Regenerative Medicine in the Central Nervous System: Stem Cell-Based Cell- and Gene-Therapy

  • Seung U. Kim


Human neurological diseases such as Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), multiple sclerosis (MS), stroke and spinal cord injury are caused by a loss of neurons and glial cells in the brain or spinal cord. Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. In recent years, neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and extensive efforts by investigators to develop stem cell-based brain transplantation therapies have been carried out. I review here notable experimental and pre-clinical studies previously published involving stem cell-based cell- and gene-therapies for PD, HD, ALS, AD, MS and stroke, and discuss for future prospect for the stem cell therapy of neurological disorders in clinical setting. There are still many obstacles to be overcome before clinical application of cell- and gene-therapy in neurological disease patients is adopted: (i) it is still uncertain how to generate specific cell types of neurons or glia suitable for cellular grafts in great quantity, (ii) it is required to abate safety concern related to tumor formation following NSC transplantation, and (iii) it needs to be better understood by what mechanism transplantation of NSCs leads to an enhanced functional recovery. Steady and stepwise progress in stem cell research in both basic and pre-clinical settings should support the hope for development of stem cell-based therapies for neurodegenerative diseases. This review focuses on the ­utility of stem cells particularly NSCs as substrates for structural and functional repair of the diseased or injured brain.


Amyotrophic Lateral Sclerosis Nerve Growth Factor Huntington Disease Amyotrophic Lateral Sclerosis Patient Huntington Disease Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agid Y (1991) Parkinson’s disease: pathophysiology. Lancet 337:1321–1324PubMedCrossRefGoogle Scholar
  2. Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T (2008) Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One 3:e3145PubMedCrossRefGoogle Scholar
  3. Akiyama Y, Radke C, Kocsis JD (2002) Remyelination of rat spinal cord by implantation of identified bone marrow stromal cells. J Neurosci 22:6623–6630PubMedGoogle Scholar
  4. Alston TA, Mela L, Bright HJ (1977) 3-Nitropropionate, the toxic substrate of indigofera, si a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 74:3767–3771PubMedCrossRefGoogle Scholar
  5. Anton R, Kordower JH, Maidment NT, Manaster JS, Kane DJ, Rabizadeh S, Schueller SB, Yang J, Rabizadeh S, Edwards RH (1994) Neural-targeted gene therapy for rodent and primate hemiparkinsonism. Exp Neurol 127:207–218PubMedCrossRefGoogle Scholar
  6. Armstrong RJ, Watts C, Svendsen CN, Dunnett SB, Rosser AE (2000) Survival, neuronal differentiation, and fiber outgrowth of propagated human neural precursor grafts in an animal model of Huntington’s disease. Cell Transplant 9:55–64PubMedGoogle Scholar
  7. Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL (2008) Striatal progenitors derived from ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci USA 105:16707–16712PubMedCrossRefGoogle Scholar
  8. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prOLongs survival in a mouse ALS model. Nature 429:413–417PubMedCrossRefGoogle Scholar
  9. Bachoud-Lévi AC, Rémy P, Nguyen JP, Brugières P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V, Maison P, Haddad B, Boissé MF, Grandmougin T, Jény R, BartOLomeo P, Dalla Barba G, Degos JD, Lisovoski F, Ergis AM, Pailhous E, Cesaro P, Hantraye P, Peschanski M (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplnatation. Lancet 356:1975–1979PubMedCrossRefGoogle Scholar
  10. Bales KR, Tzavara ET, Wu S, Wade MR, Bymaster FP, Paul SM, Nomikos GG (2006) Cholinergc dysfunction in a mouse model of Alzheimer disease is reversed by an anti-Aβ antibody. J Clin Invest 116:825–832PubMedCrossRefGoogle Scholar
  11. Bartus R, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–411PubMedCrossRefGoogle Scholar
  12. Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192PubMedGoogle Scholar
  13. Bemelmans AP, Horellou P, Pradier L, Brunet I, Colin P, Mallet J (1999) Brain-derived neurotrophic fator-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 10:2987–2997PubMedCrossRefGoogle Scholar
  14. Bencsics C, Wachtel SR, Milstien S, Hatakeyama K, Becker JB, Kang UJ (1996) Double transduction with GTP cyclohydrolase1 and tyrosine hydroxylase is necessary for spontaneous synthesis of L-DOPA by primary fibroblasts. J Neurosci 16:4449–4456PubMedGoogle Scholar
