• Hermann Ehrlich
Part of the Biologically-Inspired Systems book series (BISY, volume 4)


Marine vertebrates include fish, amphibians, reptiles, birds, and mammals. The Part I describes the classification of marine vertebrates. Included is information about the broad diversity seen in specific biological materials. These materials include mineralized tissues (cartilage, bones, teeth, dentin, egg shells), biominerals (otoliths and otoconia), and skeletal structures (carapaces, sucking disks, spines, scales, scutes, plates, denticles etc.). Elastomers (egg case) and structural proteins (collagen, keratins) are also mentioned. Special attention is payed to the biomimetic applications of biomaterials originating from marine vertebrates.


Lower Devonian Salt Gland Cartilaginous Fish Whale Shark Gill Slit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams LE (1906) The flight of flying fish. Zoologist 4:145–148Google Scholar
  2. Adams NJ, Walter CB (1993) Maximum diving depths of cape gannets. Condor 95:136–138Google Scholar
  3. Ahlberg PE (1989) Paired fin skeletons and relationships of the fossil group Porolepiformes (Osteichthyes: Sarcopterygii). Zool J Linnean Soc 96:119–166Google Scholar
  4. Ahlberg PE (1991) Tetrapod or near tetrapod fossils from the Upper Devonian of Scotland. Nature 354:298–301Google Scholar
  5. Ahlberg PE (1993) Elginerpeton pancheni and the earliest tetrapod clade. Nature 373:420–425Google Scholar
  6. Ahlberg PE, Johanson Z (1998) Osteolepiforms and the ancestry of tetrapods. Nature 395(6704):792–794Google Scholar
  7. Ahlberg P, Trinajstic K, Johanson Z, Long J (2009) Pelvic claspers confirm chondrichthyan–like internal fertilization in arthrodires. Nature 460:888–889Google Scholar
  8. Ahlborn F (1897) Der flug der Fische. Zool Jb Abt Syst 9:329–338Google Scholar
  9. Ainley DG (1980) Birds as marine organisms. CalCOFI Rep 21:48–53Google Scholar
  10. Al–Bahry SN, Mahmoud IY, Al–Amri IS et al (2009) Ultrastructural features and elemental distribution in eggshell during pre and post hatching periods in the green turtle, Chelonia mydas at Ras Al–Hadd, Oman. Tissue Cell 41:214–221Google Scholar
  11. Albertson RC, Cresko W, Detrich HW III, Postlethwait JH (2009) Evolutionary mutant models for human disease. Trends Genet 25:74–81Google Scholar
  12. Albertson RC, Yan YL, Titus TA et al (2010) Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evol Biol 10:4Google Scholar
  13. Allaby A, Allaby M (1999) Anaspida. In: A dictionary of earth sciences. Oxford University Press, OxfordGoogle Scholar
  14. Allen WE (1923) Fishing activities of the California Brown Pelican. Condor 25:107–108Google Scholar
  15. Allis EP (1922) The cranial anatomy of Polypterus, with special reference to Polypterus bichir. J Anat 56:180–294Google Scholar
  16. Andrews CW (1910) A descriptive catalogue of the marine reptiles of the Oxford clay: Part 1. The British Museum (Natural History), LondonGoogle Scholar
  17. Andrews CW (1913) A descriptive catalogue of the marine reptiles of the Oxford clay: Part 2. The British Museum (Natural History), LondonGoogle Scholar
  18. Appeltans W, Bouchet P, Boxshall GA et al (2012) (eds) World register of marine species. Accessed at on 29 Sept 2012
  19. Arnott HJ, Maciolek NJ, Nicol JAC (1970) Retinal tapetum lucidum: a novel reflecting system in the eye of teleosts. Science 169:478–480Google Scholar
  20. Arsenault M (1982) Eusthenopteron foordi, a predator on Homalacanthus concinnus from the Escuminac formation, Miguasha, Quebec. Can J Earth Sci 19:2214–2217Google Scholar
  21. Aschliman NC, Claeson KM, McEachran JD (2012) Phylogeny of Batoidea. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  22. Ashmole NP (1971) Seabird ecology and the marine environment. In: Farner DS, King JR (eds) Avian biology, vol 1. Academic, New YorkGoogle Scholar
  23. Aubret F, Shine R (2008) The origin of evolutionary innovations: locomotor consequences of tail shape in aquatic snakes. Funct Ecol 22:317–322Google Scholar
  24. Baker MA (1982) Brain cooling in endotherms in heat and exercise. Annu Rev Physiol 44:85–96Google Scholar
  25. Balani K, Patel RR, Keshri AK et al (2011) Multi–scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell. J Mech Behav Biomed Mater 4(7):1440–1451Google Scholar
  26. Bar Cohen Y (2011) Biomimicking marine mechanisms and organizational principles. Mar Technol Soc J 45:14–15Google Scholar
  27. Bardack D (1991) First fossil hagfish (Myxinoidea): a record from the Pennsylvanian of Illinois. Science 254:701–703Google Scholar
  28. Bartholomew GA, Lasiewski RC (1965) Heating and cooling rates, heart rate and simulated diving in the Galapagos marine iguana. Comp Biochem Physiol 16:573–582Google Scholar
  29. Bartholomew GA, Bennett AF, Dawson WR (1976) Swimming, diving, and lactate production of the marine iguana, Amblyrhynchus cristatus. Copeia 1976:709–720Google Scholar
  30. Basden AM, Young GC (2001) A primitive actinopterygian neurocranium from the Early Devonian of southeastern Australia. J Vertebr Paleontol 21:754–766Google Scholar
  31. Baum C, Simon F, Meyer W et al (2003) Surface properties of the skin of the pilot whale Globicephala melas. Biofouling 19(Supplement):181–186Google Scholar
  32. Baumel JJ, Witmer LM, Baumel JJ et al (1993) Osteologia. Handbook of avian anatomy: nomina anatomica avium. Publ Nuttall Ornithol Club 23:45–132Google Scholar
  33. Bell T (1825) On a new genus of Iguanidae. Zool J 2:204–208Google Scholar
  34. Bellamkonda RV (2008) Biomimetic materials: marine inspiration. Nat Mater 7:347–348Google Scholar
  35. Bemis WE, Northcutt RG (1992) Skin and blood vessels of the snout of the Australian lungfish, Neoceratodus forsteri, and their significance for interpreting the cosmine of Devonian lungfishes. Acta Zool 73:115–139Google Scholar
  36. Bemis WE, Findeis EK, Grande L (1997) An overview of Acipenseriformes. Environ Biol Fishes 48:25–71Google Scholar
  37. Benson RBJ, Butler RJ, Lindgren J et al (2010) Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proc R Soc Lond B Biol Sci 277:829–834Google Scholar
  38. Berg LS (1940) Classification of fishes, both recent and fossil. Travaux de l’Institute zoologique de l’Academie des Sciences de l’URSS 5(2):85–517Google Scholar
  39. Bernard A et al (2010) From Bernard A, Lécuyer C, Vincent P et al (2010) Regulation of body temperature by some mesozoic marine reptiles. Science 328:1379–1382. Reprinted with permission from AAASGoogle Scholar
  40. Birstein VJ, Hanner R, DeSalle R (1997) Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fishes 48:127–155Google Scholar
  41. Blake RW (1983) Fish locomotion. Cambridge University Press, CambridgeGoogle Scholar
  42. Bock WJ, Kummer B (1968) The avian mandible as a structural girder. J Biomech 1:89–96Google Scholar
  43. Boersma PD (1977) An ecological and behavioral study of the Galápagos penguin. Living Bird 15:43–93Google Scholar
  44. Boisvert C (2005) The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature 438:1145–1147Google Scholar
  45. Boisvert CA, Mark–Kurik E, Ahlberg PE (2008) The pectoral fin of Panderichthys and the origin of digits. Nature 456:636–638Google Scholar
  46. Bonser RHC, Witter MS (1993) Indentation hardness of the bill keratin of the European starling. Condor 95:136–138Google Scholar
  47. Bostwick KS et al (2012) Reprinted from Bostwick KS, Riccio ML, Humphries JM (2012) Massive, solidified bone in the wing of a volant courting bird. Biol Lett (doi: 10.1098/rsbl.2012) by permission of the Royal Society
  48. Botella H, Blom H, Dorka M, Ahlberg PE et al (2007) Jaws and teeth of the earliest bony fishes. Nature 448:583–586Google Scholar
  49. Botella H, Donoghue PCJ, Martínez–Pérez C (2009) Enameloid microstructure in the oldest known chondrichthyan teeth. Acta Zool 90:103–108Google Scholar
  50. Bouchet P (2006) The magnitude of marine biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity: scientific and technological challenges. Funbdacion BBVA, BilbaoGoogle Scholar
  51. Branch B (1998) Field guide to the snakes and other reptiles of southern Africa. Ralph Curtis Books Publishing, FloridaGoogle Scholar
  52. Brazeau MD (2009) The braincase and jaws of a Devonian ‘acanthodian’ and the origin of modern gnathostomes. Nature 457:305–308Google Scholar
  53. Breder CM Jr (1930) On the structural specialization of flying fishes from the standpoint of aerodynamics. Copeia 4:114–121Google Scholar
  54. Brewer ML, Hertel F (2007) Wing morphology and flight behavior of pelecaniform seabirds. J Morphol 268:866–877Google Scholar
