Skip to main content

Biodegradable Materials

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

The ability of polymers to be degraded in physiological environments makes them interesting candidates for various medical applications. Degradation and metabolisation or excretion of polymeric implants can avoid a second surgery for the removal of an implant. Biodegradable materials can serve as a temporary substitute of the extracellular matrix or as matrix in controlled drug release systems, which both can be utilized in Regenerative Therapies.

This chapter gives an overview about polymeric materials established in clinical use such as polyesters, polyurethanes, polyanhydrides, or carbohydrates. It describes further their synthesis and exemplary applications such as surgical sutures. Finally the importance of a continuing development of novel materials for future applications is pointed out, since the number of potential applications in the medical field is expanding rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CW (1981) Organofluorophsphazenes. A short review. Ind Eng Chem Prod Res Dev 20:77–79

    Article  CAS  Google Scholar 

  • Andrianov AK (2009) Polyphosphazenes for biomedical applications. Wiley, Hoboken

    Book  Google Scholar 

  • Barker SA, Young NM (1966) Isolation of hyaluronic acid by gel filtration on agarose. Carbohydr Res 2:363–370

    Article  CAS  Google Scholar 

  • Behl M, Lendlein A (2007) Actively moving polymers. Soft Matter 3:58–67

    Article  CAS  Google Scholar 

  • Bera S, Jedlinski Z (1993) Block segmented polymers – a new method of synthesis of copoly(amide-ester) ester polymer. J Polym Sci A Polym Chem 31:731–739

    Article  CAS  Google Scholar 

  • Boas NF (1949) Isolation of hyaluronic acid from the cocks comb. J Biol Chem 181:573–575

    PubMed  CAS  Google Scholar 

  • Brannon-Peppas L (1997) Polymers in controlled drug delivery. Med Plast Biomat 4:34–45

    Google Scholar 

  • Bucher JE, Slade WC (1909) The anhydrides of isophthalic and terephthalic acids. J Am Chem Soc 31:1319–1321

    Article  Google Scholar 

  • Cardy RH (1979) Carcinogenicity and chronic toxicity of 2,4-toluenediamine in f344 rats. J Natl Cancer Inst 62:1107–1116

    PubMed  CAS  Google Scholar 

  • Chabot F et al (1983) Configurational structures of lactic-acid stereocopolymers as determined by 13C-labeled 1H-NMR. Polymer 24:53–59

    Article  CAS  Google Scholar 

  • Commandeur S, van Beusekom HM, van der Giessen WJ (2006) Polymers, drug release, and drug-eluting stents. J Interv Cardiol 19(6):500–506

    Article  PubMed  Google Scholar 

  • Crivello JV et al (1996) Ketene acetal monomers: synthesis and characterization. J Polym Sci A Polym Chem 34:3091–3102

    Article  CAS  Google Scholar 

  • Deasy PB et al (1989) Preparation and characterization of lactic glycolic acid polymers and copolymers. J Microencapsul 6:369–378

    Article  PubMed  CAS  Google Scholar 

  • Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Weikel AL, Krogman NR, Allcock HR, Laurencin CT (2010) In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater 20(17):2743–2957

    Article  PubMed  Google Scholar 

  • Di Lullo GA et al (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277:4223–4231

    Article  PubMed  Google Scholar 

  • Domb AJ et al (1994) Polyanhydrides as carriers of drugs. In: Shalaby SW (ed) Biomedical polymers. Hanser, Munich, pp 69–96

    Google Scholar 

  • Dorri M, Nasser M, Oliver R (2009) Resorbable versus titanium plates for facial fractures. Cochrane Database Syst Rev 21(1):CD007158

    Google Scholar 

  • Feng YK, Guo JT (2009) Biodegradable polydepsipeptides. Int J Mol Sci 10:589–615

    Article  PubMed  CAS  Google Scholar 

  • Friedlaender GE et al (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions: a prospective, randomized clinical trial comparing rhop-1 with fresh bone autograft. J Bone Joint Surg 83:S151

    PubMed  Google Scholar 

  • Govender S et al (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures – a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg 84A:2123–2134

    Google Scholar 

  • Greenstein G, Caton JG (1993) Biodegradable barriers and guided tissue regeneration. Periodontol 2000 2000(1):36–45

