Skip to main content

Introduction

  • Chapter
  • First Online:
Biological Materials of Marine Origin

Part of the book series: Biologically-Inspired Systems ((BISY,volume 4))

  • 1753 Accesses

Abstract

Marine vertebrates include fish, amphibians, reptiles, birds, and mammals. The Part I describes the classification of marine vertebrates. Included is information about the broad diversity seen in specific biological materials. These materials include mineralized tissues (cartilage, bones, teeth, dentin, egg shells), biominerals (otoliths and otoconia), and skeletal structures (carapaces, sucking disks, spines, scales, scutes, plates, denticles etc.). Elastomers (egg case) and structural proteins (collagen, keratins) are also mentioned. Special attention is payed to the biomimetic applications of biomaterials originating from marine vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LE (1906) The flight of flying fish. Zoologist 4:145–148

    Google Scholar 

  • Adams NJ, Walter CB (1993) Maximum diving depths of cape gannets. Condor 95:136–138

    Google Scholar 

  • Ahlberg PE (1989) Paired fin skeletons and relationships of the fossil group Porolepiformes (Osteichthyes: Sarcopterygii). Zool J Linnean Soc 96:119–166

    Google Scholar 

  • Ahlberg PE (1991) Tetrapod or near tetrapod fossils from the Upper Devonian of Scotland. Nature 354:298–301

    Google Scholar 

  • Ahlberg PE (1993) Elginerpeton pancheni and the earliest tetrapod clade. Nature 373:420–425

    Google Scholar 

  • Ahlberg PE, Johanson Z (1998) Osteolepiforms and the ancestry of tetrapods. Nature 395(6704):792–794

    Google Scholar 

  • Ahlberg P, Trinajstic K, Johanson Z, Long J (2009) Pelvic claspers confirm chondrichthyan–like internal fertilization in arthrodires. Nature 460:888–889

    Google Scholar 

  • Ahlborn F (1897) Der flug der Fische. Zool Jb Abt Syst 9:329–338

    Google Scholar 

  • Ainley DG (1980) Birds as marine organisms. CalCOFI Rep 21:48–53

    Google Scholar 

  • Al–Bahry SN, Mahmoud IY, Al–Amri IS et al (2009) Ultrastructural features and elemental distribution in eggshell during pre and post hatching periods in the green turtle, Chelonia mydas at Ras Al–Hadd, Oman. Tissue Cell 41:214–221

    Google Scholar 

  • Albertson RC, Cresko W, Detrich HW III, Postlethwait JH (2009) Evolutionary mutant models for human disease. Trends Genet 25:74–81

    Google Scholar 

  • Albertson RC, Yan YL, Titus TA et al (2010) Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evol Biol 10:4

    Google Scholar 

  • Allaby A, Allaby M (1999) Anaspida. In: A dictionary of earth sciences. Oxford University Press, Oxford

    Google Scholar 

  • Allen WE (1923) Fishing activities of the California Brown Pelican. Condor 25:107–108

    Google Scholar 

  • Allis EP (1922) The cranial anatomy of Polypterus, with special reference to Polypterus bichir. J Anat 56:180–294

    Google Scholar 

  • Andrews CW (1910) A descriptive catalogue of the marine reptiles of the Oxford clay: Part 1. The British Museum (Natural History), London

    Google Scholar 

  • Andrews CW (1913) A descriptive catalogue of the marine reptiles of the Oxford clay: Part 2. The British Museum (Natural History), London

    Google Scholar 

  • Appeltans W, Bouchet P, Boxshall GA et al (2012) (eds) World register of marine species. Accessed at http://www.marinespecies.org on 29 Sept 2012

  • Arnott HJ, Maciolek NJ, Nicol JAC (1970) Retinal tapetum lucidum: a novel reflecting system in the eye of teleosts. Science 169:478–480

    Google Scholar 

  • Arsenault M (1982) Eusthenopteron foordi, a predator on Homalacanthus concinnus from the Escuminac formation, Miguasha, Quebec. Can J Earth Sci 19:2214–2217

    Google Scholar 

  • Aschliman NC, Claeson KM, McEachran JD (2012) Phylogeny of Batoidea. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Ashmole NP (1971) Seabird ecology and the marine environment. In: Farner DS, King JR (eds) Avian biology, vol 1. Academic, New York

    Google Scholar 

  • Aubret F, Shine R (2008) The origin of evolutionary innovations: locomotor consequences of tail shape in aquatic snakes. Funct Ecol 22:317–322

    Google Scholar 

  • Baker MA (1982) Brain cooling in endotherms in heat and exercise. Annu Rev Physiol 44:85–96

    Google Scholar 

  • Balani K, Patel RR, Keshri AK et al (2011) Multi–scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell. J Mech Behav Biomed Mater 4(7):1440–1451

    Google Scholar 

  • Bar Cohen Y (2011) Biomimicking marine mechanisms and organizational principles. Mar Technol Soc J 45:14–15

    Google Scholar 

  • Bardack D (1991) First fossil hagfish (Myxinoidea): a record from the Pennsylvanian of Illinois. Science 254:701–703

    Google Scholar 

  • Bartholomew GA, Lasiewski RC (1965) Heating and cooling rates, heart rate and simulated diving in the Galapagos marine iguana. Comp Biochem Physiol 16:573–582

    Google Scholar 

  • Bartholomew GA, Bennett AF, Dawson WR (1976) Swimming, diving, and lactate production of the marine iguana, Amblyrhynchus cristatus. Copeia 1976:709–720

    Google Scholar 

  • Basden AM, Young GC (2001) A primitive actinopterygian neurocranium from the Early Devonian of southeastern Australia. J Vertebr Paleontol 21:754–766

    Google Scholar 

  • Baum C, Simon F, Meyer W et al (2003) Surface properties of the skin of the pilot whale Globicephala melas. Biofouling 19(Supplement):181–186

    Google Scholar 

  • Baumel JJ, Witmer LM, Baumel JJ et al (1993) Osteologia. Handbook of avian anatomy: nomina anatomica avium. Publ Nuttall Ornithol Club 23:45–132

    Google Scholar 

  • Bell T (1825) On a new genus of Iguanidae. Zool J 2:204–208

    Google Scholar 

  • Bellamkonda RV (2008) Biomimetic materials: marine inspiration. Nat Mater 7:347–348

    Google Scholar 

  • Bemis WE, Northcutt RG (1992) Skin and blood vessels of the snout of the Australian lungfish, Neoceratodus forsteri, and their significance for interpreting the cosmine of Devonian lungfishes. Acta Zool 73:115–139

    Google Scholar 

  • Bemis WE, Findeis EK, Grande L (1997) An overview of Acipenseriformes. Environ Biol Fishes 48:25–71

    Google Scholar 

  • Benson RBJ, Butler RJ, Lindgren J et al (2010) Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proc R Soc Lond B Biol Sci 277:829–834

    Google Scholar 

  • Berg LS (1940) Classification of fishes, both recent and fossil. Travaux de l’Institute zoologique de l’Academie des Sciences de l’URSS 5(2):85–517

    Google Scholar 

  • Bernard A et al (2010) From Bernard A, Lécuyer C, Vincent P et al (2010) Regulation of body temperature by some mesozoic marine reptiles. Science 328:1379–1382. Reprinted with permission from AAAS

    Google Scholar 

  • Birstein VJ, Hanner R, DeSalle R (1997) Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fishes 48:127–155

    Google Scholar 

  • Blake RW (1983) Fish locomotion. Cambridge University Press, Cambridge

    Google Scholar 

  • Bock WJ, Kummer B (1968) The avian mandible as a structural girder. J Biomech 1:89–96

    Google Scholar 

  • Boersma PD (1977) An ecological and behavioral study of the Galápagos penguin. Living Bird 15:43–93

    Google Scholar 

  • Boisvert C (2005) The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature 438:1145–1147

    Google Scholar 

  • Boisvert CA, Mark–Kurik E, Ahlberg PE (2008) The pectoral fin of Panderichthys and the origin of digits. Nature 456:636–638

    Google Scholar 

  • Bonser RHC, Witter MS (1993) Indentation hardness of the bill keratin of the European starling. Condor 95:136–138

    Google Scholar 

  • Bostwick KS et al (2012) Reprinted from Bostwick KS, Riccio ML, Humphries JM (2012) Massive, solidified bone in the wing of a volant courting bird. Biol Lett (doi:10.1098/rsbl.2012) by permission of the Royal Society

  • Botella H, Blom H, Dorka M, Ahlberg PE et al (2007) Jaws and teeth of the earliest bony fishes. Nature 448:583–586

    Google Scholar 

  • Botella H, Donoghue PCJ, Martínez–Pérez C (2009) Enameloid microstructure in the oldest known chondrichthyan teeth. Acta Zool 90:103–108

    Google Scholar 

  • Bouchet P (2006) The magnitude of marine biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity: scientific and technological challenges. Funbdacion BBVA, Bilbao

    Google Scholar 

  • Branch B (1998) Field guide to the snakes and other reptiles of southern Africa. Ralph Curtis Books Publishing, Florida

    Google Scholar 

  • Brazeau MD (2009) The braincase and jaws of a Devonian ‘acanthodian’ and the origin of modern gnathostomes. Nature 457:305–308

    Google Scholar 

  • Breder CM Jr (1930) On the structural specialization of flying fishes from the standpoint of aerodynamics. Copeia 4:114–121

    Google Scholar 

  • Brewer ML, Hertel F (2007) Wing morphology and flight behavior of pelecaniform seabirds. J Morphol 268:866–877