  55. Briggs JC, Shelgrove P (1999) Marine species diversity. Bioscience 49:351–352Google Scholar
  56. Brischoux F, Bonnet X (2009) Life history of sea kraits in New Caledonia. Zoologia Neocaledonica 7 Memoires du Museum National d’Histoire Naturelle 198:37–51Google Scholar
  57. Brito–Echeverria J, Lopez–Lopez A, Yarza P et al (2009) Occurrence of Halococcus spp. in the nostrils salt glands of the seabird Calonectris diomedea. Extremophiles 13(3):557–565Google Scholar
  58. Brooke M (2004) Albatrosses and petrels across the world. Oxford University Press, Oxford. Copyright © 2004, Oxford University Press. This material is used by the permission of Oxford University PressGoogle Scholar
  59. Brothers EB (1984) Otolith studies. In: Moser HG, Richards WJ, Cohen MD et al (eds) Ontogeny and systematics of fishes, Spec. publ. no. 1. American Society of Ichthyologists and Herpetologists, Lawrence, pp 50–57Google Scholar
  60. Brown JW, Rest JS, García–Moreno J et al (2008) Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol 6:6Google Scholar
  61. Bruet BJF, Song JH, Boyce MC et al (2008) Materials design principles of ancient fish armor. Nat Mater 7:748–756Google Scholar
  62. Buhler P (1981) Functional anatomy of the avian jaw apparatus. In: King AS, McLelland J (eds) Form and function in birds, vol 2. Academic, LondonGoogle Scholar
  63. Buhler P (1992) Light bones in birds. Los Angel Cty Mus Nat Hist Sci Ser 36:385–394Google Scholar
  64. Burger AE (1991) Maximum diving depths and underwater foraging in alcids and penguins. In: Montevecchi WA, Gaston AJ (eds) Studies of high latitude seabirds. 1. Behavioral, energetic, and oceanographic aspects of seabird feeding ecology. Canadian Wildlife Service, Occasional paper no 68. Canadian Wildlife Service, Ottawa, pp 9–15Google Scholar
  65. Calis E, Jackson EH, Nolan CP et al (2005) Preliminary age and growth estimates of the rabbitfish, Chimaera monstrosa, with implications for future resource management. J Northwest Atl Fish Sci 35:15–26Google Scholar
  66. Carey JE, Wright EA (1960) Isolation of the neurotoxic component of the venom of the sea snake, Enhydrina schistosa. Nature 185:103–104Google Scholar
  67. Carpenter CC (1966) The marine iguana of the Galapagos Islands, its behavior and physiology. Proc Calif Acad Sci 34:329–376Google Scholar
  68. Carr A, Kemp AR, Tibbetts IR et al (2006) Microstructure of pharyngeal tooth enameloid in the Parrotfish Scarus rivulatus (Pisces: Scaridae). J Microsc 221:8–16Google Scholar
  69. Casinos A, Cubo J (2001) Avian long bones, flight and bipedalism. Comp Biochem Physiol A 131:159–167Google Scholar
  70. Cavin L, Giner S (2012) A large halecomorph fish (Actinopterygii: Holostei) from the Valanginian (Early Cretaceous) of southeast France. Cretac Res 37:201–208Google Scholar
  71. Chandler AC (1916) A study of the structure of feathers, with reference to their taxonomic significance. Univ Calif Publ Zool 13:243–446Google Scholar
  72. Cheng C–HC, Chen L (1999) Evolution of an antifreeze glycoprotein: a blood protein that keeps Antarctic fish from freezing arose from a digestive enzyme. Nature 401:443–444Google Scholar
  73. Clack JA (2002) Gaining ground: the origin and early evolution of tetrapods. Indiana University Press, BloomingtonGoogle Scholar
  74. Clack JA (2009) With kind permission from Springer Science+Business Media: Clack JA (2009) The fish–tetrapod transition: new fossils and interpretations. Evo Edu Outreach 2:213–223. Copyright © 2009, SpringerGoogle Scholar
  75. Claeson KM (2011) The synarcual cartilage of batoids with emphasis on the synarcual of Rajidae. J Morphol 272:1444–1463Google Scholar
  76. Clarck GA Jr (1961) Occurrence and timing of egg teeth in birds. Wilson Bull 73:268–278Google Scholar
  77. Clarke JA (2004) Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae). Bull Am Mus Nat Hist 286:1–179Google Scholar
  78. Clarke JA, Ksepka DT, Salas–Gismondi R et al (2010) Fossil evidence for evolution of the shape and color of penguin feathers. Science 330:954–957Google Scholar
  79. Clément G (2004) Nouvelles données anatomiques et morphologie générale des “Porolepididae” (Dipnomorpha, Sarcopterygii). Rev Paléobiol 9:193–211Google Scholar
  80. Clement A, Long JA (2010) Air–breathing adaptation in a marine Devonian lungfish. Biol Lett 6:509–512Google Scholar
  81. Coates MI, Sequeira SEK (2001) A new stethacanthid chondrichthyan from the lower Carboniferous of Bearsden, Scotland. J Vertebr Paleontol 21:438–459Google Scholar
  82. Compagno LJV (1977) Phyletic relationships of living sharks and rays. Am Zool 17:303–322Google Scholar
  83. Compagno LJV (2001) Sharks of the world, an annotated and illustrated catalogue of shark species known to date – bullhead, mackerel & carpet sharks. FAO species catalogue for fishery purposes no 1, vol 2. FAO, RomeGoogle Scholar
  84. Cote S, Carroll R, Cloutier R et al (2002) Vertebral development in the Devonian Sarcopterygian fish Eusthenopteron foordi and the polarity of vertebral evolution in non–amniote tetrapods. J Vertebr Paleontol 22:487–502Google Scholar
  85. Cramp R et al (2008) Republished with permission of The Company of Biologists Ltd, from Cramp R, Meyer EA, Sparks N et al (2008) Functional and morphological plasticity of crocodile (Crocodylus porosus) salt glands. J Exp Biol 211:1482–1489. Copyright (2009); permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  86. Cramp R et al (2010) Republished with permission of The Company of Biologists Ltd, from Cramp R, Hudson N, Franklin CE (2010) Activity, abundance, distribution and expression of Na+/K+–ATPase in the salt glands of Crocodylus porosus following chronic saltwater acclimation. J Exp Biol 213:1301–1308, Copyright (2010); permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  87. Crossland C (1911) The flight of Exocoetus. Nature (London) 86:279–280Google Scholar
  88. Cubo J, Casinos A (1998) Biomechanical significance of cross–sectional geometry of avian long bones. Eur J Morphol 36:19–28Google Scholar
  89. Cubo J, Casinos A (2000) Mechanical properties and chemical composition of avian long bones. Eur J Morphol 38:112–121Google Scholar
  90. Currey J (2003) The many adaptations of bones. J Biomech 36:1487–1495Google Scholar
  91. Damiens R, Rhee H, Hwang Y et al (2012) Compressive behavior of a turtle’s shell: experiment, modeling, and simulation. J Mech Behav Biomed Mater 6:106–112Google Scholar
  92. Daniel JF (1922) The elasmobranch fishes. University of California Press, BerkeleyGoogle Scholar
  93. Davenport J (1994) How and why do flying fish fly? Rev Fish Biol Fish 40:184–214Google Scholar
  94. Davenport J (2003) Allometric constraints on stability and maximum size in flying fishes: implications for their evolution. J Fish Biol 62:455–463Google Scholar
  95. Davenport J (2005) Swimbladder volume and body density in an armored benthic fish, the streaked gurnard. J Fish Biol 55:527–534Google Scholar
  96. Davis LS, Renner M (2003) Penguins. T&AD Poyser, LondonGoogle Scholar
  97. Dawson WR, Bartholomew GA, Bennett AF (1977) A reappraisal of the aquatic specialization of the Galapagos marine iguana (Amblyrhynchus cristatus). Evolution 31:891–897. Republished with permission of Society for the Study of Evolution; permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  98. de Beer GR, Moy–Thomas JA (1935) On the skull of Holocephali. Philos Trans R Soc Lond Ser B Biol Sci 224:287–312Google Scholar
  99. de Margerie E (2002) Laminar bone as an adaptation torsional loads in flapping flight. J Anat 201:521–526Google Scholar
  100. de Margerie E, Sanchez S, Cubo J et al (2005) Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds. Anat Rec A 282:49–66Google Scholar
  101. de Margerie E, Tafforeau P, Rakotomanana L (2006) In silico evolution of functional morphology: a test on bone tissue biomechanics. J R Soc Interface 3:679–687Google Scholar
  102. Decker JD (1967) Motility of the turtle embryo, Chelydra serpentina (Linné). Science 157:952–954Google Scholar
  103. Denison RH (1947) The exoskeleton of Tremataspis. Am J Sci 245:337–365Google Scholar
  104. Denison RH (1975) Evolution and classification of placodermi fishes. Breviora 432:1–24Google Scholar
  105. Dennison E, Cyrus Cooper C (2011) Osteoporosis in 2010: Building bones and (safely) preventing breaks. Nat Rev Rheumatol 7:80–82Google Scholar
  106. Diogo R (2007) On the origin and evolution of higher–clades: osteology, myology, phylogeny and macroevolution of bony fishes and the rise of tetrapods. Science Publishers, EnfieldGoogle Scholar