  15. Ben-Hur T, Einstein O, Mizrachi-KOL R, Ben-Menachem O, Reinhartz E, Karussis D, Abramsky O (2003) Transplanted multipotential neural progenitor cells migrate into the inflamed white matter in response to experimental allergic encephalitis. Glia 41:73–80PubMedCrossRefGoogle Scholar
  16. Bjorklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3:537–544PubMedCrossRefGoogle Scholar
  17. Björklund A, Stenevi U (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 177:555–560PubMedCrossRefGoogle Scholar
  18. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon W, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 106:13594–13598PubMedCrossRefGoogle Scholar
  19. Boillee S, Van de Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59PubMedCrossRefGoogle Scholar
  20. Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998) Transplantation of cryopreserved human embryonic carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321PubMedCrossRefGoogle Scholar
  21. Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal MF (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal movements in primates. Proc Nat Acad Sci USA 92:7105–7109PubMedCrossRefGoogle Scholar
  22. Brustle O, McKay RG (1996) Neuronal progenotors as tools for cell replacement in the nervous system. Curr Opin Neurobiol 6:688–695PubMedCrossRefGoogle Scholar
  23. Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source for myelinating transplants. Science 285:754–756PubMedCrossRefGoogle Scholar
  24. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688PubMedCrossRefGoogle Scholar
  25. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786PubMedCrossRefGoogle Scholar
  26. Chen B, Gao XQ, Yang CX, Tan SK, Sun ZL, Yan NH, Pang YG, Yuan M, Chen GJ, Xu GT, Zhang K, Yuan QL (2009) Neuroprotective effect of grafting GDNF gene-modified neural stem cells on cerebral ischemia in rats. Brain Res 1284:1–11PubMedCrossRefGoogle Scholar
  27. Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim D, Kang S, Lee H, Kim M, Kim J, Leem JW, Oh SK, Choi YM, Hwang D, Chang JW, Kim D (2008) Highly efficient and large scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 105:3387–3392Google Scholar
  28. Cho GW, Koh SH, Kim MH, Yoo AR, Noh MY, Oh S, Kim SH (2010) Neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Res 1353:1–13PubMedCrossRefGoogle Scholar
  29. Chu K, Kim M, Jeong SW, Kim SU, Yoon BW (2003) Human neural stem cells can migrate, differentiate and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neuroci Lett 343:637–643CrossRefGoogle Scholar
  30. Chu K, Park KI, Lee ST, Jung KH, Ko SY, Kang L, Sinn DI, Lee YS, Kim SU, Kim M, Roh JK (2005) Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci Res 53:384–390PubMedCrossRefGoogle Scholar
  31. Chung S, Sonntag KC, Andersson T, Bjorklund LM, Park JJ, Kim DW, Kang UJ, Isacson O, Kim KS (2002) Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 16:1829–1838PubMedCrossRefGoogle Scholar
  32. Connick P, Kolappan M, Patani R, Scott M, Crawley C, He X, Richardson K, Barber K, Webber D, Claudia A, Wheeler-Kingshott C, Tozer D, Samson D, David L, Thomas D, Du M, Luan S, Michell A, Daniel R, Altmann D, Thompson A, Miller D, Compston A, Chandran S (2011) The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 12:62PubMedCrossRefGoogle Scholar
  33. Copray S, Balasubramaniyan V, Levenga J, de Bruijn J, Liem R, Boddeke E (2006) Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature Oligodendrocytes. Stem Cells 24:1001–1010PubMedCrossRefGoogle Scholar
  34. Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190PubMedCrossRefGoogle Scholar
  35. Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41(516–523):2010Google Scholar
  36. DiFiglia M (1990) Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 13:286–289PubMedCrossRefGoogle Scholar
  37. Dimos JT, RodOLfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induce pluripotent stem cells generated from patient with ALS can be differentiated into motor neurons. Science 321:1218–1221PubMedCrossRefGoogle Scholar
  38. Ding J, Cheng Y, Gao S, Chen J (2011) Effects of nerve growth factor and Noggin-modified bone marrow stromal cells on stroke in rats. J Neurosci Res 89:222–230PubMedCrossRefGoogle Scholar
  39. Dunnett SB, Bjorklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399:A32–A39PubMedCrossRefGoogle Scholar
  40. Dunnett SB, Carter RJ, Watts C, Torres EM, Mahal A, Mangiarini L, Bates G, Morton AJ (1998) Striatal transplantation in a transgenic mouse model of Huntington’s disease. Exp Neurol 154:31–40PubMedCrossRefGoogle Scholar