    Google Scholar 

  • Briggs JC, Shelgrove P (1999) Marine species diversity. Bioscience 49:351–352

    Google Scholar 

  • Brischoux F, Bonnet X (2009) Life history of sea kraits in New Caledonia. Zoologia Neocaledonica 7 Memoires du Museum National d’Histoire Naturelle 198:37–51

    Google Scholar 

  • Brito–Echeverria J, Lopez–Lopez A, Yarza P et al (2009) Occurrence of Halococcus spp. in the nostrils salt glands of the seabird Calonectris diomedea. Extremophiles 13(3):557–565

    Google Scholar 

  • Brooke M (2004) Albatrosses and petrels across the world. Oxford University Press, Oxford. Copyright © 2004, Oxford University Press. This material is used by the permission of Oxford University Press

    Google Scholar 

  • Brothers EB (1984) Otolith studies. In: Moser HG, Richards WJ, Cohen MD et al (eds) Ontogeny and systematics of fishes, Spec. publ. no. 1. American Society of Ichthyologists and Herpetologists, Lawrence, pp 50–57

    Google Scholar 

  • Brown JW, Rest JS, García–Moreno J et al (2008) Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol 6:6

    Google Scholar 

  • Bruet BJF, Song JH, Boyce MC et al (2008) Materials design principles of ancient fish armor. Nat Mater 7:748–756

    Google Scholar 

  • Buhler P (1981) Functional anatomy of the avian jaw apparatus. In: King AS, McLelland J (eds) Form and function in birds, vol 2. Academic, London

    Google Scholar 

  • Buhler P (1992) Light bones in birds. Los Angel Cty Mus Nat Hist Sci Ser 36:385–394

    Google Scholar 

  • Burger AE (1991) Maximum diving depths and underwater foraging in alcids and penguins. In: Montevecchi WA, Gaston AJ (eds) Studies of high latitude seabirds. 1. Behavioral, energetic, and oceanographic aspects of seabird feeding ecology. Canadian Wildlife Service, Occasional paper no 68. Canadian Wildlife Service, Ottawa, pp 9–15

    Google Scholar 

  • Calis E, Jackson EH, Nolan CP et al (2005) Preliminary age and growth estimates of the rabbitfish, Chimaera monstrosa, with implications for future resource management. J Northwest Atl Fish Sci 35:15–26

    Google Scholar 

  • Carey JE, Wright EA (1960) Isolation of the neurotoxic component of the venom of the sea snake, Enhydrina schistosa. Nature 185:103–104

    Google Scholar 

  • Carpenter CC (1966) The marine iguana of the Galapagos Islands, its behavior and physiology. Proc Calif Acad Sci 34:329–376

    Google Scholar 

  • Carr A, Kemp AR, Tibbetts IR et al (2006) Microstructure of pharyngeal tooth enameloid in the Parrotfish Scarus rivulatus (Pisces: Scaridae). J Microsc 221:8–16

    Google Scholar 

  • Casinos A, Cubo J (2001) Avian long bones, flight and bipedalism. Comp Biochem Physiol A 131:159–167

    Google Scholar 

  • Cavin L, Giner S (2012) A large halecomorph fish (Actinopterygii: Holostei) from the Valanginian (Early Cretaceous) of southeast France. Cretac Res 37:201–208

    Google Scholar 

  • Chandler AC (1916) A study of the structure of feathers, with reference to their taxonomic significance. Univ Calif Publ Zool 13:243–446

    Google Scholar 

  • Cheng C–HC, Chen L (1999) Evolution of an antifreeze glycoprotein: a blood protein that keeps Antarctic fish from freezing arose from a digestive enzyme. Nature 401:443–444

    Google Scholar 

  • Clack JA (2002) Gaining ground: the origin and early evolution of tetrapods. Indiana University Press, Bloomington

    Google Scholar 

  • Clack JA (2009) With kind permission from Springer Science+Business Media: Clack JA (2009) The fish–tetrapod transition: new fossils and interpretations. Evo Edu Outreach 2:213–223. Copyright © 2009, Springer

    Google Scholar 

  • Claeson KM (2011) The synarcual cartilage of batoids with emphasis on the synarcual of Rajidae. J Morphol 272:1444–1463

    Google Scholar 

  • Clarck GA Jr (1961) Occurrence and timing of egg teeth in birds. Wilson Bull 73:268–278

    Google Scholar 

  • Clarke JA (2004) Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae). Bull Am Mus Nat Hist 286:1–179

    Google Scholar 

  • Clarke JA, Ksepka DT, Salas–Gismondi R et al (2010) Fossil evidence for evolution of the shape and color of penguin feathers. Science 330:954–957

    Google Scholar 

  • Clément G (2004) Nouvelles données anatomiques et morphologie générale des “Porolepididae” (Dipnomorpha, Sarcopterygii). Rev Paléobiol 9:193–211

    Google Scholar 

  • Clement A, Long JA (2010) Air–breathing adaptation in a marine Devonian lungfish. Biol Lett 6:509–512

    Google Scholar 

  • Coates MI, Sequeira SEK (2001) A new stethacanthid chondrichthyan from the lower Carboniferous of Bearsden, Scotland. J Vertebr Paleontol 21:438–459

    Google Scholar 

  • Compagno LJV (1977) Phyletic relationships of living sharks and rays. Am Zool 17:303–322

    Google Scholar 

  • Compagno LJV (2001) Sharks of the world, an annotated and illustrated catalogue of shark species known to date – bullhead, mackerel & carpet sharks. FAO species catalogue for fishery purposes no 1, vol 2. FAO, Rome

    Google Scholar 

  • Cote S, Carroll R, Cloutier R et al (2002) Vertebral development in the Devonian Sarcopterygian fish Eusthenopteron foordi and the polarity of vertebral evolution in non–amniote tetrapods. J Vertebr Paleontol 22:487–502

    Google Scholar 

  • Cramp R et al (2008) Republished with permission of The Company of Biologists Ltd, from Cramp R, Meyer EA, Sparks N et al (2008) Functional and morphological plasticity of crocodile (Crocodylus porosus) salt glands. J Exp Biol 211:1482–1489. Copyright (2009); permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Cramp R et al (2010) Republished with permission of The Company of Biologists Ltd, from Cramp R, Hudson N, Franklin CE (2010) Activity, abundance, distribution and expression of Na+/K+–ATPase in the salt glands of Crocodylus porosus following chronic saltwater acclimation. J Exp Biol 213:1301–1308, Copyright (2010); permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Crossland C (1911) The flight of Exocoetus. Nature (London) 86:279–280

    Google Scholar 

  • Cubo J, Casinos A (1998) Biomechanical significance of cross–sectional geometry of avian long bones. Eur J Morphol 36:19–28

    Google Scholar 

  • Cubo J, Casinos A (2000) Mechanical properties and chemical composition of avian long bones. Eur J Morphol 38:112–121

    Google Scholar 

  • Currey J (2003) The many adaptations of bones. J Biomech 36:1487–1495

    Google Scholar 

  • Damiens R, Rhee H, Hwang Y et al (2012) Compressive behavior of a turtle’s shell: experiment, modeling, and simulation. J Mech Behav Biomed Mater 6:106–112

    Google Scholar 

  • Daniel JF (1922) The elasmobranch fishes. University of California Press, Berkeley

    Google Scholar 

  • Davenport J (1994) How and why do flying fish fly? Rev Fish Biol Fish 40:184–214

    Google Scholar 

  • Davenport J (2003) Allometric constraints on stability and maximum size in flying fishes: implications for their evolution. J Fish Biol 62:455–463

    Google Scholar 

  • Davenport J (2005) Swimbladder volume and body density in an armored benthic fish, the streaked gurnard. J Fish Biol 55:527–534

    Google Scholar 

  • Davis LS, Renner M (2003) Penguins. T&AD Poyser, London

    Google Scholar 

  • Dawson WR, Bartholomew GA, Bennett AF (1977) A reappraisal of the aquatic specialization of the Galapagos marine iguana (Amblyrhynchus cristatus). Evolution 31:891–897. Republished with permission of Society for the Study of Evolution; permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • de Beer GR, Moy–Thomas JA (1935) On the skull of Holocephali. Philos Trans R Soc Lond Ser B Biol Sci 224:287–312

    Google Scholar 

  • de Margerie E (2002) Laminar bone as an adaptation torsional loads in flapping flight. J Anat 201:521–526

    Google Scholar 

  • de Margerie E, Sanchez S, Cubo J et al (2005) Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds. Anat Rec A 282:49–66

    Google Scholar 

  • de Margerie E, Tafforeau P, Rakotomanana L (2006) In silico evolution of functional morphology: a test on bone tissue biomechanics. J R Soc Interface 3:679–687

    Google Scholar 

  • Decker JD (1967) Motility of the turtle embryo, Chelydra serpentina (Linné). Science 157:952–954

    Google Scholar 

  • Denison RH (1947) The exoskeleton of Tremataspis. Am J Sci 245:337–365

    Google Scholar 

  • Denison RH (1975) Evolution and classification of placodermi fishes. Breviora 432:1–24

    Google Scholar 

  • Dennison E, Cyrus Cooper C (2011) Osteoporosis in 2010: Building bones and (safely) preventing breaks. Nat Rev Rheumatol 7:80–82

    Google Scholar 

  • Diogo R (2007) On the origin and evolution of higher–clades: osteology, myology, phylogeny and macroevolution of bony fishes and the rise of tetrapods. Science Publishers, Enfield

    Google Scholar 

  • Diogo R (2008) Comparative anatomy, homologies and evolution of the mandibular, hyoid and hypobranchial muscles of bony fish and tetrapods: a new insight. Anim Biol 58:123–172

