Skip to main content

Lung

  • Chapter
  • First Online:
  • 2171 Accesses

Abstract

Recent discoveries in stem cell biology have generated excitement about the possibility of harnessing stem cells for repair and regeneration of lung diseases. Although initial emphasis was on engraftment of stem cells in lung, more recent studies demonstrate that mesenchymal stem cells (MSCs) can modulate local inflammatory and immune responses in experimental lung disease models including acute lung injury and pulmonary fibrosis via a paracrine activity. Endothelial progenitor cells (EPCs) also seem to contribute to lung repair and are used in clinical trials for the treatment of pulmonary hypertension. The ability to produce stem cells by induced pluripotency may relieve many ethical concerns related to the use of embryonic stem cells and may open the way to large-scale production and evaluation of pluripotent stem cells for lung regeneration and repair. The aim of this review is to provide a summary of the recent progress made in the field of lung regeneration using different approaches including stem cell-based therapy and lung tissue bioengineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe S et al (2003) Transplanted BM and BM side population cells contribute progeny to the lung and liver in irradiated mice. Cytotherapy 5:523–533

    PubMed  CAS  Google Scholar 

  • Abe S et al (2004) Cells derived from the circulation contribute to the repair of lung injury. Am J Respir Crit Care Med 170:1158–1163

    PubMed  Google Scholar 

  • Adamson IY, Bowden DH (1974) The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest 30:35–42

    PubMed  CAS  Google Scholar 

  • Aguilar S et al (2007) Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25(6):1586–1594

    PubMed  Google Scholar 

  • Alison MR, Lebrenne AC, Islam S (2009) Stem cells and lung cancer: future therapeutic targets? Expert Opin Biol Ther 9:1127–1141

    PubMed  CAS  Google Scholar 

  • Alvarez DF et al (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294(3):L419–L430

    PubMed  CAS  Google Scholar 

  • Amariglio N et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6(2):e1000029

    PubMed  Google Scholar 

  • Aslam M et al (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180(11):1122–1130. doi:10.1164/rccm.200902-0242OC

    PubMed  CAS  Google Scholar 

  • Atala A (2007) Engineering tissues, organs and cells. J Tissue Eng Regen Med 1(2):83–96

    PubMed  CAS  Google Scholar 

  • Balasubramaniam V et al (2007) Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L1073–L1084

    PubMed  CAS  Google Scholar 

  • Barrilleaux B et al (2006) Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12(11):3007–3019

    PubMed  CAS  Google Scholar 

  • Bertolini G et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 106:16281–16286

    PubMed  CAS  Google Scholar 

  • Bertoncello I, McQualter J (2010) Endogenous lung stem cells: what is their potential for use in regenerative medicine? Expert Rev Respir Med 4(3):349–362

    PubMed  Google Scholar 

  • Block GJ et al (2009) Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells 27(3):670–681

    PubMed  CAS  Google Scholar 

  • Borthwick DW et al (2001) Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol 24(6):662–670

    PubMed  CAS  Google Scholar 

  • Bruscia EM et al (2009) Macrophages directly contribute to the exaggerated inflammatory response in cystic fibrosis transmembrane conductance regulator−/− mice. Am J Respir Cell Mol Biol 40(3):295–304

    PubMed  CAS  Google Scholar 

  • Burnham EL et al (2005) Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med 172(7):854–860

    PubMed  Google Scholar 

  • Burri PH (2006) Structural aspects of postnatal lung development – alveolar formation and growth. Biol Neonate 89(4):313–322

    PubMed  Google Scholar 

  • Cardoso WV, Whitsett JA (2008) Resident cellular components of the lung: developmental aspects. Proc Am Thorac Soc 5:767–771

    PubMed  Google Scholar 

  • Coraux C et al (2005) Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol 32(2):87–92

    PubMed  CAS  Google Scholar 

  • Crain BJ, Tran SD, Mezey E (2005) Transplanted human bone marrow cells generate new brain cells. J Neurol Sci 233(1–2):121–123

    PubMed  CAS  Google Scholar 

  • Crystal RG et al (2008) Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc 5:772–777

    PubMed  Google Scholar 

  • Danto SI et al (1995) Reversible transdifferentiation of alveolar epithelial cells. Am J Respir Cell Mol Biol 12(5):497–502

