Skip to main content

Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Regenerative medicine aims to restore damaged tissues in order to reverse disease progression and provide a sustainable solution that cures the root cause of the disease process. Although natural mechanisms of repair are ubiquitous, disruption of the homeostatic balance affects the equilibrium between health and disease due to insufficient tissue renewal in chronic degenerative conditions. Augmentation of the diseased tissue repair capacity through chimerism offers a strategy that spans all fields of medicine and surgery from natural chimerism for tissue rejuvenation, to surgical chimerism for organ replacement, to bioengineered chimerism for targeted regeneration. Technological breakthroughs in nuclear reprogramming now provide a platform to advance a broad range of solutions for regenerative medicine built on the foundation of pluripotent autologous stem cells. By optimizing the safety and effectiveness for stem cell production and ensuring tissue-specific differentiation of progenitors, induced pluripotent stem cells (iPS) offer an unprecedented opportunity to accelerate personalized applications with cell-based products to bioengineer health from disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasen T, Raya A, Barrero MJ et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Latif A, Bolli R, Tleyjeh IM et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Article  PubMed  Google Scholar 

  • Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415:240–243

    Article  PubMed  CAS  Google Scholar 

  • Anversa P, Kajstura J, Leri A et al (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113:1451–1463

    Article  PubMed  Google Scholar 

  • Aoi T, Yae K, Nakagawa M et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702

    Article  PubMed  CAS  Google Scholar 

  • Atala A (2008) Advances in tissue and organ replacement. Curr Stem Cell Res Ther 3:21–31

    Article  PubMed  CAS  Google Scholar 

  • Banito A, Rashid ST, Acosta JC et al (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139

    Article  PubMed  CAS  Google Scholar 

  • Barnard CN (1967) A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Capetown. S Afr Med J 41:1271

    PubMed  CAS  Google Scholar 

  • Bartunek J, Vanderheyden M, Wijns W et al (2007) Bone-marrow-derived cells for cardiac stem cell therapy: safe or still under scrutiny? Nat Clin Pract Cardiovasc Med 4(Suppl 1):S100–S105

    Article  PubMed  CAS  Google Scholar 

  • Behfar A, Faustino RS, Arrell DK et al (2008) Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 45:523–529

    Article  PubMed  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  • Beyhan Z, Iager AE, Cibelli JB (2007) Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell Stem Cell 1:502–512

    Article  PubMed  CAS  Google Scholar 

  • Boland MJ, Hazen JL, Nazor KL et al (2009) Adult mice generated from induced pluripotent stem cells. Nature 461:91–94

    Article  PubMed  CAS  Google Scholar 

  • Byrne JA, Pedersen DA, Clepper LL et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450:497–502

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  PubMed  CAS  Google Scholar 

  • Carrel A, Guthrie CC (1905) The transplantation of veins and organs. Am Med 10:1101

    Google Scholar 

  • Cortese DA (2007) A vision of individualized medicine in the context of global health. Clin Pharmacol Ther 82:491–493

    Article  PubMed  CAS  Google Scholar 

  • Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132:544–548

    Article  PubMed  CAS  Google Scholar 

  • Deb A, Wang S, Skelding KA et al (2003) Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107:1247–1249

    Article  PubMed  Google Scholar 

  • Deng J, Shoemaker R, Xie B et al (2009) Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27:353–360

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583

    PubMed  CAS  Google Scholar 

  • Dimos JT, Rodolfa KT, Niakan KK et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  PubMed  CAS  Google Scholar 

  • Drexler H, Meyer GP, Wollert KC (2006) Bone-marrow-derived cell transfer after ST-elevation myocardial infarction: lessons from the BOOST trial. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S65–S68

    Article  PubMed  Google Scholar 

  • Eminli S, Utikal J, Arnold K et al (2008) Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26:2467–2474

    Article  PubMed  CAS  Google Scholar 

  • Feng B, Jiang J, Kraus P et al (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11:197–203

    Article  PubMed  CAS  Google Scholar 

  • Foley AC, Gupta RW, Guzzo RM et al (2006) Embryonic heart induction. Ann NY Acad Sci 1080:85–96

    Article  PubMed  CAS  Google Scholar 

  • Fraidenraich D, Stillwell E, Romero E et al (2004) Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science 306:247–252

    Article  PubMed  CAS  Google Scholar 

  • French AJ, Adams CA, Anderson LS et al (2008) Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 26:485–493

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DJ, Oz MC, Rose EA (1998) Implantable left ventricular assist devices. N Engl J Med 339:1522–1533

    Article  PubMed  CAS  Google Scholar 

  • Hagège AA, Marolleau JP, Vilquin JT et al (2006) Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation 114(1 Suppl):I108–I113

    PubMed  Google Scholar 

  • Hall VJ, Stojkovic M (2006) The status of human nuclear transfer. Stem Cell Rev 2:301–308

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Markoulaki S, Schorderet P et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264