    Google Scholar 

  • Domning DP (2001) The earliest known fully quadrupedal sirenian. Nature 413:625–627

    Google Scholar 

  • Donley JM et al (2004) Reprinted by permission from Macmillan Publishers Ltd., Nature (Donley JM, Sepulveda CA, Konstantinidis P et al (2004) Convergent evolution in mechanical design of lamnid sharks and tunas. Nature 429:61–65) copyright (2004)

    Google Scholar 

  • Donoghue PCJ, Sansom IJ (2002) Origin and early evolution of vertebrate skeletonization. Microsc Res Tech 59:352–372

    Google Scholar 

  • Downing SW, Salo WL, Spitzer RH et al (1981) The hagfish slime gland: a model system for studying the biology of mucus. Science 214:1143–1145

    Google Scholar 

  • Dumont ER (2010) Reprinted from Dumont ER (2010) Bone density and the lightweight skeletons of birds. Proc R Soc B 277:2193–2198, by permission of the Royal Society

    Google Scholar 

  • Dunson WA (1969) Electrolyte excretion by the salt gland of the Galapagos marine iguana. Am J Physiol 216:995–1002

    Google Scholar 

  • Dunson WA (1975) The biology of the sea snakes. University Park Press, Baltimore/London/Tokyo

    Google Scholar 

  • Dunson WA, Freda J (1985) Water permeability of the skin of the amphibious snakes, Agkistrodon piscivorus. J Herpetol 19:93–98

    Google Scholar 

  • Dunson WA, Robinson GD (1976) Sea snake skin: permeable to water but not to sodium. J Comp Physiol I08:303–311

    Google Scholar 

  • Dunson WA, Packer RK, Dunson MK (1971) Sea snakes: an unusual salt gland under the tongue. Science 173:437–441

    Google Scholar 

  • Durnford CD (1906) Flying fish flight. Am Nut 40:1–11

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Google Scholar 

  • Eckert SA (2002) Swim speed and movement patterns of gravid leatherback sea turtles (Dermochelys coriacea) at St. Croix, US Virgin Islands. J Exp Biol 205:3689–3697

    Google Scholar 

  • Elder WH (1954) The oil gland of birds. Wilson Bull 66:6–31

    Google Scholar 

  • Ellis RA, Abel JH (1964) Intercellular channels in the salt–secreting glands of marine turtles. Science 144:1340–1342

    Google Scholar 

  • Ellis RA, Goertemiller C (1977) Significance of extensive ‘leaky’ cell junctions in the avian salt gland. Nature 268:555–556

    Google Scholar 

  • Enticott J, Tipling D (1997) Seabirds of the world. Stackpole Books, London

    Google Scholar 

  • Erben HK (1970) Ultrastruckturen and mineralisation rezenter und fossiler eierschalen bei bogen und reptilien. Biomineralisation 1:1–66

    Google Scholar 

  • Ergene S, Aymak C, Ucar AH (2011) Carapacial scute variation in green turtle (Chelonia mydas) and loggerhead turtle (Caretta caretta) hatchlings in Alata, Mersin, Turkey. Turk J Zool 35(3):343–356

    Google Scholar 

  • Ericson PG, Envall I, Irestedt M et al (2003) Inter–familial relationships of the shorebirds (Aves: Charadriiformes) based on nuclear DNA sequence data. BMC Evol Biol 3:16

    Google Scholar 

  • Eschmeyer WN (1990) Catalog of the genera of recent fishes. California Academy of Sciences, San Francisco. 697 pp

    Google Scholar 

  • Evans HM (1923) The defensive spines of fishes, living and fossil, and the glandular structures in connection therewith, with observations on the nature of fish venoms. Philos Trans R Soc Lond 212:1–33

    Google Scholar 

  • Ewert MA (1979) The embryo and its egg: development and natural history. In: Harless M, Morloch H (eds) Turtles: perspectives and research. Wiley, New York

    Google Scholar 

  • Feduccia A (1996) The origin and evolution of birds. Yale University Press, New Haven

    Google Scholar 

  • Fischer J, Voigt S, Schneider JW, Buchwitz M et al (2011) A Selachian freshwater fauna from the Triassic of Kyrgyzstan and its implication for Mesozoic Shark Nurseries. J Vertebr Paleontol 31(5):937–953

    Google Scholar 

  • Fish FE (1990) Wing design and scaling of flying fish with regard to flight performance. J Zool 221(3):391–403

    Google Scholar 

  • Fish FE (1998) Biomechanical perspective on the origin of cetacean flukes. In: Thewissen JGM (ed) The emergence of whales. Plenum Press, New York, pp 303–324

    Google Scholar 

  • Fish FE (2000) Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale. Physiol Biochem Zool 73:683–698

    Google Scholar 

  • Fish FE, Kosak DM (2011) Biomimetics and marine technology: an introduction. Mar Technol Soc J 45:8–13

    Google Scholar 

  • Fisher HI (1975) Longevity of the Laysan albatross, Diomedea immutabilis. Bird-Banding 46:1–100

    Google Scholar 

  • Forbes A (1936) Flying fish. Science 83:261–262

    Google Scholar 

  • Franklin CE, Grigg GC (1993) Increased vascularity of the lingual salt glands of the estuarine crocodile, Crocodylus porosus, kept in hyperosmotic salinity. J Morphol 218:143–151

    Google Scholar 

  • Fraser GJ, Graham A, Smith MM (2006) Developmental and evolutionary origins of the vertebrate dentition: molecular controls for spatio–temporal organisation of tooth sites in osteichthyans. J Exp Zool B Mol Dev Evol 306:183–203

    Google Scholar 

  • Frenkel MJ, Gillespie JM (1976) The proteins of the keratin component of bird’s beaks. Aust J Biol Sci 29(5–6):467–479

    Google Scholar 

  • Fricke H, Plante R (1988) Habitat requirements of the living Coelacanth Latimeria chalumnae at Grande Comore, Indian Ocean. Naturwissenschaften 75:149–151

    Google Scholar 

  • Fujita K (1990) The caudal skeleton of Teleostean fishes. Tokai University Press, Tokyo

    Google Scholar 

  • Gardiner BG (1984) The relationships of placoderms. J Vertebr Paleontol 4:379–395

    Google Scholar 

  • Gash SL, Bass JC (1973) Age, growth and population structures of fishes from acid and alkaline Strip–Mine Lakes in Southeast Kansas. Trans Kans Acad Sci 76:39–50

    Google Scholar 

  • Gaston AJ (2004) Seabirds: a natural history. Yale University Press, New Haven

    Google Scholar 

  • Geerinck T, De Poorter J, Adriaens D (2007) Morphology and development of teeth and epidermal brushes in loricariid catfishes. J Morphol 268:805–814

    Google Scholar 

  • Geist HR (2000) Nasal respiratory turbinate function in birds. Physiol Biochem Zool 73:581–589

    Google Scholar 

  • Germano DJ, Bury RB (1998) Age determination in turtles: evidence of annual deposition of scute rings. Chel Conserv Biol 3(1):123–132

    Google Scholar 

  • Gilbert SF, Loredo GA, Brukman A et al (2001) Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol Dev 3:47–58

    Google Scholar 

  • Gill T (1905) Flying fishes and their habits. A Rep Smithon Inst 1904:495–515

    Google Scholar 

  • Ginter M (2004) Devonian sharks and the origin of Xenacanthiformes. In: Arratia G, Wilson MVH, Cloutier R (eds) Recent advances in the origin and early radiation of vertebrates. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Ginter M, Hampe O, Duffin C (2010) Paleozoic Elasmobranchii. In: Schultze H–P (ed) Handbook of paleoichthyology, vol 3D. Verlag Dr Friedrich Pfeil, München

    Google Scholar 

  • Goedert J (1989) Giant Late Eocene marine birds (Pelecaniformes: Pelagornithidae) from Northwestern Oregon. J Paleontol 63(6):939–944

    Google Scholar 

  • Goldek SG, Voris KH (1982) Marine snake diets, prey composition, diversity and overlap. Copeia 3:661–666

    Google Scholar 

  • Goodge WR (1960) Adaptations for amphibious vision in the dipper (Cinclus mexicanus). J Morphol 107:79–91

    Google Scholar 

  • Gorb SN (2011) Biomimetics: a million ideas from the ocean. In: Future Ocean, Kiel Marine Sciences (ed) The ocean is our future: Kiel marine scientists on a time trip to 2100. Cluster of Excellence “The Future Ocean”, Kiel, pp 70–75

    Google Scholar 

  • Gordon MS, Tucker VA (1968) Further observations on the physiology of salinity adaptation in the Crab–eating Frog (Rana cancrivora). J Exp Biol 49:185–193

    Google Scholar 

  • Goujet D (1984) Placoderm interrelationships: a new interpretation, with a short review of placoderm classification. Proc Linnean Soc NSW 107:211–241

    Google Scholar 

  • Graham JB (1997) Air–breathing fishes: evolution, diversity and adaptation. Academic, San Diego

    Google Scholar 

  • Graham JB, Lee HJ (2004) Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition? Physiol Biochem Zool 77(5):720–731

    Google Scholar 

  • Graham JB, Gee JH, Motta J et al (1987) Subsurface buoyancy regulation by the sea snake Pelamis platurus. Physiol Zool 60:251–261