    PubMed  CAS  Google Scholar 

  • Deb A et al (2003) Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107(9):1247–1249

    PubMed  Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    PubMed  CAS  Google Scholar 

  • Dovey JS et al (2008) Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc Natl Acad Sci USA 105:11857–11862

    PubMed  CAS  Google Scholar 

  • Eramo A et al (2007) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    PubMed  Google Scholar 

  • Fadini GP et al (2006) Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells 24(7):1806–1813

    PubMed  Google Scholar 

  • Fadini GP et al (2007) The emerging role of endothelial progenitor cells in pulmonary hypertension and diffuse lung diseases. Sarcoidosis Vasc Diffuse Lung Dis 24:85–93

    PubMed  Google Scholar 

  • Fischer S et al (2006) Bridge to lung transplantation with the novel pumpless interventional lung assist device NovaLung. J Thorac Cardiovasc Surg 131(3):719–723

    PubMed  Google Scholar 

  • Gao D, Mittal V (2009) The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med 15:333–343

    PubMed  CAS  Google Scholar 

  • Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161:173–182

    PubMed  Google Scholar 

  • Giangreco A et al (2004) Molecular phenotype of airway side population cells. Am J Physiol Lung Cell Mol Physiol 286(4):L624–L630

    PubMed  CAS  Google Scholar 

  • Giangreco A, Groot KR, Janes SM (2007) Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med 175:547–553

    PubMed  Google Scholar 

  • Gomperts BN, Strieter RM (2007) Stem cells and chronic lung disease. Annu Rev Med 58:285–298

    PubMed  Google Scholar 

  • Gupta N et al (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863

    PubMed  CAS  Google Scholar 

  • Hildebrandt GC et al (2008) Recipient NOD2/CARD15 variants: a novel independent risk factor for the development of bronchiolitis obliterans after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 14(1):67–74

    PubMed  Google Scholar 

  • Hong KU et al (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24(6):671–681

    PubMed  CAS  Google Scholar 

  • Huh D et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    PubMed  CAS  Google Scholar 

  • Hung SC et al (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25(9):2363–2370

    PubMed  CAS  Google Scholar 

  • Ingemansson R et al (2009) Clinical transplantation of initially rejected donor lungs after reconditioning ex vivo. Ann Thorac Surg 87(1):255–260

    PubMed  Google Scholar 

  • Ingram DA, Caplice NM, Yoder MC (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106(5):1525–1531

    PubMed  CAS  Google Scholar 

  • Ionescu LI et al (2012a) Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma. Am J Respir Cell Mol Biol 46(2):207–216

    PubMed  CAS  Google Scholar 

  • Ionescu L et al (2012b) Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol 303(11):L967–977

    Google Scholar 

  • Irwin D et al (2007) Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification. Am J Physiol Lung Cell Mol Physiol 293(4):L941–L951

    PubMed  CAS  Google Scholar 

  • Ishizawa K, Kubo H, Yamada M et al (2004a) Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Lett 556:249–252

    PubMed  CAS  Google Scholar 

  • Ishizawa K, Kubo H, Yamada M et al (2004b) Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cells. Biochem Biophys Res Commun 324:276–280

    PubMed  CAS  Google Scholar 

  • Iyer SS, Rojas M (2008) Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opin Biol Ther 8:569–581

    PubMed  CAS  Google Scholar 

  • Johnson L et al (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410:1111–1116

    PubMed  CAS  Google Scholar 

  • JunHui Z et al (2008) Reduced number and activity of circulating endothelial progenitor cells in patients with idiopathic pulmonary arterial hypertension. Respir Med 102:1073–1079

    PubMed  Google Scholar 

  • Kajstura J et al (2011) Evidence for human lung stem cells. N Engl J Med 364(19):1795–1806

    PubMed  CAS  Google Scholar 

  • Kim CF (2007) Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. Am J Physiol Lung Cell Mol Physiol 293:L1092–L1098

    PubMed  CAS  Google Scholar 

  • Kim CFB et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    PubMed  CAS  Google Scholar 

  • Kitaoka H, Burri PH, Weibel ER (1996) Development of the human fetal airway tree: analysis of the numerical density of airway endtips. Anat Rec 244:207–213

    PubMed  CAS  Google Scholar 

  • Kotton DN et al (2001) Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 128:5181–5188