    Article  Google Scholar 

  • Grigat E et al (1998) Bak 1095 and bak 2195: completely biodegradable synthetic thermoplastics. Polym Degrad Stab 59:223–226

    Article  CAS  Google Scholar 

  • Gunatillake P et al (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347

    Article  PubMed  CAS  Google Scholar 

  • Guo K, Chu CC (2007) Synthesis, characterization, and biodegradation of copolymers of unsaturated and saturated poly(ester amide)s. J Polym Sci A Polym Chem 45:1595–1606

    Article  CAS  Google Scholar 

  • Han MG et al (2008) Synthesis and degradation behavior of poly(ethyl cyanoacrylate). Polym Degrad Stab 93:1243–1251

    Article  CAS  Google Scholar 

  • Heller J et al (1983) Controlled release of contraceptive steroids from biodegradable poly(ortho esters). Contracept Deliv Syst 4:43–53

    PubMed  CAS  Google Scholar 

  • Heller J et al (1992) Synthesis and characterization of a new family of poly(ortho ester)s. Macromolecules 25:3362–3364

    Article  CAS  Google Scholar 

  • Heller J et al (1995) Poly(ortho esters) for the pulsed and continuous delivery of peptides and proteins. In: Lee VHL et al (eds) Trends and future perspectives in peptide and protein drug delivery, vol 4. Harwood Academic Publ Gmbh, Chur, pp 39–56

    Google Scholar 

  • Heller J et al (2002) Poly(ortho esters): synthesis, characterization, properties and uses. Adv Drug Deliv Rev 54:1015–1039

    Article  PubMed  CAS  Google Scholar 

  • Hill JW, Carothers WH (1932) Studies of polymerization and ring formation. XIV. A linear superpolyanhydride and a cyclic dimeric anhydride from sebacic acid. J Am Chem Soc 54:1569–1579

    Article  CAS  Google Scholar 

  • Hodde J (2006) Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J Surg 76:1096–1100

    Article  PubMed  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  PubMed  CAS  Google Scholar 

  • Horton VL et al (1988) Comparison of bioabsorbable poly(ester-amide) monomers and polymers in vivo using radiolabeled homologs. In: Gebelijn CG, Dunn RL (eds) Progress in biomedical polymers. Plenum Press, New York, pp 263–282

    Google Scholar 

  • Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890

    Article  PubMed  CAS  Google Scholar 

  • Jain JP et al (2005) Role of polyanhydrides as localized drug carriers. J Control Release 103:541–563

    Article  PubMed  CAS  Google Scholar 

  • Kaidar-Person O, Rosenthal RJ, Wexner SD, Szomstein S, Person B (2008) Compression anastomosis: history and clinical considerations. Am J Surg 195(6):818–826

    Article  PubMed  Google Scholar 

  • Konan S, Haddad FS (2009) A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 16:6–13

    Article  PubMed  CAS  Google Scholar 

  • Kricheldorf HR, Serra A (1985) Polylactones. 6. Influence of various metal-salts on the optical purity of poly(l-lactide). Polym Bull 14:497–502

    Article  CAS  Google Scholar 

  • Kricheldorf HR, Stricker A (2000) Macrocycles. 13. Stannylenated glucose glycosides as cyclic initiators of epsilon-caprolactone and the synthesis of biodegradable networks. Macromolecules 33:696–701

    Article  CAS  Google Scholar 

  • Kroehne V et al (2008) Use of a novel collagen matrix with oriented pore structures for muscle cell differentiation in cell culture and in grafts. J Cell Mol Med 12:1640–1648

    Article  PubMed  CAS  Google Scholar 

  • Krogman N, Singh A, Nair LS, Laurencin CT, Allcock HR (2006) The miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends. Biomacromolecules 2:1–10

    Google Scholar 

  • Kulkarni A et al (2007) Hydrolytic degradation of poly(rac-lactide) and poly[(rac-lactide)-co-glycolide] at the air-water interface. Surf Interface Anal 39:740–746

    Article  CAS  Google Scholar 

  • Kuppermann BD et al (2007) Dexamethasone DDS phase II study group. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol 125(3):309–317

    Article  PubMed  CAS  Google Scholar 

  • Lakshmi S, Katti DS, Laurencin CT (2003) Biodegradable polyphosphazenes for drug delivery applications. Adv Drug Deliv Rev 55(4):467–482