  107. Diogo R (2008) Comparative anatomy, homologies and evolution of the mandibular, hyoid and hypobranchial muscles of bony fish and tetrapods: a new insight. Anim Biol 58:123–172Google Scholar
  108. Domning DP (2001) The earliest known fully quadrupedal sirenian. Nature 413:625–627Google Scholar
  109. Donley JM et al (2004) Reprinted by permission from Macmillan Publishers Ltd., Nature (Donley JM, Sepulveda CA, Konstantinidis P et al (2004) Convergent evolution in mechanical design of lamnid sharks and tunas. Nature 429:61–65) copyright (2004)Google Scholar
  110. Donoghue PCJ, Sansom IJ (2002) Origin and early evolution of vertebrate skeletonization. Microsc Res Tech 59:352–372Google Scholar
  111. Downing SW, Salo WL, Spitzer RH et al (1981) The hagfish slime gland: a model system for studying the biology of mucus. Science 214:1143–1145Google Scholar
  112. Dumont ER (2010) Reprinted from Dumont ER (2010) Bone density and the lightweight skeletons of birds. Proc R Soc B 277:2193–2198, by permission of the Royal SocietyGoogle Scholar
  113. Dunson WA (1969) Electrolyte excretion by the salt gland of the Galapagos marine iguana. Am J Physiol 216:995–1002Google Scholar
  114. Dunson WA (1975) The biology of the sea snakes. University Park Press, Baltimore/London/TokyoGoogle Scholar
  115. Dunson WA, Freda J (1985) Water permeability of the skin of the amphibious snakes, Agkistrodon piscivorus. J Herpetol 19:93–98Google Scholar
  116. Dunson WA, Robinson GD (1976) Sea snake skin: permeable to water but not to sodium. J Comp Physiol I08:303–311Google Scholar
  117. Dunson WA, Packer RK, Dunson MK (1971) Sea snakes: an unusual salt gland under the tongue. Science 173:437–441Google Scholar
  118. Durnford CD (1906) Flying fish flight. Am Nut 40:1–11Google Scholar
  119. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107Google Scholar
  120. Eckert SA (2002) Swim speed and movement patterns of gravid leatherback sea turtles (Dermochelys coriacea) at St. Croix, US Virgin Islands. J Exp Biol 205:3689–3697Google Scholar
  121. Elder WH (1954) The oil gland of birds. Wilson Bull 66:6–31Google Scholar
  122. Ellis RA, Abel JH (1964) Intercellular channels in the salt–secreting glands of marine turtles. Science 144:1340–1342Google Scholar
  123. Ellis RA, Goertemiller C (1977) Significance of extensive ‘leaky’ cell junctions in the avian salt gland. Nature 268:555–556Google Scholar
  124. Enticott J, Tipling D (1997) Seabirds of the world. Stackpole Books, LondonGoogle Scholar
  125. Erben HK (1970) Ultrastruckturen and mineralisation rezenter und fossiler eierschalen bei bogen und reptilien. Biomineralisation 1:1–66Google Scholar
  126. Ergene S, Aymak C, Ucar AH (2011) Carapacial scute variation in green turtle (Chelonia mydas) and loggerhead turtle (Caretta caretta) hatchlings in Alata, Mersin, Turkey. Turk J Zool 35(3):343–356Google Scholar
  127. Ericson PG, Envall I, Irestedt M et al (2003) Inter–familial relationships of the shorebirds (Aves: Charadriiformes) based on nuclear DNA sequence data. BMC Evol Biol 3:16Google Scholar
  128. Eschmeyer WN (1990) Catalog of the genera of recent fishes. California Academy of Sciences, San Francisco. 697 ppGoogle Scholar
  129. Evans HM (1923) The defensive spines of fishes, living and fossil, and the glandular structures in connection therewith, with observations on the nature of fish venoms. Philos Trans R Soc Lond 212:1–33Google Scholar
  130. Ewert MA (1979) The embryo and its egg: development and natural history. In: Harless M, Morloch H (eds) Turtles: perspectives and research. Wiley, New YorkGoogle Scholar
  131. Feduccia A (1996) The origin and evolution of birds. Yale University Press, New HavenGoogle Scholar
  132. Fischer J, Voigt S, Schneider JW, Buchwitz M et al (2011) A Selachian freshwater fauna from the Triassic of Kyrgyzstan and its implication for Mesozoic Shark Nurseries. J Vertebr Paleontol 31(5):937–953Google Scholar
  133. Fish FE (1990) Wing design and scaling of flying fish with regard to flight performance. J Zool 221(3):391–403Google Scholar
  134. Fish FE (1998) Biomechanical perspective on the origin of cetacean flukes. In: Thewissen JGM (ed) The emergence of whales. Plenum Press, New York, pp 303–324Google Scholar
  135. Fish FE (2000) Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale. Physiol Biochem Zool 73:683–698Google Scholar
  136. Fish FE, Kosak DM (2011) Biomimetics and marine technology: an introduction. Mar Technol Soc J 45:8–13Google Scholar
  137. Fisher HI (1975) Longevity of the Laysan albatross, Diomedea immutabilis. Bird-Banding 46:1–100Google Scholar
  138. Forbes A (1936) Flying fish. Science 83:261–262Google Scholar
  139. Franklin CE, Grigg GC (1993) Increased vascularity of the lingual salt glands of the estuarine crocodile, Crocodylus porosus, kept in hyperosmotic salinity. J Morphol 218:143–151Google Scholar
  140. Fraser GJ, Graham A, Smith MM (2006) Developmental and evolutionary origins of the vertebrate dentition: molecular controls for spatio–temporal organisation of tooth sites in osteichthyans. J Exp Zool B Mol Dev Evol 306:183–203Google Scholar
  141. Frenkel MJ, Gillespie JM (1976) The proteins of the keratin component of bird’s beaks. Aust J Biol Sci 29(5–6):467–479Google Scholar
  142. Fricke H, Plante R (1988) Habitat requirements of the living Coelacanth Latimeria chalumnae at Grande Comore, Indian Ocean. Naturwissenschaften 75:149–151Google Scholar
  143. Fujita K (1990) The caudal skeleton of Teleostean fishes. Tokai University Press, TokyoGoogle Scholar
  144. Gardiner BG (1984) The relationships of placoderms. J Vertebr Paleontol 4:379–395Google Scholar
  145. Gash SL, Bass JC (1973) Age, growth and population structures of fishes from acid and alkaline Strip–Mine Lakes in Southeast Kansas. Trans Kans Acad Sci 76:39–50Google Scholar
  146. Gaston AJ (2004) Seabirds: a natural history. Yale University Press, New HavenGoogle Scholar
  147. Geerinck T, De Poorter J, Adriaens D (2007) Morphology and development of teeth and epidermal brushes in loricariid catfishes. J Morphol 268:805–814Google Scholar
  148. Geist HR (2000) Nasal respiratory turbinate function in birds. Physiol Biochem Zool 73:581–589Google Scholar
  149. Germano DJ, Bury RB (1998) Age determination in turtles: evidence of annual deposition of scute rings. Chel Conserv Biol 3(1):123–132Google Scholar
  150. Gilbert SF, Loredo GA, Brukman A et al (2001) Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol Dev 3:47–58Google Scholar
  151. Gill T (1905) Flying fishes and their habits. A Rep Smithon Inst 1904:495–515Google Scholar
  152. Ginter M (2004) Devonian sharks and the origin of Xenacanthiformes. In: Arratia G, Wilson MVH, Cloutier R (eds) Recent advances in the origin and early radiation of vertebrates. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  153. Ginter M, Hampe O, Duffin C (2010) Paleozoic Elasmobranchii. In: Schultze H–P (ed) Handbook of paleoichthyology, vol 3D. Verlag Dr Friedrich Pfeil, MünchenGoogle Scholar
  154. Goedert J (1989) Giant Late Eocene marine birds (Pelecaniformes: Pelagornithidae) from Northwestern Oregon. J Paleontol 63(6):939–944Google Scholar
  155. Goldek SG, Voris KH (1982) Marine snake diets, prey composition, diversity and overlap. Copeia 3:661–666Google Scholar
  156. Goodge WR (1960) Adaptations for amphibious vision in the dipper (Cinclus mexicanus). J Morphol 107:79–91Google Scholar
  157. Gorb SN (2011) Biomimetics: a million ideas from the ocean. In: Future Ocean, Kiel Marine Sciences (ed) The ocean is our future: Kiel marine scientists on a time trip to 2100. Cluster of Excellence “The Future Ocean”, Kiel, pp 70–75Google Scholar
  158. Gordon MS, Tucker VA (1968) Further observations on the physiology of salinity adaptation in the Crab–eating Frog (Rana cancrivora). J Exp Biol 49:185–193Google Scholar
  159. Goujet D (1984) Placoderm interrelationships: a new interpretation, with a short review of placoderm classification. Proc Linnean Soc NSW 107:211–241Google Scholar
  160. Graham JB (1997) Air–breathing fishes: evolution, diversity and adaptation. Academic, San DiegoGoogle Scholar
  161. Graham JB, Lee HJ (2004) Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition? Physiol Biochem Zool 77(5):720–731Google Scholar
  162. Graham JB, Gee JH, Motta J et al (1987) Subsurface buoyancy regulation by the sea snake Pelamis platurus. Physiol Zool 60:251–261Google Scholar