    PubMed  CAS  Google Scholar 

  • Krause DS et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    PubMed  CAS  Google Scholar 

  • Kunig AM (2005) Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 289:L529–L535

    PubMed  CAS  Google Scholar 

  • Lane S, Rippon HJ, Bishop AE (2007) Stem cells in lung repair and regeneration. Regen Med 2(4):407–415

    PubMed  CAS  Google Scholar 

  • Le Blanc K et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    PubMed  Google Scholar 

  • Lee JW et al (2009) Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA 106:16357–16362

    PubMed  CAS  Google Scholar 

  • Liu X, Engelhardt JF (2008) The glandular stem/progenitor cell niche in airway development and repair. Proc Am Thorac Soc 5:682–688

    PubMed  Google Scholar 

  • Macchiarini P et al (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030

    PubMed  Google Scholar 

  • Maeda Y, Davé V, Whitsett JA (2007) Transcriptional control of lung morphogenesis. Physiol Rev 87:219–244

    PubMed  CAS  Google Scholar 

  • Martin U (2008) Methods for studying stem cells: adult stem cells for lung repair. Methods 45:121–132

    PubMed  CAS  Google Scholar 

  • Martin J et al (2008) Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy 10(2):140–151

    PubMed  CAS  Google Scholar 

  • McQualter JL et al (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA 107(4):1414–1419

    PubMed  CAS  Google Scholar 

  • Mei SH et al (2007) Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 4(9):e269

    Google Scholar 

  • Mezey E et al (2003) Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 100(3):1364–1369

    PubMed  CAS  Google Scholar 

  • Mora AL, Rojas M (2008) Aging and lung injury repair: a role for bone marrow derived mesenchymal stem cells. J Cell Biochem 105:641–647

    PubMed  CAS  Google Scholar 

  • Németh K et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49

    PubMed  Google Scholar 

  • Nemeth K et al (2010) Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA 107(12):5652–5657

    PubMed  CAS  Google Scholar 

  • Neuringer IP, Randell SH (2004) Stem cells and repair of lung injuries. Respir Res 5:6

    PubMed  Google Scholar 

  • Nichols JE, Cortiella J (2008) Engineering of a complex organ: progress toward development of a tissue-engineered lung. Proc Am Thorac Soc 5:723–730

    PubMed  Google Scholar 

  • Ortiz LA et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104(26):11002–11007

    PubMed  CAS  Google Scholar 

  • Ortiz LA et al (2008) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100:8407–8411

    Google Scholar 

  • Ott HC et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–933

    PubMed  CAS  Google Scholar 

  • Otto WR (2002) Lung epithelial stem cells. J Pathol 197(4):527–535

    PubMed  CAS  Google Scholar 

  • Parekkadan B, van Poll D, Suganuma K et al (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2(9):e941

    PubMed  Google Scholar 

  • Peacock CD, Watkins DN (2008) Cancer stem cells and the ontogeny of lung cancer. J Clin Oncol 26(17):2883–2889

    PubMed  CAS  Google Scholar 

  • Petersen TH et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541

    PubMed  CAS  Google Scholar 

  • Pine SR, Marshall B, Varticovski L (2008) Lung cancer stem cells. Dis Markers 24:257–266

    PubMed  CAS  Google Scholar 

  • Poulsom R et al (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195(2):229–235

    PubMed  CAS  Google Scholar 

  • Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17:939–946

    PubMed  CAS  Google Scholar 

  • Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA 100(Suppl 1):11917–11923

    PubMed  CAS  Google Scholar 

  • Punch JD et al (2007) Organ donation and utilization in the United States, 1996–2005. Am J Transplant 7(5 Pt 2):1327–1338

    PubMed  CAS  Google Scholar 

  • Rawlins EL (2008) Lung epithelial progenitor cells: lessons from development. Proc Am Thorac Soc 5:675–681

    PubMed  Google Scholar 

  • Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133(13):2455–2465

    PubMed  CAS  Google Scholar 

  • Rawlins EL et al (2008) Epithelial stem/progenitor cells in lung postnatal growth, maintenance, and repair. Cold Spring Harb Symp Quant Biol 73:291–295

    PubMed  CAS  Google Scholar 

  • Reddy R et al (2004) Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. Am J Physiol Lung Cell Mol Physiol 286:L658–L667