    Google Scholar 

  • Grémillet D, Chauvin C, Wilson RP et al (2005) Unusual feather structure allows partial plumage wettability in diving great cormorants Phalacrocorax carbo. J Avian Biol 36(1):57–63. Copyright © 2005 Journal of Avian Biology. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Grigg GC, Taplin LE, Harlow P et al (1980) Survival and growth of hatchling Crocodylus porosus in salt water without access to fresh drinking water. Oecologia 47:264–266

    Google Scholar 

  • Habib M (2010) The structural mechanics and evolution of aquaflying birds. Biol J Linn Soc 99:687–698

    Google Scholar 

  • Halstead Tarlo LB (1963) Aspidin: the precursor of bone. Nature 199:46–48

    Google Scholar 

  • Halstead Tarlo LB (1973) The heterostracan fishes. Biol Rev 48:279–332

    Google Scholar 

  • Hampe O, Ivanov A (2007) First xenacanthid shark from the Pennsylvanian (Moscovian) of the northern Caucasus (Russia). Fossil Rec 10:179–189

    Google Scholar 

  • Harder W (1976) Anatomy of fishes, 2nd edn. Science Publishers, Stuttgart

    Google Scholar 

  • Harrison P (1983) Seabirds: an identification guide. A&C Black, London

    Google Scholar 

  • Harrison P (1997) Seabirds of the world: a photographic guide. A&C Black, London

    Google Scholar 

  • Harrop H (1994) Albatrosses in the Western Palearctic. Birding World 7:241–245

    Google Scholar 

  • Hazard LC (2004) Sodium and potassium secretion by Iguana salt glands. University of California Press, Berkeley

    Google Scholar 

  • Heatwole H (1999) Sea snakes. UNSW Press, Hong Kong

    Google Scholar 

  • Hieronymus TL, Witmer LM (2010) Homology and evolution of avian compound rhamphothecae. Auk 127(3):590–604

    Google Scholar 

  • Higgins PJ (1978) The Galapagos iguanas: models of reptilian differentiation. Bioscience 28:512–515

    Google Scholar 

  • Hillenius WJ (1994) Turbinates in therapsids: evidence for Late Permian origins of mammalian endothermy. Evolution 48:207–229

    Google Scholar 

  • Hobson ES (1965) Observations on diving in Galapagos marine iguana, Amblyrhynchus cristatus (Bell). Copeia 1965:249–250

    Google Scholar 

  • Holmes WN, McBean RL (1964) Some aspects of electrolyte excretion in the green turtle, Chelonia mydas mydas. J Exp Biol 41:81–90

    Google Scholar 

  • Hone DWE, Dyke GJ, Haden M et al (2008) Body size evolution in Mesozoic birds. J Evol Biol 21:618–624

    Google Scholar 

  • Honza M, Picman J, Grim T et al (2001) How to hatch from an egg of great structural strength: a study of the common cuckoo. J Avian Biol 32:249–255. Copyright © 2001 Journal of Avian Biology. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Hospitaleche CA, Montalti D, Marti LJ (2009) Skeletal morphoanatomy of the Brown Skua Stercorarius antarcticus lonnbergi and the South Polar Skua Stercorarius maccormicki. Polar Biol 32:759–774

    Google Scholar 

  • Hou HC (1928a) Studies on the glandula uropygialis of birds. Am J Physiol 85:380

    Google Scholar 

  • Hou HC (1928b) Studies on the glandula uropygialis of birds. Chin J Phys 2:345–380

    Google Scholar 

  • Howe JC, Springer VG (1993) Catalog of type specimens of recent fishes in the National Museum of Natural History, Smithsonian Institution, 5: Sharks (Chondrichthyes: Selachii). Smithson Contrib Zool 540:i–iii–1–19

    Google Scholar 

  • Hubbs CL (1918) The flight of the California flying fish. Copeia 1918:85–88

    Google Scholar 

  • Hughes GM (1972) Morphometrics of fish gills. Respir Physiol 14:1–26

    Google Scholar 

  • Hughes MR (2003) Reprinted from Hughes MR (2003) Regulation of salt gland, gut and kidney interactions. Comp Biochem Physiol A Mol Integr Physiol 136(3):507–524. Copyright (2003) with permission from Elsevier

    Google Scholar 

  • Ineich I, Laboute P (2002) Sea snakes of New Caledonia. IRD, Paris

    Google Scholar 

  • Jacob J, Ziswiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 6. Academic, New York, pp 199–314

    Google Scholar 

  • Janvier P (1996) Early vertebrates. Oxford University Press, Oxford

    Google Scholar 

  • Janvier P (1997a) Heterostraci. http://tolweb.org/Heterostraci/16904/1997.01.01. In: The tree of life web project. http://tolweb.org/. Accessed 20 Jan 2011

  • Janvier P (1997b) Gnathostomata. Jawed Vertebrates. http://tolweb.org/Gnathostomata/14843/1997.01.01. In: The tree of life web project. http://tolweb.org/. Accessed 20 Jan 2011

  • Janvier P (2010) MicroRNAs revive old views about jawless vertebrate divergence and evolution. Proc Natl Acad Sci U S A 107:19137–19138

    Google Scholar 

  • Janvier P, Blieck A (1979) New data on the internal anatomy of the Heterostraci (Agnatha), with general remarks on the phylogeny of the Craniota. Zool Scr 8:287–296

    Google Scholar 

  • Jarvik E (1980) Basic structure and evolution of vertebrates, vol 1. Academic, London

    Google Scholar 

  • Johnsgard PA (1993) Cormorants, darters, and pelicans of the world. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Judin KA (1961) On mechanism of the jaw in Charadriformes, Procellariiformes, and some other birds. Tr Zool Inst Leningr 29:257–302

    Google Scholar 

  • Jyane BC (1988) Mechanical behavior of snake skin. J Zool 214:125–140

    Google Scholar 

  • Kaiser GW (2007) The inner bird: anatomy and evolution. UBC Press, Vancouver

    Google Scholar 

  • Katzir G, Howland HC (2003) Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis). J Exp Biol 206:833–841

    Google Scholar 

  • Kellermann A (1990) Catalogue of early life history stages of Antarctic notothenioid fishes. Berichte zur Polarforsch 67:45–136

    Google Scholar 

  • Kennedy M, Page RDM (2002) Seabird supertrees: combining partial estimates of procellariiform phylogeny. Auk 119:88–108

    Google Scholar 

  • Kirkpatrick SJ (1994) Scale effects on the stresses and safety factors in the wing bones of birds and bats. J Exp Biol 190:195–215

    Google Scholar 

  • Kirschner LB (1980) Comparison of vertebrate salt–excreting organs. Am J Physiol 238:R219–R223

    Google Scholar 

  • Kock K–H (2005a) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part I. Polar Biol 28:862–895

    Google Scholar 

  • Kock K–H (2005b) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part II. Polar Biol 28:897–909

    Google Scholar 

  • Kratt LF, Smith RJF (1978) Breeding tubercles occur on male and female Arctic Grayling (Thymallus arcticus). Copeia 1:185–188

    Google Scholar 

  • Krauss S, Monsonego–Ornan E, Zelzer E et al (2009) Mechanical function of a complex three–dimensional suture joining the bony elements in the shell of the red–eared slider turtle. Adv Mater 21:407–412

    Google Scholar 

  • Kriwet J, Gadzdicki A (2003) New Eocene Antarctic chimeroid fish (Holocephali, Chimaeriformes). Pol Polar Res 24(1):29–51

    Google Scholar 

  • Ksepka DT, Clarke JA (2010) The basal penguin (Aves: Sphenisciformes) Perudyptes devriesi and a phylogenetic evaluation of the penguin fossil record. Bull Am Mus Nat Hist 337:1–77

    Google Scholar 

  • Kuchel LJ, Franklin CE (2000) Morphology of the cloaca in the estuarine crocodile, Crocodylus porosus, and its plastic response to salinity. J Morphol 245:168–176. Copyright © 2000 Wiley-Liss, Inc. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Kuratani S, Ota KG (2008) Hagfish (Cyclostomata, Vertebrata): searching for the ancestral developmental plan of vertebrates. BioEssays 30(2):167–172

    Google Scholar 

  • Kuratani S, Kuraku S, Nagashima H (2011) Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 13(1):1–14. Copyright © 2011 Wiley Periodicals, Inc. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Kutschera U (2005) Predator-driven macroevolution in flying fishes inferred from behavioral studies: historical controversies and a hypothesis. Ann Hist Philos Biol 10:59–78

    Google Scholar 

  • Lauder GV (1983) Functional design and evolution of the pharyngeal jaw apparatus in euteleostean fishes. Zool J Linnean Soc 77:1–38

    Google Scholar 

  • Lauder GV (2000) Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. Am Zool 40:101–122

    Google Scholar 

  • Lauder GV, Drucker E (2002) Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. News Physiol Sci 17:235–240

    Google Scholar 

  • Lauder GV, Liem KF (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197

    Google Scholar 

  • Lauder GV, Nauen J, Drucker EG (2002) Experimental hydrodynamics and evolution: function of median fins in ray–finned fishes. Integr Comp Biol 42:1009–1017

    Google Scholar 

  • Lauder GV, Drucker EG, Nauen J et al (2003) Experimental hydrodynamics and evolution: caudal fin locomotion in fishes. In: Bels V, Gasc J–P, Casinos A (eds) Vertebrate biomechanics and evolution. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Laurin M (2002) Tetrapod phylogeny, amphibian origins, and the definition of the name Tetrapoda. Syst Biol 51:364–369

    Google Scholar 

  • Laurin M (2010) How vertebrates left the water. University of California Press, Berkeley