  163. Grémillet D, Chauvin C, Wilson RP et al (2005) Unusual feather structure allows partial plumage wettability in diving great cormorants Phalacrocorax carbo. J Avian Biol 36(1):57–63. Copyright © 2005 Journal of Avian Biology. Reprinted with permission from John Wiley and SonsGoogle Scholar
  164. Grigg GC, Taplin LE, Harlow P et al (1980) Survival and growth of hatchling Crocodylus porosus in salt water without access to fresh drinking water. Oecologia 47:264–266Google Scholar
  165. Habib M (2010) The structural mechanics and evolution of aquaflying birds. Biol J Linn Soc 99:687–698Google Scholar
  166. Halstead Tarlo LB (1963) Aspidin: the precursor of bone. Nature 199:46–48Google Scholar
  167. Halstead Tarlo LB (1973) The heterostracan fishes. Biol Rev 48:279–332Google Scholar
  168. Hampe O, Ivanov A (2007) First xenacanthid shark from the Pennsylvanian (Moscovian) of the northern Caucasus (Russia). Fossil Rec 10:179–189Google Scholar
  169. Harder W (1976) Anatomy of fishes, 2nd edn. Science Publishers, StuttgartGoogle Scholar
  170. Harrison P (1983) Seabirds: an identification guide. A&C Black, LondonGoogle Scholar
  171. Harrison P (1997) Seabirds of the world: a photographic guide. A&C Black, LondonGoogle Scholar
  172. Harrop H (1994) Albatrosses in the Western Palearctic. Birding World 7:241–245Google Scholar
  173. Hazard LC (2004) Sodium and potassium secretion by Iguana salt glands. University of California Press, BerkeleyGoogle Scholar
  174. Heatwole H (1999) Sea snakes. UNSW Press, Hong KongGoogle Scholar
  175. Hieronymus TL, Witmer LM (2010) Homology and evolution of avian compound rhamphothecae. Auk 127(3):590–604Google Scholar
  176. Higgins PJ (1978) The Galapagos iguanas: models of reptilian differentiation. Bioscience 28:512–515Google Scholar
  177. Hillenius WJ (1994) Turbinates in therapsids: evidence for Late Permian origins of mammalian endothermy. Evolution 48:207–229Google Scholar
  178. Hobson ES (1965) Observations on diving in Galapagos marine iguana, Amblyrhynchus cristatus (Bell). Copeia 1965:249–250Google Scholar
  179. Holmes WN, McBean RL (1964) Some aspects of electrolyte excretion in the green turtle, Chelonia mydas mydas. J Exp Biol 41:81–90Google Scholar
  180. Hone DWE, Dyke GJ, Haden M et al (2008) Body size evolution in Mesozoic birds. J Evol Biol 21:618–624Google Scholar
  181. Honza M, Picman J, Grim T et al (2001) How to hatch from an egg of great structural strength: a study of the common cuckoo. J Avian Biol 32:249–255. Copyright © 2001 Journal of Avian Biology. Reprinted with permission from John Wiley and SonsGoogle Scholar
  182. Hospitaleche CA, Montalti D, Marti LJ (2009) Skeletal morphoanatomy of the Brown Skua Stercorarius antarcticus lonnbergi and the South Polar Skua Stercorarius maccormicki. Polar Biol 32:759–774Google Scholar
  183. Hou HC (1928a) Studies on the glandula uropygialis of birds. Am J Physiol 85:380Google Scholar
  184. Hou HC (1928b) Studies on the glandula uropygialis of birds. Chin J Phys 2:345–380Google Scholar
  185. Howe JC, Springer VG (1993) Catalog of type specimens of recent fishes in the National Museum of Natural History, Smithsonian Institution, 5: Sharks (Chondrichthyes: Selachii). Smithson Contrib Zool 540:i–iii–1–19Google Scholar
  186. Hubbs CL (1918) The flight of the California flying fish. Copeia 1918:85–88Google Scholar
  187. Hughes GM (1972) Morphometrics of fish gills. Respir Physiol 14:1–26Google Scholar
  188. Hughes MR (2003) Reprinted from Hughes MR (2003) Regulation of salt gland, gut and kidney interactions. Comp Biochem Physiol A Mol Integr Physiol 136(3):507–524. Copyright (2003) with permission from ElsevierGoogle Scholar
  189. Ineich I, Laboute P (2002) Sea snakes of New Caledonia. IRD, ParisGoogle Scholar
  190. Jacob J, Ziswiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 6. Academic, New York, pp 199–314Google Scholar
  191. Janvier P (1996) Early vertebrates. Oxford University Press, OxfordGoogle Scholar
  192. Janvier P (1997a) Heterostraci. In: The tree of life web project. Accessed 20 Jan 2011
  193. Janvier P (1997b) Gnathostomata. Jawed Vertebrates. In: The tree of life web project. Accessed 20 Jan 2011
  194. Janvier P (2010) MicroRNAs revive old views about jawless vertebrate divergence and evolution. Proc Natl Acad Sci U S A 107:19137–19138Google Scholar
  195. Janvier P, Blieck A (1979) New data on the internal anatomy of the Heterostraci (Agnatha), with general remarks on the phylogeny of the Craniota. Zool Scr 8:287–296Google Scholar
  196. Jarvik E (1980) Basic structure and evolution of vertebrates, vol 1. Academic, LondonGoogle Scholar
  197. Johnsgard PA (1993) Cormorants, darters, and pelicans of the world. Smithsonian Institution Press, Washington, DCGoogle Scholar
  198. Judin KA (1961) On mechanism of the jaw in Charadriformes, Procellariiformes, and some other birds. Tr Zool Inst Leningr 29:257–302Google Scholar
  199. Jyane BC (1988) Mechanical behavior of snake skin. J Zool 214:125–140Google Scholar
  200. Kaiser GW (2007) The inner bird: anatomy and evolution. UBC Press, VancouverGoogle Scholar
  201. Katzir G, Howland HC (2003) Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis). J Exp Biol 206:833–841Google Scholar
  202. Kellermann A (1990) Catalogue of early life history stages of Antarctic notothenioid fishes. Berichte zur Polarforsch 67:45–136Google Scholar
  203. Kennedy M, Page RDM (2002) Seabird supertrees: combining partial estimates of procellariiform phylogeny. Auk 119:88–108Google Scholar
  204. Kirkpatrick SJ (1994) Scale effects on the stresses and safety factors in the wing bones of birds and bats. J Exp Biol 190:195–215Google Scholar
  205. Kirschner LB (1980) Comparison of vertebrate salt–excreting organs. Am J Physiol 238:R219–R223Google Scholar
  206. Kock K–H (2005a) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part I. Polar Biol 28:862–895Google Scholar
  207. Kock K–H (2005b) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part II. Polar Biol 28:897–909Google Scholar
  208. Kratt LF, Smith RJF (1978) Breeding tubercles occur on male and female Arctic Grayling (Thymallus arcticus). Copeia 1:185–188Google Scholar
  209. Krauss S, Monsonego–Ornan E, Zelzer E et al (2009) Mechanical function of a complex three–dimensional suture joining the bony elements in the shell of the red–eared slider turtle. Adv Mater 21:407–412Google Scholar
  210. Kriwet J, Gadzdicki A (2003) New Eocene Antarctic chimeroid fish (Holocephali, Chimaeriformes). Pol Polar Res 24(1):29–51Google Scholar
  211. Ksepka DT, Clarke JA (2010) The basal penguin (Aves: Sphenisciformes) Perudyptes devriesi and a phylogenetic evaluation of the penguin fossil record. Bull Am Mus Nat Hist 337:1–77Google Scholar
  212. Kuchel LJ, Franklin CE (2000) Morphology of the cloaca in the estuarine crocodile, Crocodylus porosus, and its plastic response to salinity. J Morphol 245:168–176. Copyright © 2000 Wiley-Liss, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  213. Kuratani S, Ota KG (2008) Hagfish (Cyclostomata, Vertebrata): searching for the ancestral developmental plan of vertebrates. BioEssays 30(2):167–172Google Scholar
  214. Kuratani S, Kuraku S, Nagashima H (2011) Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 13(1):1–14. Copyright © 2011 Wiley Periodicals, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  215. Kutschera U (2005) Predator-driven macroevolution in flying fishes inferred from behavioral studies: historical controversies and a hypothesis. Ann Hist Philos Biol 10:59–78Google Scholar
  216. Lauder GV (1983) Functional design and evolution of the pharyngeal jaw apparatus in euteleostean fishes. Zool J Linnean Soc 77:1–38Google Scholar
  217. Lauder GV (2000) Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. Am Zool 40:101–122Google Scholar
  218. Lauder GV, Drucker E (2002) Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. News Physiol Sci 17:235–240Google Scholar
  219. Lauder GV, Liem KF (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197Google Scholar
  220. Lauder GV, Nauen J, Drucker EG (2002) Experimental hydrodynamics and evolution: function of median fins in ray–finned fishes. Integr Comp Biol 42:1009–1017Google Scholar
  221. Lauder GV, Drucker EG, Nauen J et al (2003) Experimental hydrodynamics and evolution: caudal fin locomotion in fishes. In: Bels V, Gasc J–P, Casinos A (eds) Vertebrate biomechanics and evolution. Bios Scientific Publishers, OxfordGoogle Scholar
  222. Laurin M (2002) Tetrapod phylogeny, amphibian origins, and the definition of the name Tetrapoda. Syst Biol 51:364–369Google Scholar