    PubMed  CAS  Google Scholar 

  • Reynolds SD et al (2000) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156:269–278

    PubMed  CAS  Google Scholar 

  • Rippon HJ et al (2006) Derivation of distal lung epithelial progenitors from murine embryonic stem cells using a novel three-step differentiation protocol. Stem Cells 24:1389–1398

    PubMed  CAS  Google Scholar 

  • Rippon HJ, Lane S, Qin M et al (2008) Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo. Proc Am Thorac Soc 5(6):717–722

    PubMed  Google Scholar 

  • Rojas M et al (2005) Bone marrow-derived mesenchymal stem cells in the repair of the injured lung. Am J Respir Cell Mol Biol 33(2):145–152

    Google Scholar 

  • Runde V et al (2001) Adenoviral infection after allogeneic stem cell transplantation (SCT): report on 130 patients from a single SCT unit involved in a prospective multi center surveillance study. Bone Marrow Transplant 28(1):51–57

    PubMed  CAS  Google Scholar 

  • Salnikov AV et al (2009) CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. Int J Cancer. doi:10.1002/ijc.24822

  • Samadikuchaksaraei A, Bishop AE (2006) Derivation and characterization of alveolar epithelial cells from murine embryonic stem cells in vitro. Methods Mol Biol 330:233–248

    PubMed  CAS  Google Scholar 

  • Schoch KG et al (2004) A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. Am J Physiol Lung Cell Mol Physiol 286(4):L631–L642

    PubMed  CAS  Google Scholar 

  • Serikov VB et al (2007) Evidence of temporary airway epithelial repopulation and rare clonal formation by BM-derived cells following naphthalene injury in mice. Anat Rec (Hoboken) 290:1033–1045

    CAS  Google Scholar 

  • Siniscalco D et al (2008) Stem cell therapy: the great promise in lung disease. Ther Adv Respir Dis 2:173–177

    PubMed  Google Scholar 

  • Snyder JC, Teisanu RM, Stripp BR (2009) Endogenous lung stem cells and contribution to disease. J Pathol 217:254–264

    PubMed  CAS  Google Scholar 

  • Song JJ et al (2011) Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg 92(3):998–1006

    PubMed  Google Scholar 

  • Steen S et al (2007) First human transplantation of a nonacceptable donor lung after reconditioning ex vivo. Ann Thorac Surg 83:2191–2194

    PubMed  Google Scholar 

  • Stripp BR (2008) Hierarchical organization of lung progenitor cells: is there an adult lung tissue stem cell? Proc Am Thorac Soc 5:695–698

    PubMed  Google Scholar 

  • Sueblinvong V, Weiss DJ (2009) Cell therapy approaches for lung diseases: current status. Curr Opin Pharmacol 9:268–273

    PubMed  CAS  Google Scholar 

  • Summer R, Fine A (2008) Mesenchymal progenitor cell research: limitations and recommendations. Proc Am Thorac Soc 5:707–710

    PubMed  Google Scholar 

  • Summer R et al (2004) Translational physiology: origin and phenotype of lung side population cells. Am J Physiol Lung Cell Mol Physiol 287:L477–L483

    PubMed  CAS  Google Scholar 

  • Suratt BT et al (2003) Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med 168(3):318–322

    PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  • Taylor K, Holtby H (2009) Emergency interventional lung assist for pulmonary hypertension. Anesth Analg 109(2):382–385

    Google Scholar 

  • Thébaud B et al (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112:2477–2486

    PubMed  Google Scholar 

  • Theise ND et al (2000) Liver from bone marrow in humans. Hepatology 32(1):11–16

    PubMed  CAS  Google Scholar 

  • Tolar J et al (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25(2):371–379

    PubMed  CAS  Google Scholar 

  • Toshner M et al (2009) Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 180:780–787

    PubMed  Google Scholar 

  • van Haaften T et al (2009) Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 180(11):1131–1142. doi:10.1164/rccm.200902-0179OC

    PubMed  Google Scholar 

  • Van Vranken BE et al (2005) Coculture of embryonic stem cells with pulmonary mesenchyme: a microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng 11(7–8):1177–1187