  41. During MJ, Naegele JR, O’Malley KL, Geller AI (1994) Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266:1399–1403PubMedCrossRefGoogle Scholar
  42. Ebers GC (1988) Multiple scelrosis and other demyelinating diseases. In: Asbury A, McKhann G, McDonald W (eds) Diseases of the nervous system. WB Saunders, Philadelphia, pp 1268–1291Google Scholar
  43. Emerich DF, Winn SR, Harper J, Hammang JP, Baetge EE, Kordower JH (1994) Implants of polymer-encapsulated human NGF-secreting cells in the non-human primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. J Comp Neurol 349:148–164PubMedCrossRefGoogle Scholar
  44. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRefGoogle Scholar
  45. Espinosa de los Monteros A, Zhao P, Huang C, Pan T, Chang R, Nazarian R, Espejo D, de Vellis J (1997) Transplantation of CG4 oligodendrocyte progenitor cells in the myelin-deficient rat brain results in myelination of axons and enhanced oligodendroglial markers. J Neurosci Res 50:872–887PubMedCrossRefGoogle Scholar
  46. Espinosa de los Monteros A, Baba H, Zhao PM, Pan T, Chang R, de Vellis J, Ikenaka K (2001) Remyelination of the adult demyelinated mouse brain by grafted oligodendrocyte progenitors. Neurochem Res 26:673–682PubMedCrossRefGoogle Scholar
  47. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta protein and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:4162–4167PubMedCrossRefGoogle Scholar
  48. Fischer W, Wictorin K, Björklund A, Williams LR, Varon S, Gage FH (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329:65–68PubMedCrossRefGoogle Scholar
  49. Fisher LJ, Jinnah HA, Kale LC, Higgins GA, Gage FH (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-DOPA. Neuron 6:371–380PubMedCrossRefGoogle Scholar
  50. Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons and express foreign genes. Nat Biotechnol 16:1033–1039PubMedCrossRefGoogle Scholar
  51. Franklin RJ, Blakemore WF (1997) Transplanting oligodendrocyte progenitors into the adult CNS. J Anat 190:23–33PubMedCrossRefGoogle Scholar
  52. Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S, Isacson O (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci USA 97:13877–13882PubMedCrossRefGoogle Scholar
  53. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  54. Garbuzova-Davis S, Willing AE, Milliken M, Saporta S, Zigova T, Cahill DW, Sanberg PR (2002) Positive effect of transplantation of hNT neurons (NTera 2/D1 cell-line) in a model of familial amyotrophic lateral sclerosis. Exp Neurol 174:169–180PubMedCrossRefGoogle Scholar
  55. Glaser T, Perez-Bouza A, Klein K, Brustle O (2005) Generation of purified Oligodendrocyte progenitors from embryonic stem cells. FASEB J 19:112–114PubMedGoogle Scholar
  56. Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 7:862–871CrossRefGoogle Scholar
  57. Gottlieb DI (2002) Large scale sources of neural stem cells. Annu Rev Neurosci 25:381–407PubMedCrossRefGoogle Scholar
  58. Greenamyre JT, Shoulson I (1994) Huntington disease. In: Calne D (ed) Neurodegenrative disease. WB Saunders, Philadelphia, pp 65–704Google Scholar
  59. Gumpel M, Lachapelle F, Gansmuller A, Baulac M, Baron van Evercooren A, Baumann N (1987) Transplantation of human embryonic oligodendrocytes into shiverer brain. Ann N Y Acad Sci 495:71–85PubMedCrossRefGoogle Scholar
  60. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775PubMedCrossRefGoogle Scholar
  61. Guzman R, De Los AA, Cheshier S, Choi R, Hoang S, Liauw J, Schaar B, Steinberg G (2008) Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke 39:1300–1306PubMedCrossRefGoogle Scholar
  62. Hagell P, Brundin P (2002) Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropath Exp Neurol 60:741–752Google Scholar
  63. Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, Widner H, Brundin P, Rothwell JC, Odin P, Wenning GK, Morrish P, Gustavii B, Björklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O (1999) Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain 122:1121–1132PubMedCrossRefGoogle Scholar
  64. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356PubMedCrossRefGoogle Scholar
  65. Harper PS (1996) Huntington’s disease. W.B Saunders, PhiladelphiaGoogle Scholar
  66. Harper JM, Krishnan C, Darman JS (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci USA 101:7123–7128PubMedCrossRefGoogle Scholar
  67. Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J (1999) Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease. Brain 122:1667–1678PubMedCrossRefGoogle Scholar
  68. Hefti F (1986) NGF promotes survival of septal cholinergic neurons after fimbrial transection. J Neurosci 6:2155–2161PubMedGoogle Scholar