    Article  PubMed  CAS  Google Scholar 

  • Laurencin CT et al (1995) In: Hollinger JO (ed) Biomedical applications of synthetic biodegradable polymers. CRC-Press, Boca Raton, pp 59–101

    Google Scholar 

  • Leaper D, Assadian O, Hubner NO, McBain A, Barbolt T, Rothenburger S, Wilson P (2011) Antimicrobial sutures and prevention of surgical site infection: assessment of the safety of the antiseptic triclosan. Int Wound J 6:556–566

    Article  Google Scholar 

  • Leenslag JW, Pennings AJ (1987) Synthesis of high-molecular-weight poly(L-lactide) initiated with tin 2-ethylhexanoate. Makromol Chem Macromol Chem Phys 188:1809–1814

    Article  CAS  Google Scholar 

  • Leenslag JW et al (1984) Resorbable materials of poly(l-lactide). 5. Influence of secondary structure on the mechanical-properties and hydrolyzability of poly(L-lactide) fibers produced by a dry-spinning method. J Appl Polym Sci 29:2829–2842

    Article  CAS  Google Scholar 

  • Lendlein A (1999) Polymere als implantatwerkstoffe. Chem unserer Zeit 33:279–295

    Article  CAS  Google Scholar 

  • Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057

    Article  CAS  Google Scholar 

  • Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  PubMed  Google Scholar 

  • Lendlein A et al (1998) Tissue-compatible multiblock copolymers for medical applications, controllable in degradation rate and mechanical properties. Macromol Chem Phys 199:2785–2796

    Article  CAS  Google Scholar 

  • Li X, Jastri BR (2006) Biodegradable polymeric delivery systems. Design of controlled release drug delivery systems. McGraw-Hill, New York, pp 271–304

    Google Scholar 

  • Li LC et al (2002) Polyanhydride implant for antibiotic delivery – from the bench to the clinic. Adv Drug Deliv Rev 54:963–986

    Article  PubMed  Google Scholar 

  • Little U et al (2009) Accelerated degradation behaviour of poly(epsilon-caprolactone) via melt blending with poly(aspartic acid-co-lactide) (pal). Polym Degrad Stab 94:213–220

    Article  CAS  Google Scholar 

  • Martinez MB et al (1997) Hydrolytic degradation of poly(ester amides) derived from carbohydrates. Macromolecules 30:3197–3203

    Article  Google Scholar 

  • Meek MF, Coert JH (2008) US Food and Drug Administration/Conformit Europe-approved absorbable nerve conduits for chemical repair of peripheral and cranial nerves. Ann Plast Surg 60(4):466–472

    PubMed  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Ng SY et al (1997) Synthesis and erosion studies of self-catalyzed poly(ortho ester)s. Macromolecules 30:770–772

    Article  CAS  Google Scholar 

  • Nieuwenhuis J (1992) Synthesis of polylactides, polyglycolides and their copolymers. Clin Mater 10:59–67

    Article  PubMed  CAS  Google Scholar 

  • Ormiston JA, Serruys PW (2009) Bioabsorbable coronary stents. Circ Cardiovasc Interv 2(3):255–260

    Article  PubMed  CAS  Google Scholar 

  • Paredes N et al (1998) Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J Polym Sci A Polym Chem 36:1271–1282

    Article  CAS  Google Scholar 

  • Pasternak B, Rehn M, Andersen L et al (2008) Doxycycline-coated sutures improve mechanical strength of intestinal anastomoses. Int J Colorectal Dis 23:271–276

    Article  PubMed  Google Scholar 

  • Peltoniemi H et al (2002) The use of bioabsorbable osteofixation devices in craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94(1):5–14

    Article  PubMed  Google Scholar 

  • Peppas NA (ed) (1987) Hydrogels in medicine and pharmacy. CRC Press, Boca Raton

    Google Scholar 

  • Pietrzak WS, Eppley BL (2000) Resorbable polymer fixation for craniomaxillofacial surgery: development and engineering paradigms. J Craniofac Surg 11(6):575–585

    Article  PubMed  CAS  Google Scholar 

  • Pillai CK, Sharma CP (2010) Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25(4):291–366

    Article  PubMed  CAS  Google Scholar 

  • Piskin E (1995) Biodegradable polymers as biomaterials. J Biomat Sci Polym Ed 6:775–795