    Google Scholar 

  • Laurin M, Soler–Gijón R (2010) Osmotic tolerance and habitat of early stegocephalians: indirect evidence from parsimony, taphonomy, palaeobiogeography, physiology and morphology. Geol Soc Lond Spec Publ 339:151–179

    Google Scholar 

  • Lequette B, Verheyden C, Jowentin P (1989) Olfaction in subantarctic seabirds: its phylogenetic and ecological significance. Condor 91:732–735

    Google Scholar 

  • Lillywhite HB et al (2009) Republished with permission of The Company of Biologists Ltd, from Lillywhite HB, Menon JG, Menon GK et al (2009) Water exchange and permeability properties of the skin in three species of amphibious sea snakes (Laticauda spp.). J Exp Biol 212:1921–1929, Copyright (2009); permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Lim J, Fudge DS, Levy N et al (2006) Hagfish slime ecomechanics: testing the gill–clogging hypothesis. J Exp Biol 209:702–710

    Google Scholar 

  • Lin YS, Wei CT, Olevsky EA et al (2011) Mechanical properties and the laminate structure of Arapaima gigas scales. J Mech Behav Biomed Mater 4(7):1145–1152

    Google Scholar 

  • Lingham–Soliar T (1999) Rare soft–tissue preservation showing fibrous structures in an ichthyosaur from the Lower Lias (Jurassic) of England. Proc R Soc B 266:2367–2373

    Google Scholar 

  • Lingham–Soliar T (2001) The ichthyosaur integument: skin fibers, a means for a strong, flexible and smooth skin. Lethaia 34:287–302

    Google Scholar 

  • Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae. ii, 824 pp. Available online at http://www.archive.org/details/systemanaturae01linnuoft

  • Lockley R (1984) Seabirds of the world. Facts on File, Inc, New York

    Google Scholar 

  • Loeb LB (1936) The “flight” of flying fish. Science 83:260–261

    Google Scholar 

  • Lofgren L (1984) Ocean birds. Croom Helm Ltd., Gothenburg

    Google Scholar 

  • Lohmann KJ, Putman NF, Lohmann CM (2008) Geomagnetic imprinting: a unifying hypothesis of long–distance natal homing in salmon and sea turtles. Proc Natl Acad Sci U S A 105(49):19096–190101. Copyright (2008) National Academy of Sciences, U.S.A

    Google Scholar 

  • Long JA (1995) The rise of fishes: 500 million years of evolution. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Long JA, Gordon M (2004) The greatest step in vertebrate history: a paleobiological review of the fish–tetrapod transition. Physiol Biochem Zool 77(5):700–719

    Google Scholar 

  • Long JA, Trinajstic K, Young GC et al (2008) Live birth in the Devonian period. Nature 453:650–652

    Google Scholar 

  • Long JA, Trinajstic K, Johanson Z (2009) Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature 457:1124–1127

    Google Scholar 

  • Long JA, Hall BK, McNamara KJ et al (2010) The phylogenetic origin of jaws in vertebrates: developmental plasticity and heterochrony. Kirtlandia 57:46–52

    Google Scholar 

  • Lönnberg E (1904) On the homologies of the different pieces of the compound rhamphotheca. Arkiv für Zoologie 1:473–512

    Google Scholar 

  • Lopuchowycz VB, Massare JA (2002) Bone microstructure of a Cretaceous ichthyosaur. Paludicola 3:139–147

    Google Scholar 

  • Lund R (2000) The new actinopterygian order Guildayichthyiformes from the lower Carboniferous of Montana (USA). Geodiversitas 22:171–206

    Google Scholar 

  • Maher B (2009) Reprinted by permission from Macmillan Publishers Ltd: Nature, Maher B (2009) Evolution: biology’s next top model? Nature 458:695–698, Copyright (2009)

    Google Scholar 

  • Maisey JG (1979) Finspine morphogenesis in squalid and heterodontid sharks. Zool J Linnean Soc 66:161–183

    Google Scholar 

  • Maisey JG (1996) Discovering fossil fishes. Henry Holt & Co, New York

    Google Scholar 

  • Mallatt J (1984) Early vertebrate evolution: pharyngeal structure and the origin of gnathostomes. J Zool 204:169–183

    Google Scholar 

  • Marples BJ (1932) The structure and development of the nasal glands of birds. Proc Zool Soc London 102:829–844

    Google Scholar 

  • Marshall AT (1989) Intracellular and luminal ion concentrations in sea turtle salt glands determined by x–ray microanalysis. J Comp Physiol B 159:609–616

    Google Scholar 

  • Martin RA (2006) The origin of modern sharks. Reef Quest. Retrieved 9 Sept 2006

    Google Scholar 

  • Martin RA (2012) http://www.elasmo-research.org/education/evolution/ancient.htm. Accessed 18 Dec 2012

  • Martin S (2008) Global diversity of crocodiles (Crocodilia, Reptilia) in freshwater. Hydrobiologia 595:587–591

    Google Scholar 

  • Massare JA (1994) Swimming capabilities of Mesozoic marine reptiles: a review. In: Maddock L, Bone Q, Rayner JMV (eds) Mechanics and physiology of animal swimming. Cambridge University Press, London

    Google Scholar 

  • Mazzotti FJ, Dunson WA (1984) Adaptations of Crocodylus acutus and Alligator for life in saline water. Comp Biochem Physiol A Physiol 79:641–646

    Google Scholar 

  • McFarland LZ (1959) Captive marine birds possessing a functional lateral nasal gland (Salt gland). Nature 184:2030–2031

    Google Scholar 

  • McGowan C (1999) A practical guide to vertebrate mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • McGowan C, Motani R (2003) Ichthyopterygia: Handbuch der Paläoherpetologie Part 8. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogenet Evol 53:891–906

    Google Scholar 

  • Menon GK, Menon J (2000) Avian epidermal lipids: functional considerations and relationships to feathering. Am Zool 40:540–552, reprinted by permission of Oxford University Press

    Google Scholar 

  • Meunier FJ (1980) Les relations isopedine – tissu osseux dans le post–temporal et les ecail Jes de la ligne laterale de Latimeria chalumnae (Smith). Zool Scr 9:307–317

    Google Scholar 

  • Meyers RA, Meyers RP (2005) Reprinted from Meyers RA, Myers RP (2005) Mandibular Bowing and Mineralization in Brown Pelicans. The Condor 107(2):445–449 by permission from The Cooper Ornithological Society. Copyright © 2005, The Cooper Ornithological Society. Published by the Cooper Ornithological Society

    Google Scholar 

  • Meylan AB (1988) Spongivory in hawksbill turtles: a diet of glass. Science 239:393–395

    Google Scholar 

  • Mi LY, Fritton SP, Basu M, Cowin SC (2005) Analysis of avian bone response to mechanical loading – Part One: distribution of bone fluid shear stress induced by bending and axial loading. Biomech Model Mechanobiol 4:118–131

    Google Scholar 

  • Mills CA (1936a) Source of propulsive power used by flying fish. Science 83:80

    Google Scholar 

  • Mills CA (1936b) Propulsive power used by flying fish. Science 83:262

    Google Scholar 

  • Mok H, Chang H (1986) Articulation of the pelvic spine in acanthopterygian fishes, with notes on its phylogenetic significance. Jpn J Ichthyol 33:145–149

    Google Scholar 

  • Monroe MH “Australia: The Land Where Time Began” (published on-line http://austhrutime.com/porolepiformes.htm. Accessed 15 May 2014). 2014 Copyright © Austhrutime.com. Reprinted with permission

  • Montague JJ (1983) A new size record for the saltwater crocodile (Crocodylus porosus). Herpetol Rev 14:36–37

    Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB et al (2011) How many species are there on earth and in the ocean? PLoS Biol 9:e1001127

    Google Scholar 

  • Motani R (2001) Estimating body mass from silhouettes: testing the assumption of elliptical body cross–sections. Paleobiology 27:735–750

    Google Scholar 

  • Motani R (2002a) Swimming speed estimation of extinct marine reptiles: energetic approach revisited. Paleobiology 28:251–262

    Google Scholar 

  • Motani R (2002b) Scaling effects in caudal fin kinematics: implication for ichthyosaurian speed. Nature 415:309–312

    Google Scholar 

  • Motani R (2005) Ichthyosauria: evolution and physical constraints of fish–shaped reptiles. Annu Rev Earth Planet Sci 33:395–420

    Google Scholar 

  • Motani R (2009) The evolution of marine reptiles. Evol Educ Outreach 2:224–235

    Google Scholar 

  • Motani R, Rothschild BM, Wahl W Jr (1999) Large eyeballs in diving ichthyosaurs. Nature 402:747

    Google Scholar 

  • Moyer BR, Rock AN, Clayton DH (2003) Experimental test of the importance of preen oil in rock doves (Columba Livia). The Auk 120(2):490–496 published by the American Ornithologists’ Union. Reprinted with permission

    Google Scholar 

  • Naro–Maciel E, Le M, Fitz Simmons NN, Amato G (2008) Evolutionary relationships of marine turtles: a molecular phylogeny based on nuclear and mitochondrial genes. Mol Phylogenet Evol 49:659–662

    Google Scholar 

  • Neill WT (1958) The occurrence of amphibians and reptiles in saltwater areas and a bibliography. Bull Mar Sci Gulf Caribb 8:1–9

    Google Scholar 

  • Nelson JB (2005) Pelicans, cormorants, and their relatives. Oxford University Press, Oxford

    Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, New York

    Google Scholar 

  • Neumann D (2006) Type catalogue of the ichthyological collection of the Zoologische Staatssammlung München. Part I: Historic type material from the “Old collection”, destroyed in the night 24/25 April 1944. Spixiana 29(3):259–285