  69. Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O, Selkoe DJ (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Aβ-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med 4(e262):1405–1416Google Scholar
  70. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807PubMedCrossRefGoogle Scholar
  71. Hudson AJ (1990) Amyotrophic lateral sclerosis: concepts in pathogenesis and etiology. University of Toronto Press, TorontoGoogle Scholar
  72. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  73. Hwang DH, Kim BG, Kim EJ, Lee SI, Joo IS, Suh-Kim H, Sohn S, Kim SU (2009a) Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci 10:117PubMedCrossRefGoogle Scholar
  74. Hwang DH, Lee HJ, Seok JI, Kim BG, Joo IS, Kim SU (2009b) Intrathecal transplantation of human neural stem cells over-expressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther 16:1234–1244PubMedCrossRefGoogle Scholar
  75. Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain abeta by neprilysin. Science 292:1550–1562PubMedCrossRefGoogle Scholar
  76. Jeong SW, Chu K, Kim MH, Kim SU, Roh JK (2003) Human neural stem cell transplantation in experimental intracerebral hemorrhage. Stroke 34:2258–2263PubMedCrossRefGoogle Scholar
  77. Jiao S, Gurevich V, Wolff JA (1993) Long-term correction of rat model of Parkinson’s disease by gene therapy. Nature 362:450–453PubMedCrossRefGoogle Scholar
  78. Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, Gorostiza O, Wang X, Greenberg DA (2010) Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab 30(534–544):2010Google Scholar
  79. Kang UJ, Fisher LJ, Joh TH, O’Malley KL, Gage FH (1993) Regulation of dopamine production by genetically modified primary fibroblasts. J Neurosci 13:5203–5211PubMedGoogle Scholar
  80. Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab 30:1487–1493PubMedCrossRefGoogle Scholar
  81. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40PubMedCrossRefGoogle Scholar
  82. Keene CD, Chang RC, Leverentz JB, Kopyov O, Perlman S, Hevner RF, Born DE, Bird TD, Montine TJ (2009) A patient with Huntington’s disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropath 117:329–338PubMedCrossRefGoogle Scholar
  83. Kerr DA, Lladó J, Shamblott MJ, Maragakis NJ, Irani DN, Crawford TO, Krishnan C, Dike S, Gearhart JD, Rothstein JD (2003) Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci 23:5131–5140PubMedGoogle Scholar
  84. Kim SU (2004) Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24:159–174PubMedCrossRefGoogle Scholar
  85. Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sánchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56PubMedCrossRefGoogle Scholar
  86. Kim TE, Lee HS, Lee YB, Hong SH, Lee YS, Ichinose H, Kim SU, Lee MA (2003) Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotype in Nurr-1 over-expressing neural stem cells. Biochem Biophys Res Comm 305:1040–1048PubMedCrossRefGoogle Scholar
  87. Kim SU, Park IH, Kim TH, Kim KS, Choi HB, Hong SH, Bang JH, Lee MA, Joo IS, Lee CS, Kim YS (2006) Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology 26:129–140PubMedCrossRefGoogle Scholar
  88. Kim M, Lee ST, Chu K, Kim SU (2008a) Stem cell-based cell therapy for Huntington disease: a review. Neuropathology 28:1–9PubMedCrossRefGoogle Scholar
  89. Kim SS, Yoo SW, Park TS, Ahn SC, Jeong HS, Kim JW, Chang DY, Cho KG, Kim SU, Huh Y, Lee JE, Lee SY, Lee YD, Suh-Kim H (2008b) Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells 26:2217–2228PubMedCrossRefGoogle Scholar
  90. Kim SU, Nagai A, Nakagawa E, Choi HB, Bang JH, Lee HJ, Lee MA, Lee YB, Park IH (2008c) Production and characterization of immortal human neural stem cell line with multipotent differentiation property. Methods Mol Biol 438:103–121PubMedCrossRefGoogle Scholar
  91. Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200PubMedCrossRefGoogle Scholar
  92. Kim KS, Lee HJ, Seo Y, Lim IJ, Kim SU (2011) Generation of human motoneurons from neural stem cells and motoneuron-base cell therapy in ALS mouse. Abstr Soc Neurosci 2011:558.06.Google Scholar
  93. Kirks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551Google Scholar
  94. Kish SJ, Shannak K, Hornykiewitcz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Eng J Med 318:876–880CrossRefGoogle Scholar
  95. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Human Gene Ther 16:509–521CrossRefGoogle Scholar
  96. Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M, Reitman MA, Bynum L (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569PubMedCrossRefGoogle Scholar
  97. Kordower JH, Tuszinski MH (1999) CNS regeneration: basic sciences and clinical advances. Academic, San DiegoGoogle Scholar