    Article  CAS  Google Scholar 

  • Purcell DB et al (2004) Bioabsorbable interference screws in ACL reconstruction. Oper Tech Sports Med 12:180–187

    Article  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  PubMed  CAS  Google Scholar 

  • Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and ­treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(Suppl 2):S105–S112

    Article  PubMed  Google Scholar 

  • Sethuraman S, Nair LS, El-Amin S, Nguyen MT, Singh S, Greish YE, Allcock HR, Brown PE, Laurencin CT (2011) Development and characterization of biodegradable nanocomposite injectables for orthopaedic applications. J Biomat Sci Polym Ed 22:733–752

    Article  CAS  Google Scholar 

  • Shalaby SW, Johnson A (1994) Synthetic absorbable polyesters. In: Shalaby SW (ed) Biomedical polymers: designed-to-degrade systems. Hanser, Munich, pp 1–34

    Google Scholar 

  • Shih C et al (1993) Invivo and invitro release of ivermectin from poly(ortho ester) matrices. 1. Cross-linked matrix prepared from ketene acetal end-capped prepolymer. J Control Release 25:155–162

    Article  CAS  Google Scholar 

  • Spaans CJ et al (1998) High molecular weight polyurethanes and a polyurethane urea based on 1,4-butanediisocyanate. Polym Bull 41:131–138

    Article  CAS  Google Scholar 

  • Spotnitz WD, Burks S (2008) Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion 48:1502–1516

    Article  PubMed  Google Scholar 

  • Syzcher M (ed) (1999) Syzcher’s handbook of polyurethanes. CRC Press, Boca Raton

    Google Scholar 

  • Tang RP et al (2009) Poly(ortho ester amides): acid-labile temperature-responsive copolymers for potential biomedical applications. Biomacromolecules 10:722–727

    Article  PubMed  CAS  Google Scholar 

  • The European Society for Biomaterials (1991) 2nd consensus conference on definitions in biomaterials 7–8th September. J Mater Sci Mater Med 2:62

    Article  Google Scholar 

  • Tsuji H et al (2003) Surface hydrophilicity and enzymatic hydrolyzability of biodegradable ­polyesters: 1. Effects of alkaline treatment. Polym Int 52:843–852

    Article  CAS  Google Scholar 

  • Ueda H, Tabata Y (2003) Polyhydroxyalkanoate derivatives in current clinical applications and trials. Adv Drug Deliv Rev 55(4):501–518

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro AR et al (2002) Bone grafting alternatives in spinal surgery. Spine J 2:206–215

    Article  PubMed  Google Scholar 

  • Vera M et al (2006) Microspheres from new biodegradable poly(ester amide)s with different ratios of L- and D-alanine for controlled drug delivery. J Microencapsul 23:686–697

    Article  PubMed  CAS  Google Scholar 

  • Vert M (1986) Biomedical polymers from chiral lactides and functional lactones – properties and applications. Makromol Chem Macromol Symp 6:109–122

    Article  CAS  Google Scholar 

  • Vert M (1989) Bioresorbable polymers for temporary therapeutic applications. Angew Makromol Chem 166:155–168

    Article  Google Scholar 

  • Weigel T et al (2006) Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices 3:835–851

    Article  PubMed  CAS  Google Scholar 

  • Wolff LF, Mullally B (2000) New clinical materials and techniques in guided tissue regeneration. Int Dent J 50(5):235–244

    Article  PubMed  CAS  Google Scholar 

  • Wu XS (1995) Synthesis and properties of biodegradable lactic/glycolic acid polymers. In: Wise DL, Altobelli DE, Yaszemski MJ, Gresser DJ, Schwartz ER (eds) Encyclopaedic handbook of biomaterials and bioengineering. Marcel Decker, New York, pp 1015–1054

    Google Scholar 

  • Xiong X et al (2007) Isolated nature-identical collagen, WO 2007/137827 A1

    Google Scholar 

  • Ye T et al (2008) Enhanced cell affinity of poly(l-lactide) film by immobilizing phosphonized chitosan. Appl Surf Sci 255:446–448

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft (DFG, SFB 760) and the Bundesministerium für Bildung und Forschung (BMBF) for supporting the interdisciplinary research in the field of tissue regeneration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schroeter, M., Wildemann, B., Lendlein, A. (2013). Biodegradable Materials. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_21

Download citation

Publish with us

Policies and ethics