    Google Scholar 

  • Nevitt GA (2008) Sensory ecology on the high seas: the odor world of the procellariiform seabirds. J Exp Biol 211:1706–1713

    Google Scholar 

  • Nevitt GA, Bonadonna F (2005) Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biol Lett 1:303–305

    Google Scholar 

  • Nicolson SW, Lutz PL (1989) Salt gland function in the green sea turtle Chelonia mydas. J Exp Biol 144:171–184

    Google Scholar 

  • Niedzwiedzki G, Szrek P, Narkiewicz K et al (2010) Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463:43–48

    Google Scholar 

  • Norberg UM (1985) Flying, gliding, and soaring. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Norberg UM (1995) Wing design and migratory flight. Isr J Zool 41:297–305

    Google Scholar 

  • Nunn G, Stanley S (1998) Body size effects and rates of cytochrome B evolution in tube–nosed seabirds. Mol Biol Evol 15(10):1360–1371

    Google Scholar 

  • Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215:785–795

    Google Scholar 

  • Olson SL (1985) The fossil record of birds. In: Farner DS, King JR, Parkes KC (eds) Avian biology. Academic, Orlando

    Google Scholar 

  • “On the Wings of the Albatross” by Carl Safina (2007) http://ngm.nationalgeographic.com/2007/12/albatross/safina-text. Accessed at 11 Apr 2014. © 2007 National Geographic Society. Reprinted with permission

  • Onley D, Scofield P (2007) Albatrosses, petrels and shearwaters of the world. Princeton field guides. University Press, Princeton

    Google Scholar 

  • Ortiz C, Boyce MC (2008) Materials science – bioinspired structural materials. Science 319:1053–1054

    Google Scholar 

  • Ostrom JH (1976) Archaeopteryx and the origin of birds. Biol J Linn Soc 8:91–182

    Google Scholar 

  • Owen R (1846) Lectures on the comparative anatomy and physiology of the vertebrate animals. Delivered at the Royal College of Surgeons 1844 and 1846. (no publisher given). London

    Google Scholar 

  • Park H, Choi H (2010) Republished with permission of The Company of Biologists Ltd, from Park H. Choi H (2010) Investigation of aerodynamic capabilities of flying fish in gliding flight. J Exp Biol 213:3269–3279. Copyright (2009); permission conveyed through Copyright Clearance Center, Inc

    Google Scholar 

  • Patterson C (1965) The phylogeny of the chimeroids. Philos Trans R Soc Lond B 249:101–219

    Google Scholar 

  • Patterson C, Johnson GD (1995) The intermuscular bones and ligaments of teleostean fishes. Smithson Contrib Zool 559:1–83

    Google Scholar 

  • Pavlov V (2006) Dolphin skin as a natural anisotropic compliant wall. Bioinspir Biomim 1:31–40

    Google Scholar 

  • Pavlov V, Riedeberger D, Rist U, Seibert U (2012) Analysis of the relation between skin morphology and local flow conditions for a fast–swimming Dolphin. In: Tropea C, Bleckman H (eds) Nature–inspired fluid mechanics. Springer, Berlin/Heidelberg

    Google Scholar 

  • Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge University Press, New York

    Google Scholar 

  • Pennisi E (2011) Manta machines. Science 332:28–29

    Google Scholar 

  • Pennycuick CT (1967) The strength of the Pigeon’s wing bones in relation to their function. J Exp Biol 46:219–233

    Google Scholar 

  • Pennyquick CJ (1987) Flight of seabirds. In: Croxall JP (ed) Seabirds. Feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Piepenbrink H (1989) Examples of chemical changes during fossilisation. Appl Geochem 4:273–280

    Google Scholar 

  • Pinkerton JV, Dalkin AC, Crowe SE et al (2010) Treatment of postmenopausal osteoporosis in a patient with celiac disease. Nat Rev Endocrinol 6:167–171

    Google Scholar 

  • Pollerspöck J (2012) www.shark-references.com, World Wide Web electronic publication, Version 2012 date

  • Poore CB, Wilson GDF (1993) Marine species richness. Nature 361:597–598

    Google Scholar 

  • Prince PA, Huin N, Weimerskirch H (1994) Diving depths of albatrosses. Antarct Sci 6(3):353–354

    Google Scholar 

  • Raikow RJ, Icanovsky L, Bledsoe AH (1988) Forelimb joint mobility and the evolution of wing–propelled diving in birds. Auk 105:446–451

    Google Scholar 

  • Rasmussen AR (1997) Systematics of sea snakes: a critical review. Symp Zool Soc Lond 70:15–30

    Google Scholar 

  • Rasmussen AR (2001) Sea snakes. In: Carpenter KE, Niem VH (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific, vol 6. Bony fishes Part 4 (Labridae to Latimeriidae), estuarine crocodiles, sea turtles, sea snakes and marine mammals. FAO, Rome, pp 3987–4008

    Google Scholar 

  • Rasmussen A, Arnason U (1999a) Phylogenetic studies of complete mitochondrial DNA molecules place cartilaginous fishes within the tree of bony fishes. J Mol Evol 48:118–123

    Google Scholar 

  • Rasmussen A, Arnason U (1999b) Molecular studies suggest that cartilaginous fishes have a terminal position in the piscine tree. Proc Natl Acad Sci U S A 96:2177–2182

    Google Scholar 

  • Rasmussen AR, Elmberg J, Gravlund P, Ineich I (2011a) Sea snakes (Serpentes: subfamilies Hydrophiinae and Laticaudinae) in Vietnam: a comprehensive checklist and an updated identification key. Zootaxa 2894:1–20

    Google Scholar 

  • Rasmussen AR, Murphy JC, Ompi M, Gibbons JW, Uetz P (2011b) Marine reptiles. PLoS One 6(11):e27373. Copyright © 2011 Rasmussen et al. CC BY 2.5

    Google Scholar 

  • Rayfield EJ (2007) Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annu Rev Earth Planet Sci 35:541–576

    Google Scholar 

  • Reid REH (1997) Dinosaurian physiology: the case for “intermediate dinosaurs”. In: Farlow JO, Brett–Surman MK (eds) The complete dinosaur. Indiana University Press, Bloomington

    Google Scholar 

  • Reidenberg JS (2007) Anatomical adaptations of aquatic mammals. Anat Rec 290:507–513. Copyright © 2007, Wiley-Liss, INC. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Reina RD, Jones TT, Spotila JR (2002) Salt and water regulation by the leatherback sea turtle Dermochelys coriacea. J Exp Biol 205:1853–1860

    Google Scholar 

  • Reinhart RH (1953) Diagnosis of the new mammalian order, Desmostylia. J Geol 61:187

    Google Scholar 

  • Reinhart RH (1982) The extinct mammalian order Desmostylia. Natl Geogr Soc Res Rep 14:549–555

    Google Scholar 

  • Renaud CB (2011) Lampreys of the world: an annotated and illustrated catalogue of lamprey species known to date. FAO species catalogue for fishery purposes no. 5. FAO, Rome

    Google Scholar 

  • Renaud CB, Economidis PS (2010) Eudontomyzon graecus, a new nonparasitic lamprey from Greece (Petromyzontiformes: Petromyzontidae). Zootaxa 2477:37–48

    Google Scholar 

  • Retallack GJ (2011) Woodland hypothesis for Devonian tetrapod evolution. J Geol 119:235–258. Copyright © 2011, The University of Chicago Press

    Google Scholar 

  • Rhee H et al (2009) Reprinted from Rhee H, Horstemeyer MF, Hwang Y et al (2009) A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio–inspired synthetic composites. Mater Sci Eng C 29:2333–2339. Copyright (2009) with permission from Elsevier

    Google Scholar 

  • Rhodin AGJ (1985) Chondro–osseous development and growth of marine turtles. Copeia 1985:752–771

    Google Scholar 

  • Rice DW (1998) Marine mammals of the world: systematics and distribution. Soc Mar Mamm Spec Publ 4:213

    Google Scholar 

  • Richmond ND (1964) The mechanical functions of the testudinate plastron. Am Midl Nat 72:50–56

    Google Scholar 

  • Rieppel O (1995) The genus Placodus: systematics, morphology, paleobiogeography, and paleobiology. Fieldiana Geol New Ser 31:1–44

    Google Scholar 

  • Riess J (1986) Locomotion, biophysics of swimming and phylogeny of the ichthyosaurs. Palaeontogr Abt A 192:93–155

    Google Scholar 

  • Ritter EK (2002) Analysis of sharksucker, Echeneis naucrates, induced behavior patterns in the blacktip shark, Carcharchinus limbatus. Environ Biol Fish 65:111–115

    Google Scholar 

  • Roberts TR (1982) Unculi (horny projections arising from single cells), an adaptive feature of the epidermis of ostariophysan fishes. Zool Scr 11:55–76

    Google Scholar 

  • Robertson GM (1935) The ostracoderm order osteostraci. Science 82:282–283

    Google Scholar 

  • Robson P, Wright GM, Youson JH et al (2000) The structure and organization of Lamprin genes: multiple–copy genes with alternative splicing and convergent evolution with insect structural proteins. Mol Biol Evol 17(11):1739–1752

    Google Scholar 

  • Romer AS, Parsons TS (1986) The vertebrate body, 6th edn. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Ronald K, Gots BL, Lupson JD et al (1991) An annotated bibliography on seals, sea lions, and walrus – supplement 2. International Council for the Exploration of the Sea, Copenhagen

    Google Scholar 

  • Rosenberger LJ (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394

    Google Scholar 

  • Ruben JA (1991) Reptilian physiology and the flight capacity of Archaeopteryx. Evolution 45:1–17