  98. Kordower JH, Goetz CG, Freeman TB, Olanow CW (1997a) Doparminergic transplants in patients with Parkinson’s disease: neuroanatomical correlates of clinical recovery. Exp Neurol 144:41–46PubMedCrossRefGoogle Scholar
  99. Kordower JH, Chen EY, Winkler C, Fricker R, Charles V, Messing A, Mufson EJ, Wong SC, Rosenstein JM, Björklund A, Emerich DF, Hammang J, Carpenter MK (1997b) Grafts of EGFresponsive neural stem cells derived from GFAP-hNGF transgenic mice: tropic and tropic effects in a rodent model of Huntington’s disease. J Comp Neurol 387:96–113PubMedCrossRefGoogle Scholar
  100. Kurozumi K, Nakamura K, Tamika T, Kawano Y, Koruna M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9:189–197PubMedCrossRefGoogle Scholar
  101. Lachapelle F, Gumpel M, Baulac C, Jacque C (1983) Transplantation of fragments of CNS into the brain of shiverer mutant mice: extensive myelination of transplanted oligodendrocytes. Dev Neurosci 6:326–334CrossRefGoogle Scholar
  102. Lang AE, Lozano AM (1998a) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053PubMedCrossRefGoogle Scholar
  103. Lang AE, Lozano AM (1998b) Parkinson’s disease. Second of two parts. N Engl J Med 339:1130–1143PubMedCrossRefGoogle Scholar
  104. Le Gros Clark WE (1940) Neuronal differentiation in implanted foetal cortical tissue. J Neurol Psychiatry 3:263–284CrossRefGoogle Scholar
  105. Learish RD, Brustle O, Zhang SC, Duncan ID (1999) Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutants in widespread formation of myelin. Ann Neurol 46:716–722PubMedCrossRefGoogle Scholar
  106. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675–679PubMedCrossRefGoogle Scholar
  107. Lee ST, Chu K, Park JE, Lee K, Kang L, Kim SU, Kim M (2005) Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res 52:243–249PubMedCrossRefGoogle Scholar
  108. Lee ST, Park JE, Lee K, Kang L, Chu K, Kim SU, Kim M, Roh JK (2006) Noninvasive method of immortalized neural stem-like cell transplantation in an experimental model of Huntington’s disease. J Neurosci Meth 52:250–254CrossRefGoogle Scholar
  109. Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU (2007a) Brain transplantation of human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25:211–224CrossRefGoogle Scholar
  110. Lee HJ, Kim KS, Kim EJ, Park IH, Kim SU (2007b) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 1:e156CrossRefGoogle Scholar
  111. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in hemorrhagic stroke. Brain 131:616–629PubMedCrossRefGoogle Scholar
  112. Lee HJ, Park IH, Kim HJ, Kim SU (2009a) Human neural stem cells overexpressing glial cell line derived neurotrophic factor (GDNF) promote functional recovery and neuroprotection in experimental cerebral hemorrhage. Gene Ther 16:1066–1076PubMedCrossRefGoogle Scholar
  113. Lee HJ, Kim MK, Kim HJ, Kim SU (2009b) Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One 4:e5586PubMedCrossRefGoogle Scholar
  114. Lee HJ, Lim IJ, Lee MC, Kim SU (2010a) Human neural stem cells genetically modified to overexpress BDNF promote functional recovery and neuroprotection in mouse stroke model. J Neurosci Res 88:3282–3294PubMedCrossRefGoogle Scholar
  115. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010b) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28:1099–1106PubMedCrossRefGoogle Scholar
  116. Lee HJ, Lim IJ, Park SW, Kim YB, Kim SU (2012) Human neural stem cells genetically modified to express human nerve growth factor gene restore cognition in ibotenic acid-induced cognitive dysfunction. Cell Transplant 2012 Apr 20 [Epub ahead of print]Google Scholar
  117. Li P, Tessler A, Han SS, Fischer I, Rao MS, Selzer ME (2005) Fate of immortalized human neuronal progenitor cells transplanted in rat spinal cord. Arch Neurol 62:223–229PubMedCrossRefGoogle Scholar
  118. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096PubMedCrossRefGoogle Scholar
  119. Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247:574–577PubMedCrossRefGoogle Scholar
  120. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(suppl):S42–S50PubMedCrossRefGoogle Scholar
  121. Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after transplantation. Proc Natl Acad Sci USA 97:6126–6131PubMedCrossRefGoogle Scholar
  122. Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329PubMedCrossRefGoogle Scholar
  123. Lyons MK (2011) Deep brain stimulation: current and future clinical applications. Mayo Clin Proc 86:662–672PubMedCrossRefGoogle Scholar
  124. Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 23:1992–1996PubMedGoogle Scholar