  223. Laurin M (2010) How vertebrates left the water. University of California Press, BerkeleyGoogle Scholar
  224. Laurin M, Soler–Gijón R (2010) Osmotic tolerance and habitat of early stegocephalians: indirect evidence from parsimony, taphonomy, palaeobiogeography, physiology and morphology. Geol Soc Lond Spec Publ 339:151–179Google Scholar
  225. Lequette B, Verheyden C, Jowentin P (1989) Olfaction in subantarctic seabirds: its phylogenetic and ecological significance. Condor 91:732–735Google Scholar
  226. Lillywhite HB et al (2009) Republished with permission of The Company of Biologists Ltd, from Lillywhite HB, Menon JG, Menon GK et al (2009) Water exchange and permeability properties of the skin in three species of amphibious sea snakes (Laticauda spp.). J Exp Biol 212:1921–1929, Copyright (2009); permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  227. Lim J, Fudge DS, Levy N et al (2006) Hagfish slime ecomechanics: testing the gill–clogging hypothesis. J Exp Biol 209:702–710Google Scholar
  228. Lin YS, Wei CT, Olevsky EA et al (2011) Mechanical properties and the laminate structure of Arapaima gigas scales. J Mech Behav Biomed Mater 4(7):1145–1152Google Scholar
  229. Lingham–Soliar T (1999) Rare soft–tissue preservation showing fibrous structures in an ichthyosaur from the Lower Lias (Jurassic) of England. Proc R Soc B 266:2367–2373Google Scholar
  230. Lingham–Soliar T (2001) The ichthyosaur integument: skin fibers, a means for a strong, flexible and smooth skin. Lethaia 34:287–302Google Scholar
  231. Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae. ii, 824 pp. Available online at
  232. Lockley R (1984) Seabirds of the world. Facts on File, Inc, New YorkGoogle Scholar
  233. Loeb LB (1936) The “flight” of flying fish. Science 83:260–261Google Scholar
  234. Lofgren L (1984) Ocean birds. Croom Helm Ltd., GothenburgGoogle Scholar
  235. Lohmann KJ, Putman NF, Lohmann CM (2008) Geomagnetic imprinting: a unifying hypothesis of long–distance natal homing in salmon and sea turtles. Proc Natl Acad Sci U S A 105(49):19096–190101. Copyright (2008) National Academy of Sciences, U.S.AGoogle Scholar
  236. Long JA (1995) The rise of fishes: 500 million years of evolution. Johns Hopkins University Press, BaltimoreGoogle Scholar
  237. Long JA, Gordon M (2004) The greatest step in vertebrate history: a paleobiological review of the fish–tetrapod transition. Physiol Biochem Zool 77(5):700–719Google Scholar
  238. Long JA, Trinajstic K, Young GC et al (2008) Live birth in the Devonian period. Nature 453:650–652Google Scholar
  239. Long JA, Trinajstic K, Johanson Z (2009) Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature 457:1124–1127Google Scholar
  240. Long JA, Hall BK, McNamara KJ et al (2010) The phylogenetic origin of jaws in vertebrates: developmental plasticity and heterochrony. Kirtlandia 57:46–52Google Scholar
  241. Lönnberg E (1904) On the homologies of the different pieces of the compound rhamphotheca. Arkiv für Zoologie 1:473–512Google Scholar
  242. Lopuchowycz VB, Massare JA (2002) Bone microstructure of a Cretaceous ichthyosaur. Paludicola 3:139–147Google Scholar
  243. Lund R (2000) The new actinopterygian order Guildayichthyiformes from the lower Carboniferous of Montana (USA). Geodiversitas 22:171–206Google Scholar
  244. Maher B (2009) Reprinted by permission from Macmillan Publishers Ltd: Nature, Maher B (2009) Evolution: biology’s next top model? Nature 458:695–698, Copyright (2009)Google Scholar
  245. Maisey JG (1979) Finspine morphogenesis in squalid and heterodontid sharks. Zool J Linnean Soc 66:161–183Google Scholar
  246. Maisey JG (1996) Discovering fossil fishes. Henry Holt & Co, New YorkGoogle Scholar
  247. Mallatt J (1984) Early vertebrate evolution: pharyngeal structure and the origin of gnathostomes. J Zool 204:169–183Google Scholar
  248. Marples BJ (1932) The structure and development of the nasal glands of birds. Proc Zool Soc London 102:829–844Google Scholar
  249. Marshall AT (1989) Intracellular and luminal ion concentrations in sea turtle salt glands determined by x–ray microanalysis. J Comp Physiol B 159:609–616Google Scholar
  250. Martin RA (2006) The origin of modern sharks. Reef Quest. Retrieved 9 Sept 2006Google Scholar
  251. Martin S (2008) Global diversity of crocodiles (Crocodilia, Reptilia) in freshwater. Hydrobiologia 595:587–591Google Scholar
  252. Massare JA (1994) Swimming capabilities of Mesozoic marine reptiles: a review. In: Maddock L, Bone Q, Rayner JMV (eds) Mechanics and physiology of animal swimming. Cambridge University Press, LondonGoogle Scholar
  253. Mazzotti FJ, Dunson WA (1984) Adaptations of Crocodylus acutus and Alligator for life in saline water. Comp Biochem Physiol A Physiol 79:641–646Google Scholar
  254. McFarland LZ (1959) Captive marine birds possessing a functional lateral nasal gland (Salt gland). Nature 184:2030–2031Google Scholar
  255. McGowan C (1999) A practical guide to vertebrate mechanics. Cambridge University Press, CambridgeGoogle Scholar
  256. McGowan C, Motani R (2003) Ichthyopterygia: Handbuch der Paläoherpetologie Part 8. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  257. McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogenet Evol 53:891–906Google Scholar
  258. Menon GK, Menon J (2000) Avian epidermal lipids: functional considerations and relationships to feathering. Am Zool 40:540–552, reprinted by permission of Oxford University PressGoogle Scholar
  259. Meunier FJ (1980) Les relations isopedine – tissu osseux dans le post–temporal et les ecail Jes de la ligne laterale de Latimeria chalumnae (Smith). Zool Scr 9:307–317Google Scholar
  260. Meyers RA, Meyers RP (2005) Reprinted from Meyers RA, Myers RP (2005) Mandibular Bowing and Mineralization in Brown Pelicans. The Condor 107(2):445–449 by permission from The Cooper Ornithological Society. Copyright © 2005, The Cooper Ornithological Society. Published by the Cooper Ornithological SocietyGoogle Scholar
  261. Meylan AB (1988) Spongivory in hawksbill turtles: a diet of glass. Science 239:393–395Google Scholar
  262. Mi LY, Fritton SP, Basu M, Cowin SC (2005) Analysis of avian bone response to mechanical loading – Part One: distribution of bone fluid shear stress induced by bending and axial loading. Biomech Model Mechanobiol 4:118–131Google Scholar
  263. Mills CA (1936a) Source of propulsive power used by flying fish. Science 83:80Google Scholar
  264. Mills CA (1936b) Propulsive power used by flying fish. Science 83:262Google Scholar
  265. Mok H, Chang H (1986) Articulation of the pelvic spine in acanthopterygian fishes, with notes on its phylogenetic significance. Jpn J Ichthyol 33:145–149Google Scholar
  266. Monroe MH “Australia: The Land Where Time Began” (published on-line Accessed 15 May 2014). 2014 Copyright © Reprinted with permission
  267. Montague JJ (1983) A new size record for the saltwater crocodile (Crocodylus porosus). Herpetol Rev 14:36–37Google Scholar
  268. Mora C, Tittensor DP, Adl S, Simpson AGB et al (2011) How many species are there on earth and in the ocean? PLoS Biol 9:e1001127Google Scholar
  269. Motani R (2001) Estimating body mass from silhouettes: testing the assumption of elliptical body cross–sections. Paleobiology 27:735–750Google Scholar
  270. Motani R (2002a) Swimming speed estimation of extinct marine reptiles: energetic approach revisited. Paleobiology 28:251–262Google Scholar
  271. Motani R (2002b) Scaling effects in caudal fin kinematics: implication for ichthyosaurian speed. Nature 415:309–312Google Scholar
  272. Motani R (2005) Ichthyosauria: evolution and physical constraints of fish–shaped reptiles. Annu Rev Earth Planet Sci 33:395–420Google Scholar
  273. Motani R (2009) The evolution of marine reptiles. Evol Educ Outreach 2:224–235Google Scholar
  274. Motani R, Rothschild BM, Wahl W Jr (1999) Large eyeballs in diving ichthyosaurs. Nature 402:747Google Scholar
  275. Moyer BR, Rock AN, Clayton DH (2003) Experimental test of the importance of preen oil in rock doves (Columba Livia). The Auk 120(2):490–496 published by the American Ornithologists’ Union. Reprinted with permissionGoogle Scholar
  276. Naro–Maciel E, Le M, Fitz Simmons NN, Amato G (2008) Evolutionary relationships of marine turtles: a molecular phylogeny based on nuclear and mitochondrial genes. Mol Phylogenet Evol 49:659–662Google Scholar
  277. Neill WT (1958) The occurrence of amphibians and reptiles in saltwater areas and a bibliography. Bull Mar Sci Gulf Caribb 8:1–9Google Scholar
  278. Nelson JB (2005) Pelicans, cormorants, and their relatives. Oxford University Press, OxfordGoogle Scholar