    PubMed  Google Scholar 

  • Varanou A, Page CP, Minger SL (2008) Human embryonic stem cells and lung regeneration. Br J Pharmacol 155:316–325

    PubMed  CAS  Google Scholar 

  • von Mach MA et al (2006) An update on interventional lung assist devices and their role in acute respiratory distress syndrome. Lung 184(3):169–175

    Google Scholar 

  • Walles T (2007) Clinical experience with the iLA Membrane Ventilator pumpless extracorporeal lung-assist device. Expert Rev Med Devices 4(3):297–305

    PubMed  Google Scholar 

  • Wang G et al (2005) Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci USA 102(1):186–191

    PubMed  CAS  Google Scholar 

  • Wang D et al (2007a) A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 104(11):4449–4454

    PubMed  CAS  Google Scholar 

  • Wang XX et al (2007b) Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol 49(14):1566–1571

    PubMed  CAS  Google Scholar 

  • Warburton D et al (2001) Do lung remodeling, repair, and regeneration recapitulate respiratory ontogeny? Am J Respir Crit Care Med 164(10 Pt 2):S59–S62

    PubMed  CAS  Google Scholar 

  • Warburton D et al (2008) Stem/progenitor cells in lung development, injury repair, and regeneration. Proc Am Thorac Soc 5:703–706

    PubMed  Google Scholar 

  • Weiss DJ et al (2006) Adult stem cells, lung biology, and lung disease. NHLBI/Cystic Fibrosis Foundation workshop. Proc Am Thorac Soc 3:193–207

    PubMed  Google Scholar 

  • Weiss DJ et al (2008) Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 5:637–667

    PubMed  Google Scholar 

  • Wetsel RA, Wang D, Calame DG (2011) Therapeutic potential of lung epithelial progenitor cells derived from embryonic and induced pluripotent stem cells. Annu Rev Med 62:95–105

    Google Scholar 

  • Wierup P et al (2006) Ex vivo evaluation of nonacceptable donor lungs. Ann Thorac Surg 81(2):460–466

    PubMed  Google Scholar 

  • Wong AP et al (2007) Targeted cell replacement with bone marrow cells for airway epithelial regeneration. Am J Physiol Lung Cell Mol Physiol 293:L740–L752

    PubMed  CAS  Google Scholar 

  • Wong PM et al (2008) Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J 32(2):321–328

    PubMed  CAS  Google Scholar 

  • Wong AP et al (2009) Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J Clin Invest 119:336–348

    PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) World Health Report (2000)

    Google Scholar 

  • Xu J et al (2007) Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 293(1):L131–L141

    PubMed  CAS  Google Scholar 

  • Yagui-Beltrán A, He B, Jablons DM (2008) The role of cancer stem cells in neoplasia of the lung: past, present and future. Clin Transl Oncol 10:719–725

    PubMed  Google Scholar 

  • Yamada M et al (2004) Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol 172:1266–1272

    PubMed  CAS  Google Scholar 

  • Yamada M et al (2005) Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax 60:410–413

    PubMed  CAS  Google Scholar 

  • Yanagi S et al (2007) Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J Clin Invest 117:2929–2940

    PubMed  CAS  Google Scholar 

  • Yoder MC, Ingram DA (2009) Endothelial progenitor cell: ongoing controversy for defining these cells and their role in neoangiogenesis in the murine system. Curr Opin Hematol 16(4):269–273

    PubMed  CAS  Google Scholar 

  • Yoder MC et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109(5):1801–1809

    PubMed  CAS  Google Scholar 

  • Youngson C (1993) Oxygen sensing in airway chemoreceptors. Nature 365(6442):153–155

    PubMed  CAS  Google Scholar 

  • Zeltner TB, Burri PH (1987) The postnatal development and growth of the human lung. II. Morphology. Respir Physiol 67:269–282

    PubMed  CAS  Google Scholar 

  • Zhou BB et al (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8(10):806–823

    PubMed  CAS  Google Scholar 

  • Zhu JH et al (2008) Safety and efficacy of autologous endothelial progenitor cells transplantation in children with idiopathic pulmonary arterial hypertension: open-label pilot study. Pediatr Transplant 12(6):650–655

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Thébaud M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ionescu, L.I., Thébaud, B., Thébaud, B. (2013). Lung. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_34

Download citation

Publish with us

Policies and ethics