  125. Marshall J, Thomas DJ (1988) Cerebrovascular disease. In: Asbury A, McKhann G, McDonald W (eds) Diseases of the nervous system. WB Saunders, Philadelphia, pp 1101–1135Google Scholar
  126. McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219PubMedCrossRefGoogle Scholar
  127. McFarlin DE, McFarland HF (1982) Multiple sclerosis. N Eng J Med 307:1183–1188CrossRefGoogle Scholar
  128. McKay RG (1997) Stem cells in the central nervous system. Science 276:66–71PubMedCrossRefGoogle Scholar
  129. Melchor JP, Pawlak R, Strickland S (2003) The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta degradation and inhibit Abeta-induced neurodegeneration. J Neurosci 23:8867–8871PubMedGoogle Scholar
  130. Miles GB, Yohn DC, Wichterle H (2004) Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 24:7848–7858PubMedCrossRefGoogle Scholar
  131. Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, Hersh LB, Thiele DL (2003) Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc Natl Acad Sci USA 100:6221–6226PubMedCrossRefGoogle Scholar
  132. Miltrecic D, Nicaise C, Gajovic S, Pochet R (2010) Distribution, differentiation and survival of intravenously administered neural stem cells in a rat model of amuyotrophic lateral sclerosis. Cell Transplant 19:537–548CrossRefGoogle Scholar
  133. Modo M, Stroemer RP, Tang E, Patel S, Hodges H (2002) Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 33:2270–2278PubMedCrossRefGoogle Scholar
  134. Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH, Baharvand H (2009) Transplantation of primed or unprimed mouse embryonic stem cells derived neural precursor cells improve cognitive function in Alzheimerian rats. Differentiation 78:59–68PubMedCrossRefGoogle Scholar
  135. Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B, Chen J, Wang X, Yu G, Esposito L, Mucke L, Gan L (2006) Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzhemer’s disease. Neuron 51:703–714PubMedCrossRefGoogle Scholar
  136. Musiał A, Bajda M, Malawska B (2007) Recent developments in cholinesterase inhibitors for Alzheimer’s disease treatment. Curr Med Chem 14:2654–2679PubMedCrossRefGoogle Scholar
  137. Nagai A, Kim WK, Lee HJ, Jeong HS, Kim KS, Hong SH, Park IH, Kim SU (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS One 2:e1272PubMedCrossRefGoogle Scholar
  138. Nakao N, Itakura T (2000) Fetal tissue transplants in animal models of Huntington’s disease: The effects on damaged neuronal circuitry and behavioral deficits. Prog Neurobiol 61:313–338PubMedCrossRefGoogle Scholar
  139. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396PubMedCrossRefGoogle Scholar
  140. Olanow CW, Kordower J, Freeman T (1996) Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci 19:102–109PubMedCrossRefGoogle Scholar
  141. Park IH, Zhao R, West JA (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 415:141–146CrossRefGoogle Scholar
  142. Park D, Joo SS, Kim TK, Choi YJ, Lee SH, Kang H, Lee HJ, Kim YB, Kim SU (2012a) Human neural stem cells over expressing choline acetyltransferase gene recover cognitive function of kainic acid-Induced learning and memory deficit animals. Cell Transplant 21:365–371PubMedGoogle Scholar
  143. Park D, Lee HJ, Joo SS, Matsuo A, Tooyama I, Kim YB, Kim SU (2012b) Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 234:521–526PubMedCrossRefGoogle Scholar
  144. Paty D, Ebers GC (1998) Multiple sclerosis. FA Davis, PhiladelphiaGoogle Scholar
  145. Pendharkar AV, Chua JY, Andres RH, Wang N, Gaeta X, Wang H, De A, Choi R, Chen S, Rutt BK, Gambhir SS, Guzman R (2010) Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia. Stroke 41:2064–2070PubMedCrossRefGoogle Scholar
  146. Pérez-Navarro E, Canudas AM, Akerund P, Alberch J, Arenas E (2000) Brain-derived neurotrophic factor, NT-3 and NT-3/4 prevent the death of striatal projection neurons in rodent model of Huntington’s disease. J Neurochem 75:2190–2199PubMedCrossRefGoogle Scholar
  147. Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647PubMedCrossRefGoogle Scholar
  148. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271PubMedCrossRefGoogle Scholar
  149. Ramon y Cajal S (1928) Degeneration and regeneration of the nervous system. Hafner, New YorkGoogle Scholar
  150. Ransom SW (1909) Transplantation of spinal ganglion into the brain. Q Bull Northwest Univ Med Sch 11:176–178Google Scholar
  151. Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, Gu Z, Lipton SA, Markakis EA, Roth RH, Elsworth JD, Sladek JR Jr, Sidman RL, Snyder EY (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci USA 104:12175–12180PubMedCrossRefGoogle Scholar