  279. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, New YorkGoogle Scholar
  280. Neumann D (2006) Type catalogue of the ichthyological collection of the Zoologische Staatssammlung München. Part I: Historic type material from the “Old collection”, destroyed in the night 24/25 April 1944. Spixiana 29(3):259–285Google Scholar
  281. Nevitt GA (2008) Sensory ecology on the high seas: the odor world of the procellariiform seabirds. J Exp Biol 211:1706–1713Google Scholar
  282. Nevitt GA, Bonadonna F (2005) Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biol Lett 1:303–305Google Scholar
  283. Nicolson SW, Lutz PL (1989) Salt gland function in the green sea turtle Chelonia mydas. J Exp Biol 144:171–184Google Scholar
  284. Niedzwiedzki G, Szrek P, Narkiewicz K et al (2010) Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463:43–48Google Scholar
  285. Norberg UM (1985) Flying, gliding, and soaring. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, MAGoogle Scholar
  286. Norberg UM (1995) Wing design and migratory flight. Isr J Zool 41:297–305Google Scholar
  287. Nunn G, Stanley S (1998) Body size effects and rates of cytochrome B evolution in tube–nosed seabirds. Mol Biol Evol 15(10):1360–1371Google Scholar
  288. Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215:785–795Google Scholar
  289. Olson SL (1985) The fossil record of birds. In: Farner DS, King JR, Parkes KC (eds) Avian biology. Academic, OrlandoGoogle Scholar
  290. “On the Wings of the Albatross” by Carl Safina (2007) Accessed at 11 Apr 2014. © 2007 National Geographic Society. Reprinted with permission
  291. Onley D, Scofield P (2007) Albatrosses, petrels and shearwaters of the world. Princeton field guides. University Press, PrincetonGoogle Scholar
  292. Ortiz C, Boyce MC (2008) Materials science – bioinspired structural materials. Science 319:1053–1054Google Scholar
  293. Ostrom JH (1976) Archaeopteryx and the origin of birds. Biol J Linn Soc 8:91–182Google Scholar
  294. Owen R (1846) Lectures on the comparative anatomy and physiology of the vertebrate animals. Delivered at the Royal College of Surgeons 1844 and 1846. (no publisher given). LondonGoogle Scholar
  295. Park H, Choi H (2010) Republished with permission of The Company of Biologists Ltd, from Park H. Choi H (2010) Investigation of aerodynamic capabilities of flying fish in gliding flight. J Exp Biol 213:3269–3279. Copyright (2009); permission conveyed through Copyright Clearance Center, IncGoogle Scholar
  296. Patterson C (1965) The phylogeny of the chimeroids. Philos Trans R Soc Lond B 249:101–219Google Scholar
  297. Patterson C, Johnson GD (1995) The intermuscular bones and ligaments of teleostean fishes. Smithson Contrib Zool 559:1–83Google Scholar
  298. Pavlov V (2006) Dolphin skin as a natural anisotropic compliant wall. Bioinspir Biomim 1:31–40Google Scholar
  299. Pavlov V, Riedeberger D, Rist U, Seibert U (2012) Analysis of the relation between skin morphology and local flow conditions for a fast–swimming Dolphin. In: Tropea C, Bleckman H (eds) Nature–inspired fluid mechanics. Springer, Berlin/HeidelbergGoogle Scholar
  300. Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge University Press, New YorkGoogle Scholar
  301. Pennisi E (2011) Manta machines. Science 332:28–29Google Scholar
  302. Pennycuick CT (1967) The strength of the Pigeon’s wing bones in relation to their function. J Exp Biol 46:219–233Google Scholar
  303. Pennyquick CJ (1987) Flight of seabirds. In: Croxall JP (ed) Seabirds. Feeding ecology and role in marine ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  304. Piepenbrink H (1989) Examples of chemical changes during fossilisation. Appl Geochem 4:273–280Google Scholar
  305. Pinkerton JV, Dalkin AC, Crowe SE et al (2010) Treatment of postmenopausal osteoporosis in a patient with celiac disease. Nat Rev Endocrinol 6:167–171Google Scholar
  306. Pollerspöck J (2012), World Wide Web electronic publication, Version 2012 date
  307. Poore CB, Wilson GDF (1993) Marine species richness. Nature 361:597–598Google Scholar
  308. Prince PA, Huin N, Weimerskirch H (1994) Diving depths of albatrosses. Antarct Sci 6(3):353–354Google Scholar
  309. Raikow RJ, Icanovsky L, Bledsoe AH (1988) Forelimb joint mobility and the evolution of wing–propelled diving in birds. Auk 105:446–451Google Scholar
  310. Rasmussen AR (1997) Systematics of sea snakes: a critical review. Symp Zool Soc Lond 70:15–30Google Scholar
  311. Rasmussen AR (2001) Sea snakes. In: Carpenter KE, Niem VH (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific, vol 6. Bony fishes Part 4 (Labridae to Latimeriidae), estuarine crocodiles, sea turtles, sea snakes and marine mammals. FAO, Rome, pp 3987–4008Google Scholar
  312. Rasmussen A, Arnason U (1999a) Phylogenetic studies of complete mitochondrial DNA molecules place cartilaginous fishes within the tree of bony fishes. J Mol Evol 48:118–123Google Scholar
  313. Rasmussen A, Arnason U (1999b) Molecular studies suggest that cartilaginous fishes have a terminal position in the piscine tree. Proc Natl Acad Sci U S A 96:2177–2182Google Scholar
  314. Rasmussen AR, Elmberg J, Gravlund P, Ineich I (2011a) Sea snakes (Serpentes: subfamilies Hydrophiinae and Laticaudinae) in Vietnam: a comprehensive checklist and an updated identification key. Zootaxa 2894:1–20Google Scholar
  315. Rasmussen AR, Murphy JC, Ompi M, Gibbons JW, Uetz P (2011b) Marine reptiles. PLoS One 6(11):e27373. Copyright © 2011 Rasmussen et al. CC BY 2.5Google Scholar
  316. Rayfield EJ (2007) Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annu Rev Earth Planet Sci 35:541–576Google Scholar
  317. Reid REH (1997) Dinosaurian physiology: the case for “intermediate dinosaurs”. In: Farlow JO, Brett–Surman MK (eds) The complete dinosaur. Indiana University Press, BloomingtonGoogle Scholar
  318. Reidenberg JS (2007) Anatomical adaptations of aquatic mammals. Anat Rec 290:507–513. Copyright © 2007, Wiley-Liss, INC. Reprinted with permission from John Wiley and SonsGoogle Scholar
  319. Reina RD, Jones TT, Spotila JR (2002) Salt and water regulation by the leatherback sea turtle Dermochelys coriacea. J Exp Biol 205:1853–1860Google Scholar
  320. Reinhart RH (1953) Diagnosis of the new mammalian order, Desmostylia. J Geol 61:187Google Scholar
  321. Reinhart RH (1982) The extinct mammalian order Desmostylia. Natl Geogr Soc Res Rep 14:549–555Google Scholar
  322. Renaud CB (2011) Lampreys of the world: an annotated and illustrated catalogue of lamprey species known to date. FAO species catalogue for fishery purposes no. 5. FAO, RomeGoogle Scholar
  323. Renaud CB, Economidis PS (2010) Eudontomyzon graecus, a new nonparasitic lamprey from Greece (Petromyzontiformes: Petromyzontidae). Zootaxa 2477:37–48Google Scholar
  324. Retallack GJ (2011) Woodland hypothesis for Devonian tetrapod evolution. J Geol 119:235–258. Copyright © 2011, The University of Chicago PressGoogle Scholar
  325. Rhee H et al (2009) Reprinted from Rhee H, Horstemeyer MF, Hwang Y et al (2009) A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio–inspired synthetic composites. Mater Sci Eng C 29:2333–2339. Copyright (2009) with permission from ElsevierGoogle Scholar
  326. Rhodin AGJ (1985) Chondro–osseous development and growth of marine turtles. Copeia 1985:752–771Google Scholar
  327. Rice DW (1998) Marine mammals of the world: systematics and distribution. Soc Mar Mamm Spec Publ 4:213Google Scholar
  328. Richmond ND (1964) The mechanical functions of the testudinate plastron. Am Midl Nat 72:50–56Google Scholar
  329. Rieppel O (1995) The genus Placodus: systematics, morphology, paleobiogeography, and paleobiology. Fieldiana Geol New Ser 31:1–44Google Scholar
  330. Riess J (1986) Locomotion, biophysics of swimming and phylogeny of the ichthyosaurs. Palaeontogr Abt A 192:93–155Google Scholar
  331. Ritter EK (2002) Analysis of sharksucker, Echeneis naucrates, induced behavior patterns in the blacktip shark, Carcharchinus limbatus. Environ Biol Fish 65:111–115Google Scholar
  332. Roberts TR (1982) Unculi (horny projections arising from single cells), an adaptive feature of the epidermis of ostariophysan fishes. Zool Scr 11:55–76Google Scholar
  333. Robertson GM (1935) The ostracoderm order osteostraci. Science 82:282–283Google Scholar
  334. Robson P, Wright GM, Youson JH et al (2000) The structure and organization of Lamprin genes: multiple–copy genes with alternative splicing and convergent evolution with insect structural proteins. Mol Biol Evol 17(11):1739–1752Google Scholar