    Google Scholar 

  • Ruben J (1995) The evolution of endothermy in mammals and birds: from physiology to fossils. Annu Rev Physiol 57:69–95

    Google Scholar 

  • Ruben JA, Jones TD (2000) Selective factors associated with the origin of fur and feathers. Am Zool 40(4):585–596. Copyright © 2000, Oxford University Press. Reprinted by permission of Oxford University Press

    Google Scholar 

  • Ruben JA, Jones TD, Geist NR (1998) Respiratory physiology of the dinosaurs. Bioessays 20:852–859. Copyright © 1998 John Wiley & Sons, Inc. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Ruta M, Jeffery JE, Coates MI (2003) A supertree of early tetrapods. Proc R Soc B 270(1532):2507–2516

    Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850

    Google Scholar 

  • Sale A, Luschi P (2009) Navigational challenges in the oceanic migrations of leatherback sea turtles. Proc Biol Sci 276(1674):3737–3745

    Google Scholar 

  • Salibian A, Montalti D (2009) Physiological and biochemical aspects of the avian uropygial gland. Braz J Biol 69(2):437–446

    Google Scholar 

  • Sander PM (2000) Ichthyosauria: their diversity, distribution, and phylogeny. Paläontol Ztschr 74:1–35

    Google Scholar 

  • Sander PM, Chen X, Cheng L et al (2011) Short–snouted toothless ichthyosaur from China suggests late triassic diversification of suction feeding ichthyosaurs. PLoS One 6(5):e19480. Copyright © 2011 Sander et al. CC BY 2.5

    Google Scholar 

  • Sansom RS (2009) Phylogeny, classification and character polarity of the Osteostraci (Vertebrata). J Syst Palaeontol 7:95–117

    Google Scholar 

  • Savile DBO (1957) Adaptive evolution in the avian wing. Evolution 11:212–224

    Google Scholar 

  • Schaefer JT, Summers AP (2005) Batoid wing skeletal structure: novel morphologies, mechanical implications and phylogenetic patterns. J Morphol 264:298–313

    Google Scholar 

  • Schleich H, Kastle W (1988) Reptile eggshells: SEM atlas. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Schmidt–Nielsen K, Fange R (1958) Reprinted by permission from Macmillan Publishers Ltd: Nature (Schmidt–Nielsen K, Fange R (1958) Salt glands in marine reptiles. Nature 182:783–785) copyright (1958)

    Google Scholar 

  • Schmidt–Nielsen K, Sladen WJL (1958) Nasal salt secretion in the Humboldt penguin. Nature 181:1217–1218

    Google Scholar 

  • Schmidt–Neilsen KP, Hainsworth FR, Murrish DE (1970) Countercurrent heat exchange in the respiratory passages: effect on water and heat balance. Respir Physiol 9(2):9263–9276

    Google Scholar 

  • Scholander PF, Walters V, Hock R et al (1950) Body insulation of some arctic and tropical mammals and birds. Biol Bull 99:225–236

    Google Scholar 

  • Schreiber EA, Burger J (2001) Seabirds in the marine environment. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton

    Google Scholar 

  • Schreiber RW, Woolfenden GE, Olfenden O et al (1975) Prey capture by the brown pelican. Auk 92:649–654

    Google Scholar 

  • Schultze HP (1999) The fossil record of the intertidal zone. In: Horn MH et al (eds) Intertidal fishes: life in two worlds. Academic, San Diego

    Google Scholar 

  • Schultze HP (2010) Gnatostomata, Kiefermünder. Spezielle Zoologie. Springer, Berlin/Heidelberg

    Google Scholar 

  • Shadbolt L (1908) On the flying fish. Aeronaut J 12:111–114

    Google Scholar 

  • Shoulejkin W (1929) Airdynamics of the flying fish. Int Rev Ges Hydrobiol Hydrogr 22:102–110

    Google Scholar 

  • Shubin NH, Daeschler EB, Jenkins FA (2006) The pectoral fin of Tiktaalik rosae and the origin of the tetrapod limb. Nature 440:764–771

    Google Scholar 

  • Shufeldt RW (1890) Contributions to the comparative osteology of arctic and sub–arctic water–birds: Part VIII. J Anat Physiol 25:60–77

    Google Scholar 

  • Simons ELR (2010) Forelimb skeletal morphology and flight mode evolution in pelecaniform birds. Zoology 113:39–46

    Google Scholar 

  • Simons ELR, O’Connor PM (2012) Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations. Anat Rec Adv Integr Anat Evol Biol 295:386–396. Copyright © 2012 Wiley Periodicals, Inc. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Simons ELR, Hieronymus TL, O’Connor PM (2011) Cross–sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds. J Morphol 272:958–971

    Google Scholar 

  • Sire J–Y, Marin S, Allizard F (1998) A comparison of teeth and dermal denticles (odontodes) in the teleost Denticeps clupeoides (Clupeomorpha). J Morphol 237:237–256

    Google Scholar 

  • Sivak JG (1980) Reprinted from Trends Neurosci 3, Sivak JG (1980) Avian mechanisms for vision in air and water. Trends Neurosci 3:314–317. Copyright (1980) with permission from Elsevier

    Google Scholar 

  • Smith M (1926) Monograph of the sea snakes (Hydrophiidae). Wheldon & Wesley, Oxford

    Google Scholar 

  • Smith ND (2010) Phylogenetic analysis of Pelecaniformes (Aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies. PLoS One 5(10):e13354

    Google Scholar 

  • Smith L (2013) Shark Evolution and Classification. Published online: http://saltwaterlife.co.uk/ws/sharkiologist/articles/shark-evolution-and-classification/. Access 15 May 2014. Copyright © 2013, Saltwater Life (www.saltwaterlife.co.uk). Reprinted with permission

  • Soldaat E, Leopold MF, Meesters EH et al (2009) Albatross mandible at archeological site in Amsterdam, the Netherlands, and WP records of Diomedea albatrosses. Dutch Birding 31(1):1–16

    Google Scholar 

  • Song J, Ortiz C, Boyce MC (2011) Threat–protection mechanics of an armored fish. J Mech Behav Biomed Mater 4(5):699–712

    Google Scholar 

  • Soons J, Herrel A, Genbrugge A et al (2010) Mechanical stress, fracture risk and beak evolution in Darwin’s ground finches (Geospiza). Philos Trans R Soc B 365:1093–1098

    Google Scholar 

  • Soons J, Herrel A, Aerts P, Dirckx J (2012a) Determination and validation of the elastic moduli of small and complex biological samples: bone and keratin in bird beaks. J R Soc Interface 9(71):1381–1388 by permission of the Royal Society

    Google Scholar 

  • Soons J, Herrel A, Genbrugge A et al (2012b) Multi–layered bird beaks: a finite–element approach towards the role of keratin in stress dissipation. J R Soc Interface 9(73):1787–1796

    Google Scholar 

  • Stahl B (1999) Chondrichthyes III: Holocephali. In: Schultze H–P (ed) Handbook of paleoichthyology 4. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Stelbrink B, von Rintelen T, Cliff G et al (2010) Molecular systematics and global phylogeography of angel sharks (genus Squatina). Mol Phylogenet Evol 54:395–404

    Google Scholar 

  • Stettenheim P (1972) The integument of birds. In: Famer DS, King JR (eds) Avian biology, vol 2. Academic, New York

    Google Scholar 

  • Stettenheim PR (2000) The integumentary morphology of modern birds–an overview. Am Zool 40(4):461–477

    Google Scholar 

  • Stiassny MLJ, Moore JA (1992) A review of the pelvic girdle of atherinomorph fishes. Zool J Linnean Soc 104:209–242

    Google Scholar 

  • Sudo S, Tsuyuki K, Ito Y et al (2002) A study on the surface shape of fish scales. JSME Int J Ser C 45:1100–1105

    Google Scholar 

  • Talevi M, Fernández MS (2012) Unexpected skeletal histology of an ichthyosaur from the Middle Jurassic of Patagonia: implications for evolution of bone microstructure among secondary aquatic tetrapods. Naturwissenschaften 99(3):241–244

    Google Scholar 

  • Tamiya N, Yagi T (2011) Studies on sea snake venom. Proc Jpn Acad Ser B Phys Biol Sci 87(3):41–52

    Google Scholar 

  • Taplin LE (1984) Homeostasis of plasma electrolytes, sodium and water pools in the Estuarine crocodile, Crocodylus porosus, from fresh, saline and hypersaline waters. Oecologia 63:63–70

    Google Scholar 

  • Taplin LE (1985) Sodium and water budgets of the fasted estuarine crocodile, Crocodylus porosus, in sea water. J Comp Physiol B 155:501–513

    Google Scholar 

  • Taplin LE, Grigg GC (1981) Salt glands in the tongue of the Estuarine Crocodile Crocodylus porosus. Science 212:1045–1047

    Google Scholar 

  • Taplin LE, Loveridge JP (1988) Nile crocodiles, Crocodylus niloticus, and estuarine crocodiles, Crocodylus porosus, show similar osmoregulatory responses on exposure to seawater. Comp Biochem Physiol A Comp Physiol 89:443–448

    Google Scholar 

  • Taub AM, Dunson WA (1967) The salt gland in a sea snake (Laticauda). Nature 215:995–996

    Google Scholar 

  • Taylor MA (1987) A reinterpretation of ichthyosaur swimming and buoyancy. Palaeontology 30:531–535

    Google Scholar 

  • Thewissen JGM, Williams EM (2002) The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations. Annu Rev Ecol Syst 33:73–90