  152. Renfranz PJ, Cunningham M, McKay R (1991) Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66:713–729PubMedCrossRefGoogle Scholar
  153. Roberts TJ, Price J, Williams SC, Modo M (2006) Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington’s disease. Neuroscience 139:1187–1199PubMedCrossRefGoogle Scholar
  154. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. New Eng J Med 344:1688–1700PubMedCrossRefGoogle Scholar
  155. Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, Lee MC, McLarnon JG, Kim SU (2004) Proactive transplantation of human neural stem cells blocks neuronal cell death in rat model of Huntington disease. Neurobiol Disease 16:68–77CrossRefGoogle Scholar
  156. Ryu MY, Lee MA, Ahn YH, Kim KS, Yoon SH, Snyder EY, Cho KG, Kim SU (2005) Brain transplantation of genetically modified neural stem cells in parkinsonian rat. Cell Transplant 14:193–202PubMedCrossRefGoogle Scholar
  157. Sah DW, Ray J, Gage F (1997) Bipotent progenitor cell lines from the human CNS. Nat Biotechnol 15:574–580PubMedCrossRefGoogle Scholar
  158. Saporta S, Borlongan CV, Sanberg PR (1999) Neural transplantation of human teratocarcinoma neurons into ischemic rats. A quantitative dose-response analysis of cell survival and behavioral recovery. Neuroscience 180:519–525CrossRefGoogle Scholar
  159. Savitz SI, Rosenbaum DM, Dinsmore JH, Wechsler LR, Caplan LR (2002) Cell transplantation for stroke. Ann Neurol 52:266–275PubMedCrossRefGoogle Scholar
  160. Seilhean D, Gansmüller A, Baron-Van Evercooren A, Gumpel M, Lachapelle F (1996) Myelination by transplanted human and mouse CNS tissue after long-term cryopreservation. Acta Neuropath 91:82–88PubMedCrossRefGoogle Scholar
  161. Seminatore C, Polentes J, Ellman D, Kozubenko N, Itier V, Tine S, Tritschler L, Brenot M, Guidou E, Blondeau J, Lhuillier M, Bugi A, Aubry L, Jendelova P, Sykova E, Perrier AL, Finsen B, Onteniente B (2010) The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke 41:153–159PubMedCrossRefGoogle Scholar
  162. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured juman primordial germ cells. Proc Natl Acad Sci USA 95:13726–13731PubMedCrossRefGoogle Scholar
  163. Shim JW, Koh HC, Chang MY, Roh E, Choi CY, Oh YJ, Son H, Lee YS, Studer L, Lee SH (2004) Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL. J Neurosci 24:843–852PubMedCrossRefGoogle Scholar
  164. Sinden JD, Rashid-Doubell F, Kershaw TR, Nelson A, Chadwick A, Jat PS, Noble MD, Hodges H, Gray JA (1997) Recovery of spatial learning by grafts of a conditionally immortalized hippocampal neuroepithelial cell line into the ischemia-lesioned hippocampus. Neuroscience 23:599–608CrossRefGoogle Scholar
  165. Snyder EY, Deitcher DL, Walsh C (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51PubMedCrossRefGoogle Scholar
  166. Song J, Lee ST, Kang W, Park JE, Chu K, Lee SE, Hwang T, Chung H, Kim M (2007) Human embryonic stem cell-derived neural precursor transplantation induced rotational behavior in rats with unilateral quinolinic acid lesions. Neurosci Lett 423:58–61PubMedCrossRefGoogle Scholar
  167. Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H, Van Damme P, Rutten B, Man WY, De Mol M, Wyns S, Manka D, Vermeulen K, Van Den Bosch L, Mertens N, Schmitz C, Robberecht W, Conway EM, Collen D, Moons L, Carmeliet P (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–92PubMedCrossRefGoogle Scholar
  168. Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N (2005) Dopaminergic neurons generated from monkey ES cells function in a Parkinson primate model. J Clin Invest 115:102–108PubMedGoogle Scholar
  169. Takahashi K, Tanabe K, Ohnuki M (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  170. Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nabeshima Y (2000) Dynamic expression of bHLH olig family members: implication of Olig2 in neuron and OLigodendrocyte differentiation and identification of a new member, Olig3. Mech Devel 99:143–148CrossRefGoogle Scholar
  171. Temple S (2001) The development of neural stem cells. Nature 414:112–117PubMedCrossRefGoogle Scholar
  172. Terry AV, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s diseaserelated cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827PubMedCrossRefGoogle Scholar
  173. Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F, McCusker E, Frackowiak RS (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828PubMedCrossRefGoogle Scholar
  174. Thompson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell line derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  175. Thompson WG (1890) Successful brain grafting. N Y Med J 51:701–702Google Scholar