  335. Romer AS, Parsons TS (1986) The vertebrate body, 6th edn. Saunders College Publishing, PhiladelphiaGoogle Scholar
  336. Ronald K, Gots BL, Lupson JD et al (1991) An annotated bibliography on seals, sea lions, and walrus – supplement 2. International Council for the Exploration of the Sea, CopenhagenGoogle Scholar
  337. Rosenberger LJ (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394Google Scholar
  338. Ruben JA (1991) Reptilian physiology and the flight capacity of Archaeopteryx. Evolution 45:1–17Google Scholar
  339. Ruben J (1995) The evolution of endothermy in mammals and birds: from physiology to fossils. Annu Rev Physiol 57:69–95Google Scholar
  340. Ruben JA, Jones TD (2000) Selective factors associated with the origin of fur and feathers. Am Zool 40(4):585–596. Copyright © 2000, Oxford University Press. Reprinted by permission of Oxford University PressGoogle Scholar
  341. Ruben JA, Jones TD, Geist NR (1998) Respiratory physiology of the dinosaurs. Bioessays 20:852–859. Copyright © 1998 John Wiley & Sons, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  342. Ruta M, Jeffery JE, Coates MI (2003) A supertree of early tetrapods. Proc R Soc B 270(1532):2507–2516Google Scholar
  343. Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850Google Scholar
  344. Sale A, Luschi P (2009) Navigational challenges in the oceanic migrations of leatherback sea turtles. Proc Biol Sci 276(1674):3737–3745Google Scholar
  345. Salibian A, Montalti D (2009) Physiological and biochemical aspects of the avian uropygial gland. Braz J Biol 69(2):437–446Google Scholar
  346. Sander PM (2000) Ichthyosauria: their diversity, distribution, and phylogeny. Paläontol Ztschr 74:1–35Google Scholar
  347. Sander PM, Chen X, Cheng L et al (2011) Short–snouted toothless ichthyosaur from China suggests late triassic diversification of suction feeding ichthyosaurs. PLoS One 6(5):e19480. Copyright © 2011 Sander et al. CC BY 2.5Google Scholar
  348. Sansom RS (2009) Phylogeny, classification and character polarity of the Osteostraci (Vertebrata). J Syst Palaeontol 7:95–117Google Scholar
  349. Savile DBO (1957) Adaptive evolution in the avian wing. Evolution 11:212–224Google Scholar
  350. Schaefer JT, Summers AP (2005) Batoid wing skeletal structure: novel morphologies, mechanical implications and phylogenetic patterns. J Morphol 264:298–313Google Scholar
  351. Schleich H, Kastle W (1988) Reptile eggshells: SEM atlas. Gustav Fischer Verlag, StuttgartGoogle Scholar
  352. Schmidt–Nielsen K, Fange R (1958) Reprinted by permission from Macmillan Publishers Ltd: Nature (Schmidt–Nielsen K, Fange R (1958) Salt glands in marine reptiles. Nature 182:783–785) copyright (1958)Google Scholar
  353. Schmidt–Nielsen K, Sladen WJL (1958) Nasal salt secretion in the Humboldt penguin. Nature 181:1217–1218Google Scholar
  354. Schmidt–Neilsen KP, Hainsworth FR, Murrish DE (1970) Countercurrent heat exchange in the respiratory passages: effect on water and heat balance. Respir Physiol 9(2):9263–9276Google Scholar
  355. Scholander PF, Walters V, Hock R et al (1950) Body insulation of some arctic and tropical mammals and birds. Biol Bull 99:225–236Google Scholar
  356. Schreiber EA, Burger J (2001) Seabirds in the marine environment. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca RatonGoogle Scholar
  357. Schreiber RW, Woolfenden GE, Olfenden O et al (1975) Prey capture by the brown pelican. Auk 92:649–654Google Scholar
  358. Schultze HP (1999) The fossil record of the intertidal zone. In: Horn MH et al (eds) Intertidal fishes: life in two worlds. Academic, San DiegoGoogle Scholar
  359. Schultze HP (2010) Gnatostomata, Kiefermünder. Spezielle Zoologie. Springer, Berlin/HeidelbergGoogle Scholar
  360. Shadbolt L (1908) On the flying fish. Aeronaut J 12:111–114Google Scholar
  361. Shoulejkin W (1929) Airdynamics of the flying fish. Int Rev Ges Hydrobiol Hydrogr 22:102–110Google Scholar
  362. Shubin NH, Daeschler EB, Jenkins FA (2006) The pectoral fin of Tiktaalik rosae and the origin of the tetrapod limb. Nature 440:764–771Google Scholar
  363. Shufeldt RW (1890) Contributions to the comparative osteology of arctic and sub–arctic water–birds: Part VIII. J Anat Physiol 25:60–77Google Scholar
  364. Simons ELR (2010) Forelimb skeletal morphology and flight mode evolution in pelecaniform birds. Zoology 113:39–46Google Scholar
  365. Simons ELR, O’Connor PM (2012) Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations. Anat Rec Adv Integr Anat Evol Biol 295:386–396. Copyright © 2012 Wiley Periodicals, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  366. Simons ELR, Hieronymus TL, O’Connor PM (2011) Cross–sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds. J Morphol 272:958–971Google Scholar
  367. Sire J–Y, Marin S, Allizard F (1998) A comparison of teeth and dermal denticles (odontodes) in the teleost Denticeps clupeoides (Clupeomorpha). J Morphol 237:237–256Google Scholar
  368. Sivak JG (1980) Reprinted from Trends Neurosci 3, Sivak JG (1980) Avian mechanisms for vision in air and water. Trends Neurosci 3:314–317. Copyright (1980) with permission from ElsevierGoogle Scholar
  369. Smith M (1926) Monograph of the sea snakes (Hydrophiidae). Wheldon & Wesley, OxfordGoogle Scholar
  370. Smith ND (2010) Phylogenetic analysis of Pelecaniformes (Aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies. PLoS One 5(10):e13354Google Scholar
  371. Smith L (2013) Shark Evolution and Classification. Published online: Access 15 May 2014. Copyright © 2013, Saltwater Life ( Reprinted with permission
  372. Soldaat E, Leopold MF, Meesters EH et al (2009) Albatross mandible at archeological site in Amsterdam, the Netherlands, and WP records of Diomedea albatrosses. Dutch Birding 31(1):1–16Google Scholar
  373. Song J, Ortiz C, Boyce MC (2011) Threat–protection mechanics of an armored fish. J Mech Behav Biomed Mater 4(5):699–712Google Scholar
  374. Soons J, Herrel A, Genbrugge A et al (2010) Mechanical stress, fracture risk and beak evolution in Darwin’s ground finches (Geospiza). Philos Trans R Soc B 365:1093–1098Google Scholar
  375. Soons J, Herrel A, Aerts P, Dirckx J (2012a) Determination and validation of the elastic moduli of small and complex biological samples: bone and keratin in bird beaks. J R Soc Interface 9(71):1381–1388 by permission of the Royal SocietyGoogle Scholar
  376. Soons J, Herrel A, Genbrugge A et al (2012b) Multi–layered bird beaks: a finite–element approach towards the role of keratin in stress dissipation. J R Soc Interface 9(73):1787–1796Google Scholar
  377. Stahl B (1999) Chondrichthyes III: Holocephali. In: Schultze H–P (ed) Handbook of paleoichthyology 4. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  378. Stelbrink B, von Rintelen T, Cliff G et al (2010) Molecular systematics and global phylogeography of angel sharks (genus Squatina). Mol Phylogenet Evol 54:395–404Google Scholar
  379. Stettenheim P (1972) The integument of birds. In: Famer DS, King JR (eds) Avian biology, vol 2. Academic, New YorkGoogle Scholar
  380. Stettenheim PR (2000) The integumentary morphology of modern birds–an overview. Am Zool 40(4):461–477Google Scholar
  381. Stiassny MLJ, Moore JA (1992) A review of the pelvic girdle of atherinomorph fishes. Zool J Linnean Soc 104:209–242Google Scholar
  382. Sudo S, Tsuyuki K, Ito Y et al (2002) A study on the surface shape of fish scales. JSME Int J Ser C 45:1100–1105Google Scholar
  383. Talevi M, Fernández MS (2012) Unexpected skeletal histology of an ichthyosaur from the Middle Jurassic of Patagonia: implications for evolution of bone microstructure among secondary aquatic tetrapods. Naturwissenschaften 99(3):241–244Google Scholar
  384. Tamiya N, Yagi T (2011) Studies on sea snake venom. Proc Jpn Acad Ser B Phys Biol Sci 87(3):41–52Google Scholar
  385. Taplin LE (1984) Homeostasis of plasma electrolytes, sodium and water pools in the Estuarine crocodile, Crocodylus porosus, from fresh, saline and hypersaline waters. Oecologia 63:63–70Google Scholar
  386. Taplin LE (1985) Sodium and water budgets of the fasted estuarine crocodile, Crocodylus porosus, in sea water. J Comp Physiol B 155:501–513Google Scholar
  387. Taplin LE, Grigg GC (1981) Salt glands in the tongue of the Estuarine Crocodile Crocodylus porosus. Science 212:1045–1047Google Scholar
  388. Taplin LE, Loveridge JP (1988) Nile crocodiles, Crocodylus niloticus, and estuarine crocodiles, Crocodylus porosus, show similar osmoregulatory responses on exposure to seawater. Comp Biochem Physiol A Comp Physiol 89:443–448Google Scholar