    Google Scholar 

  • Thiel R, Eidus I, Neumann R (2009) The Zoological Museum Hamburg (ZMH) fish collection as a global biodiversity archive for elasmobranchs and actinopterygians as well as other fish taxa. J Appl Ichthyol 25(S1):9–32

    Google Scholar 

  • Thomson KS (1969) The biology of the lobe–finned fishes. Biol Rev 44:91–154

    Google Scholar 

  • Thomson KS (1975) On the biology of cosmine. Bull Peabody Mus Nat Hist 40:1–59

    Google Scholar 

  • Thorne PM, Ruta M, Benton MJ (2011) Resetting the evolution of marine reptiles at the Triassic–Jurassic boundary. Proc Natl Acad Sci U S A 108:8339–8344

    Google Scholar 

  • Tickell WLN (2000) Albatrosses. Pica Press, Sussex

    Google Scholar 

  • Tobalske BW (2010) Hovering and intermittent flight in birds. Bioinspir Biomim 5(4):045004

    Google Scholar 

  • Travers RA (1981) The interarcual cartilage: a review of its development, distribution and value as an indicator in euteleostean fishes. J Nat Hist 15:853–871

    Google Scholar 

  • Tu MC, Lillywhite HB, Menon JG, Menon GK (2002) Postnatal ecdysis establishes the permeability barrier in snake skin: new insights into barrier lipid structures. J Exp Biol 205:3019–3030

    Google Scholar 

  • Turner S (1992) Thelodont lifestyles. In: Mark–Kurik E (ed) Fossil fishes as living animals. Akademia (Tallinn, Estonia). Academy of Sciences of Estonia, Tallinn

    Google Scholar 

  • Turner S, Burrow CJ (2011) A Lower Carboniferous xenacanthiform shark from Australia. J Vertebr Paleontol 31(2):241–257

    Google Scholar 

  • Tyler SJ, Ormerod SJ (1994) The dippers. T and AD Poyser, London

    Google Scholar 

  • Uetzt P (2011) 15: the reptile database. Available: http://www.reptile-database.org. Accessed 23 Sept 2011

  • Uhen MD (2007) Evolution of marine mammals: back to the sea after 300 million years. Anat Rec 290(6):514–522. Copyright © 2007 Wiley-Liss, Inc. Reprinted with permission from John Wiley and Sons

    Google Scholar 

  • Van der Brugghen W, Janvier P (1993) Denticles in thelodonts. Nature 364:107

    Google Scholar 

  • Videler JJ (2005) Avian flight. Oxford University Press, New York

    Google Scholar 

  • Vogel S (1994) Life in moving fluids. Princeton University Press, Princeton

    Google Scholar 

  • Vogel S (2003) Comparative biomechanics: life’s physical world. Princeton, Princeton University Press. © 2003 by Princeton University Press. Reprinted with permission

    Google Scholar 

  • Voris HK, Voris HH (1983) Feeding strategies in marine snakes: an analysis of evolutionary, morphological, behavioral and ecological relationships. Am Zool 23(2):411–425

    Google Scholar 

  • Waite JH, Broomell CC (2012) Changing environments and structure–property relationships in marine biomaterials. J Exp Biol 215:873–883

    Google Scholar 

  • Walsh SA, MacLeod N, O’Neill M (2008) Spot the penguin: can reliable taxonomic identifications be made using isolated foot bones? In: Walsh S (ed) Automated taxon identification in Systematic. Reproduced with permission of TAYLOR & FRANCIS GROUP LLC in the format Republish in a book via Copyright Clearance Center

    Google Scholar 

  • Wang X et al (2012) Reprinted from Biochem Biophys Res Commun, 421, Wang X, Zhang Y, Wu Q, Zhang H (2012) Evolutionary landscape of amphibians emerging from ancient freshwater fish inferred from complete mitochondrial genomes, 228–231. Copyright (2012) with permission from Elsevier

    Google Scholar 

  • Ward DJ, Duffin CJ (1989) Mesozoic chimeroids. 1. A new chimeroid from the Early Jurassic of Gloucestershire. Engl Mesozoic Res 2:45–51

    Google Scholar 

  • Warham J (1977) Wing loadings, wing shapes, and flight capabilities of Procellariiformes. NZ J Zool 4:73–83

    Google Scholar 

  • Warham J (1990) The Petrels: their ecology and breeding systems. Academic, London

    Google Scholar 

  • Watanuki Y, Niizuma Y, Geir WG, Sato K, Naito Y (2003) Stroke and glide of wing–propelled divers: deep diving seabirds adjust surge frequency to buoyancy change with depth. Proc R Soc Lond B 270(1514):483–488 by permission of the Royal Society

    Google Scholar 

  • Watanuki Y, Wanless S, Harris M et al (2006) Swim speeds and stroke patterns in wing–propelled divers: a comparison among alcids and a penguin. J Exp Biol 209:1217–1230

    Google Scholar 

  • Westhoff G et al (2005) Reprinted from Zoology 108, Westhoff G, Fry BG, Bleckmann H (2005) Sea snakes (Lapemis curtus) are sensitive to low–amplitude water motions. Zoology 108:195–200, Copyright (2005) with permission from Elsevier

    Google Scholar 

  • Wetherbee DK, Barlett LM (1962) Egg teeth and shell rupture of the American Woodcock. Auk 79:117

    Google Scholar 

  • Wiebe KL (2010) Reprinted from Wiebe KL (2010) A supplemental function of the avian egg tooth. Condor 112:1–7 by permission from The Cooper Ornithological Society. Copyright © 2010, The Cooper Ornithological Society. Published by the Cooper Ornithological Society

    Google Scholar 

  • Wikelski M, Thom C (2000) Reprinted by permission from Macmillan Publishers Ltd: Nature (Wikelski M, Thom C (2000) Marine iguanas shrink to survive El Niño. Nature 403(6765):37–388) copyright (2000)

    Google Scholar 

  • Wiley ML, Collette BB (1970) Breeding tubercles and contact organs in fishes: their occurrence, structure, and significance. Bull Am Mus Nat Hist 143:143–216

    Google Scholar 

  • Wiley EO, Johnson GD (2010) A teleost classification based on monophyletic groups. In: Nelson JS, Schultze H–P, Wilson MVH (eds) Origin and phylogenetic interrelationships of teleosts. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Wilga CD, Lauder GV (2004) Biomechanics of locomotion in sharks, rays, and chimeras. In: Carrier JC, Musick J, Heithaus M (eds) The biology of sharks and their relatives. CRC Press, Boca Raton, pp 139–164

    Google Scholar 

  • Williams TD (1995) The penguins. Oxford University Press, Oxford

    Google Scholar 

  • Wilson MVH (2010) Acanthodii. Access Science Encyclopedia at McGraw–Hill. Accessed on 17 Feb 2010

    Google Scholar 

  • Wilson MVH, Caldwell MW (1993) New Silurian and Devonien fork–tailed ‘thelodonts’ are jawless vertebrates with stomachs and deep bodies. Nature 361:442–444

    Google Scholar 

  • Wilson DS, Tracy CR, Tracy CR (2003) Estimating age of turtles from growth rings: a critical evaluation of the technique. Herpatologica 59(2):178–194

    Google Scholar 

  • Wyneken J (2001) The anatomy of sea turtles. NOAA technical memorandum NMFS–SEFSC–470. NOAA, Miami

    Google Scholar 

  • Xian–guang H, Aldridge RJ, David J et al (2002) New evidence on the anatomy and phylogeny of the earliest vertebrates. Proc R Soc B 269(1503):1865–1869

    Google Scholar 

  • “Yellow-Bellied Sea Snake” http://www.waikikiaquarium.org/experience/animal-guide/reptiles/yellow-bellied-sea-snake/. Last accepted 25 May 2014. Copyright (c) 2014, Waikiki Aquarium.)

  • Young GC (1986) The relationships of placoderm fishes. Zool J Linnean Soc 88:1–57

    Google Scholar 

  • Yu X, Zhu M, Zhao W (2010) The origin and diversification of osteichthyans and sarcopterygians: rare Chinese fossil findings advance research on key issues of evolution. Paleoichthyol 24:71–75

    Google Scholar 

  • Zhu M, Ahlberg PE (2004) The origin of the internal nostril of tetrapods. Nature 432:94–97

    Google Scholar 

  • Zhu M, Schultze HP (1997) The oldest sarcopterygian fish. Lethaia 30:293–304

    Google Scholar 

  • Zhu M, Yu XB (2002) A primitive fish close to the common ancestor of tetrapods and lungfish. Nature 418:767–770

    Google Scholar 

  • Zhu M, Yu X, Janvier P (1999) A primitive fossil fish sheds light on the origin of bony fishes. Nature 397:607–610

    Google Scholar 

  • Zhu M, Yu XB, Ahlberg PE (2001) A primitive sarcopterygian fish with an eyestalk. Nature 410:81–84

    Google Scholar 

  • Zhu M, Yu XB, Wang W et al (2006) A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature 441:77–80

    Google Scholar 

  • Zhu M, Zhao WJ, Jia LT et al (2009) The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458:469–474

    Google Scholar 

  • Zylberberg L, Meunier FOJ, Laurin M (2010) A microanatomical and histological study of the postcranial dermal skeleton in the devonian Sarcopterygian Eusthenopteron foordi. Acta Palaeontol Pol 55(3):459–470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ehrlich, H. (2015). Introduction. In: Biological Materials of Marine Origin. Biologically-Inspired Systems, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5730-1_1

Download citation

Publish with us

Policies and ethics