue Res 2:85–90CrossRefGoogle Scholar
  84. Takahashi Y, Ohwada S, Watanabe K et al (2006) Does elastin contribute to the persistence of corpora albicantia in the ovary of the common dolphin (Delphinus delphis). Mar Mamm Sci. doi: 10.1111/j.1748-7692.2006.00050.x Google Scholar
  85. Thomas J, Elsden DF, Partridge SM (1963) Partial structure of two major degradation products from the cross–linkages in elastin. Nature 200:651–652CrossRefGoogle Scholar
  86. Turino GM, Ma S, Lin YY et al (2011) Matrix elastin: a promising biomarker for chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184(6):637–641CrossRefGoogle Scholar
  87. Wise, Weiss (2009) Reprinted from Wise and Weiss (2009) Tropoelastin. Int J Biochem Cell Biol 41(3):494–497. Copyright (2009), with permission from ElsevierGoogle Scholar
  88. Wise SG, Mithieux SM, Weiss AS (2009) Engineered tropoelastin and elastin–based biomaterials. Adv Protein Chem Struct Biol 78:1–24CrossRefGoogle Scholar
  89. Wright GM, Keely FW, Youson JH et al (1984) Cartilage in the Atlantic hagfish, Myxine glutinosa. Am J Anat 169:407–424CrossRefGoogle Scholar
  90. Wright GM, Armstrong LA, Jacques AM et al (1988) Trabecular, nasal, branchial, and pericardial cartilages in the sea lamprey, Petromyzon marinus: fine structure and immunohistochemical detection of elastin. Am J Anat 182:1–15. Copyright © 1988 Wiley-Liss, IncCrossRefGoogle Scholar
  91. Yeo GC, Baldock C, Tuukkanen A et al (2012) Tropoelastin bridge region positions the cell–interactive C terminus and contributes to elastic fiber assembly. Proc Natl Acad Sci U S A 109:2878–2883CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Experimental PhysicsTU Bergakademie FreibergFreibergGermany

Personalised recommendations