  176. Tuszynski DW (2002) Gene therapy for neurodegenerative disorders. Lancet Neurol 1:51–57PubMedCrossRefGoogle Scholar
  177. Tuszynski DW, U HS, Amaral DG, Gage FH (1990) Nerve growth factor infusion in primate brain reduces lesion-induced cholinergicneuronal degeneration. J Neurosci 10:3604–3614PubMedGoogle Scholar
  178. Tuszynski MH, Thal L, Pay M, Salmon DP, U HS, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555PubMedCrossRefGoogle Scholar
  179. Vasey EM, Dottori M, Jamshidi P (2010) Comparison of transplant efficacy between spontaneucely derived and noggin-primed human embryonic stem cell neural precursors in the quinOLinic acid rat model of Huntington’s disease. Cell Transplant 19:1055–1062CrossRefGoogle Scholar
  180. Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H (2001) Resolution of stroke deficits following contalateral grafts of conditionally immortlized neuroepithelial stem cells. Stroke 32:1012–1019PubMedCrossRefGoogle Scholar
  181. Visnyei K, Tatsukawa KJ, Erickson RI, Simonian S, Oknaian N, Carmichael ST, Kornblum HI (2006) Neural progenitor implantation restores metabolic deficits in the brain following striatal quinolinic acid lesion. Exp Neurol 197:465–474PubMedCrossRefGoogle Scholar
  182. Wagner J, Akerud P, Castro DS, Holm PC, Canals JM, Snyder EY, Perlmann T, Arenas E (1999) Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat Biotechnol 17:653–659PubMedCrossRefGoogle Scholar
  183. Wang Q, Matsumoto Y, Shindo T, Miyake K, Shindo A, Kawanishi M, Kawai N, Tamika T, Nagao S (2006) Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Invest 53:61–69PubMedCrossRefGoogle Scholar
  184. Watabe K, Ohashi T, Sakamoto T, Kawazoe Y, Takeshima T, Oyanagi K, Inoue K, Eto Y, Kim SU (2000) Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor. J Neurosci Res 60:511–519PubMedCrossRefGoogle Scholar
  185. Werning M, Zhao J, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogramed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105:5856–5861CrossRefGoogle Scholar
  186. Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126PubMedCrossRefGoogle Scholar
  187. Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryo stem cells into motor neurons. Cell 110:385–397PubMedCrossRefGoogle Scholar
  188. Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G, Roy NS, Goldman SA (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 10:93–97PubMedCrossRefGoogle Scholar
  189. Wolff JA, Fisher LJ, Xu L, Jinnah HA, Langlais PJ, Iuvone PM, O’Malley KL, Rosenberg MB, Shimohama S, Friedmann T et al (1989) Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci USA 86:9011–9014PubMedCrossRefGoogle Scholar
  190. Wu S, Sasaki A, Yoshimoto R, Kawahara Y, Manabe T, Kataoka K, Asashima M, Yuge L (2008) Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology 75:186–194PubMedCrossRefGoogle Scholar
  191. Xu L, Yan J, Chen D, Welsh AM, Hazel T, Johe K, Hatfield G, Koliatsos VE (2006) Human neural stem cell grafts ameliorate motor neuron disease in SOD1 transgenic rats. Transplantation 82:865–875PubMedCrossRefGoogle Scholar
  192. Yamazaki N, Kato K, Kurihara E, Nagaoka A (1991) Cholinergic drugs reverse AF64A-induced impairment of passive avoidance learning in rats. Psychopharmacology (Berl) 103:215–222CrossRefGoogle Scholar
  193. Yandava B, Billinghurst L, Snyder E (1999) Global cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad SciUSA 96:7029–7034CrossRefGoogle Scholar
  194. Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, Kim SU, Borlongan CV (2006) Transplantation of neural stem cells exerts neuroprotection in a rat model of Parkinson disease. J Neurosci 26:124497–124511CrossRefGoogle Scholar
  195. Yu J, Vodyanik MA, Smuga-Otto K (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  196. Zhang SC, Ge B, Duncan ID (1999) Adult brain retains the potential to generate Oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci USA 96:4089–4094PubMedCrossRefGoogle Scholar
  197. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischmica brain of rats. Exp Neurol 174:11–20PubMedCrossRefGoogle Scholar
  198. Zheng C, Nennesmo I, Fadeel B, Henter JI (2004) Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 56:564–567PubMedCrossRefGoogle Scholar
  199. Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage specific basic helix loop helix transcription factors. Neuron 25:331–343PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Division of Neurology, Department of Medicine, UBC HospitalUniversity of British ColumbiaVancouverCanada
  2. 2.Medical Research InstituteChung-Ang University College of MedicineSeoulSouth Korea

Personalised recommendations