  389. Taub AM, Dunson WA (1967) The salt gland in a sea snake (Laticauda). Nature 215:995–996Google Scholar
  390. Taylor MA (1987) A reinterpretation of ichthyosaur swimming and buoyancy. Palaeontology 30:531–535Google Scholar
  391. Thewissen JGM, Williams EM (2002) The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations. Annu Rev Ecol Syst 33:73–90Google Scholar
  392. Thiel R, Eidus I, Neumann R (2009) The Zoological Museum Hamburg (ZMH) fish collection as a global biodiversity archive for elasmobranchs and actinopterygians as well as other fish taxa. J Appl Ichthyol 25(S1):9–32Google Scholar
  393. Thomson KS (1969) The biology of the lobe–finned fishes. Biol Rev 44:91–154Google Scholar
  394. Thomson KS (1975) On the biology of cosmine. Bull Peabody Mus Nat Hist 40:1–59Google Scholar
  395. Thorne PM, Ruta M, Benton MJ (2011) Resetting the evolution of marine reptiles at the Triassic–Jurassic boundary. Proc Natl Acad Sci U S A 108:8339–8344Google Scholar
  396. Tickell WLN (2000) Albatrosses. Pica Press, SussexGoogle Scholar
  397. Tobalske BW (2010) Hovering and intermittent flight in birds. Bioinspir Biomim 5(4):045004Google Scholar
  398. Travers RA (1981) The interarcual cartilage: a review of its development, distribution and value as an indicator in euteleostean fishes. J Nat Hist 15:853–871Google Scholar
  399. Tu MC, Lillywhite HB, Menon JG, Menon GK (2002) Postnatal ecdysis establishes the permeability barrier in snake skin: new insights into barrier lipid structures. J Exp Biol 205:3019–3030Google Scholar
  400. Turner S (1992) Thelodont lifestyles. In: Mark–Kurik E (ed) Fossil fishes as living animals. Akademia (Tallinn, Estonia). Academy of Sciences of Estonia, TallinnGoogle Scholar
  401. Turner S, Burrow CJ (2011) A Lower Carboniferous xenacanthiform shark from Australia. J Vertebr Paleontol 31(2):241–257Google Scholar
  402. Tyler SJ, Ormerod SJ (1994) The dippers. T and AD Poyser, LondonGoogle Scholar
  403. Uetzt P (2011) 15: the reptile database. Available: Accessed 23 Sept 2011
  404. Uhen MD (2007) Evolution of marine mammals: back to the sea after 300 million years. Anat Rec 290(6):514–522. Copyright © 2007 Wiley-Liss, Inc. Reprinted with permission from John Wiley and SonsGoogle Scholar
  405. Van der Brugghen W, Janvier P (1993) Denticles in thelodonts. Nature 364:107Google Scholar
  406. Videler JJ (2005) Avian flight. Oxford University Press, New YorkGoogle Scholar
  407. Vogel S (1994) Life in moving fluids. Princeton University Press, PrincetonGoogle Scholar
  408. Vogel S (2003) Comparative biomechanics: life’s physical world. Princeton, Princeton University Press. © 2003 by Princeton University Press. Reprinted with permissionGoogle Scholar
  409. Voris HK, Voris HH (1983) Feeding strategies in marine snakes: an analysis of evolutionary, morphological, behavioral and ecological relationships. Am Zool 23(2):411–425Google Scholar
  410. Waite JH, Broomell CC (2012) Changing environments and structure–property relationships in marine biomaterials. J Exp Biol 215:873–883Google Scholar
  411. Walsh SA, MacLeod N, O’Neill M (2008) Spot the penguin: can reliable taxonomic identifications be made using isolated foot bones? In: Walsh S (ed) Automated taxon identification in Systematic. Reproduced with permission of TAYLOR & FRANCIS GROUP LLC in the format Republish in a book via Copyright Clearance CenterGoogle Scholar
  412. Wang X et al (2012) Reprinted from Biochem Biophys Res Commun, 421, Wang X, Zhang Y, Wu Q, Zhang H (2012) Evolutionary landscape of amphibians emerging from ancient freshwater fish inferred from complete mitochondrial genomes, 228–231. Copyright (2012) with permission from ElsevierGoogle Scholar
  413. Ward DJ, Duffin CJ (1989) Mesozoic chimeroids. 1. A new chimeroid from the Early Jurassic of Gloucestershire. Engl Mesozoic Res 2:45–51Google Scholar
  414. Warham J (1977) Wing loadings, wing shapes, and flight capabilities of Procellariiformes. NZ J Zool 4:73–83Google Scholar
  415. Warham J (1990) The Petrels: their ecology and breeding systems. Academic, LondonGoogle Scholar
  416. Watanuki Y, Niizuma Y, Geir WG, Sato K, Naito Y (2003) Stroke and glide of wing–propelled divers: deep diving seabirds adjust surge frequency to buoyancy change with depth. Proc R Soc Lond B 270(1514):483–488 by permission of the Royal SocietyGoogle Scholar
  417. Watanuki Y, Wanless S, Harris M et al (2006) Swim speeds and stroke patterns in wing–propelled divers: a comparison among alcids and a penguin. J Exp Biol 209:1217–1230Google Scholar
  418. Westhoff G et al (2005) Reprinted from Zoology 108, Westhoff G, Fry BG, Bleckmann H (2005) Sea snakes (Lapemis curtus) are sensitive to low–amplitude water motions. Zoology 108:195–200, Copyright (2005) with permission from ElsevierGoogle Scholar
  419. Wetherbee DK, Barlett LM (1962) Egg teeth and shell rupture of the American Woodcock. Auk 79:117Google Scholar
  420. Wiebe KL (2010) Reprinted from Wiebe KL (2010) A supplemental function of the avian egg tooth. Condor 112:1–7 by permission from The Cooper Ornithological Society. Copyright © 2010, The Cooper Ornithological Society. Published by the Cooper Ornithological SocietyGoogle Scholar
  421. Wikelski M, Thom C (2000) Reprinted by permission from Macmillan Publishers Ltd: Nature (Wikelski M, Thom C (2000) Marine iguanas shrink to survive El Niño. Nature 403(6765):37–388) copyright (2000)Google Scholar
  422. Wiley ML, Collette BB (1970) Breeding tubercles and contact organs in fishes: their occurrence, structure, and significance. Bull Am Mus Nat Hist 143:143–216Google Scholar
  423. Wiley EO, Johnson GD (2010) A teleost classification based on monophyletic groups. In: Nelson JS, Schultze H–P, Wilson MVH (eds) Origin and phylogenetic interrelationships of teleosts. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  424. Wilga CD, Lauder GV (2004) Biomechanics of locomotion in sharks, rays, and chimeras. In: Carrier JC, Musick J, Heithaus M (eds) The biology of sharks and their relatives. CRC Press, Boca Raton, pp 139–164Google Scholar
  425. Williams TD (1995) The penguins. Oxford University Press, OxfordGoogle Scholar
  426. Wilson MVH (2010) Acanthodii. Access Science Encyclopedia at McGraw–Hill. Accessed on 17 Feb 2010Google Scholar
  427. Wilson MVH, Caldwell MW (1993) New Silurian and Devonien fork–tailed ‘thelodonts’ are jawless vertebrates with stomachs and deep bodies. Nature 361:442–444Google Scholar
  428. Wilson DS, Tracy CR, Tracy CR (2003) Estimating age of turtles from growth rings: a critical evaluation of the technique. Herpatologica 59(2):178–194Google Scholar
  429. Wyneken J (2001) The anatomy of sea turtles. NOAA technical memorandum NMFS–SEFSC–470. NOAA, MiamiGoogle Scholar
  430. Xian–guang H, Aldridge RJ, David J et al (2002) New evidence on the anatomy and phylogeny of the earliest vertebrates. Proc R Soc B 269(1503):1865–1869Google Scholar
  431. “Yellow-Bellied Sea Snake” Last accepted 25 May 2014. Copyright (c) 2014, Waikiki Aquarium.)
  432. Young GC (1986) The relationships of placoderm fishes. Zool J Linnean Soc 88:1–57Google Scholar
  433. Yu X, Zhu M, Zhao W (2010) The origin and diversification of osteichthyans and sarcopterygians: rare Chinese fossil findings advance research on key issues of evolution. Paleoichthyol 24:71–75Google Scholar
  434. Zhu M, Ahlberg PE (2004) The origin of the internal nostril of tetrapods. Nature 432:94–97Google Scholar
  435. Zhu M, Schultze HP (1997) The oldest sarcopterygian fish. Lethaia 30:293–304Google Scholar
  436. Zhu M, Yu XB (2002) A primitive fish close to the common ancestor of tetrapods and lungfish. Nature 418:767–770Google Scholar
  437. Zhu M, Yu X, Janvier P (1999) A primitive fossil fish sheds light on the origin of bony fishes. Nature 397:607–610Google Scholar
  438. Zhu M, Yu XB, Ahlberg PE (2001) A primitive sarcopterygian fish with an eyestalk. Nature 410:81–84Google Scholar
  439. Zhu M, Yu XB, Wang W et al (2006) A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature 441:77–80Google Scholar
  440. Zhu M, Zhao WJ, Jia LT et al (2009) The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458:469–474Google Scholar
  441. Zylberberg L, Meunier FOJ, Laurin M (2010) A microanatomical and histological study of the postcranial dermal skeleton in the devonian Sarcopterygian Eusthenopteron foordi. Acta Palaeontol Pol 55(3):459–470Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Experimental PhysicsTU Bergakademie FreibergFreibergGermany

Personalised recommendations