    Article  PubMed  CAS  Google Scholar 

  • Hardy JD, Chavez CM, Kurrus FD et al (1964) Heart transplantation in man. JAMA 188:114

    Article  Google Scholar 

  • Hirashima M, Lu Y, Byers L et al (2003) Trophoblast expression of fms-like tyrosine kinase 1 is not required for the establishment of the maternal-fetal interface in the mouse placenta. Proc Natl Acad Sci USA 100:15637–15642

    Article  PubMed  CAS  Google Scholar 

  • Hong H, Takahashi K, Ichisaka T et al (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Hsieh PC, Segers VF, Davis ME et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974

    Article  PubMed  CAS  Google Scholar 

  • Huangfu D, Osafune K, Maehr R et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275

    Article  PubMed  CAS  Google Scholar 

  • Hunt SA, Abraham WT, Chin MH et al (2009) 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119:e391–e479

    Article  PubMed  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567–582

    Article  PubMed  CAS  Google Scholar 

  • Jahangir A, Sagar S, Terzic A (2007) Aging and cardioprotection. J Appl Physiol 103:2120–2128

    Article  PubMed  Google Scholar 

  • Janssens S, Dubois C, Bogaert J et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367:113–121

    Article  PubMed  Google Scholar 

  • Kaji K, Norrby K, Paca A et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    Article  PubMed  CAS  Google Scholar 

  • Kajstura J, Hosoda T, Bearzi C et al (2008a) The human heart: a self-renewing organ. Clin Transl Sci 1:80–86

    Article  PubMed  CAS  Google Scholar 

  • Kajstura J, Urbanek K, Rota M et al (2008b) Cardiac stem cells and myocardial disease. J Mol Cell Cardiol 45:505–513

    Article  PubMed  CAS  Google Scholar 

  • Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11:723–732

    Article  PubMed  CAS  Google Scholar 

  • Kawamura T, Suzuki J, Wang YV et al (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Zaehres H, Wu G et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Kim CH, Moon J et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 6:472–476

    Article  CAS  Google Scholar 

  • Kørbling M, Estrov Z (2003) Adult stem cells for tissue repair – a new therapeutic concept? N Engl J Med 349:570–582

    Article  PubMed  Google Scholar 

  • Kubo H, Jaleel N, Kumarapeli A et al (2008) Increased cardiac myocyte progenitors in failing human hearts. Circulation 118:649–657

    Article  PubMed  Google Scholar 

  • Laird DJ, von Andrian UH, Wagers AJ (2008) Stem cell trafficking in tissue development, growth, and disease. Cell 132:612–630

    Article  PubMed  CAS  Google Scholar 

  • Leri A, Kajstura J, Anversa P et al (2008) Myocardial regeneration and stem cell repair. Curr Probl Cardiol 33:91–153

    Article  PubMed  Google Scholar 

  • Li JY, Christophersen NS, Hall V et al (2008) Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 31:146–153

    Article  PubMed  CAS  Google Scholar 

  • Li H, Collado M, Villasante A et al (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139

    Article  PubMed  CAS  Google Scholar 

  • Loh Y, Agarwal S, Park I et al (2009) Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479

    Article  PubMed  CAS  Google Scholar 

  • Lough J, Sugi Y (2000) Endoderm and heart development. Dev Dyn 217:327–342

    Article  PubMed  CAS  Google Scholar 

  • Lower RR, Shumway NE (1960) Studies on the orthotopic homotransplantation of the canine heart. Surg Forum 11:18

    PubMed  CAS  Google Scholar 

  • Lunde K, Solheim S, Aakhus S (2007) Exercise capacity and quality of life after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: results from the Autologous Stem cell Transplantation in Acute Myocardial Infarction (ASTAMI) randomized controlled trial. Am Heart J 154:710.e1-8

    Article  PubMed  Google Scholar 

  • Maehr R, Chen S, Snitow M et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106:15768–15773

    Article  PubMed  CAS  Google Scholar 

  • Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  PubMed  CAS  Google Scholar 

  • Marion RM, Strati K, Li H et al (2009a) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Marion RM, Strati K, Li H et al (2009b) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4:141–154

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Fernandez A, Nelson TJ, Yamada S et al (2009) iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circ Res 105:648–656

    Article  PubMed  CAS  Google Scholar 

  • Mauritz C, Schwanke K, Reppel M et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517

    Article  PubMed  Google Scholar 

  • Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25:1177–1181

    Article  PubMed  CAS  Google Scholar 

  • Menasché P, Hagège AA, Scorsin M et al (2001) Myoblast transplantation for heart failure. Lancet 357:279–280

    Article  PubMed  Google Scholar 

  • Menasché P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    Article  PubMed  Google Scholar 

  • Mikkelsen TS, Hanna J, Zhang X et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55

    Article  PubMed  CAS  Google Scholar 

  • Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Rossant J, Nagy R et al (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  • Narazaki G, Uosaki H, Teranishi M et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118:498–506

    Article  PubMed  Google Scholar 

  • Nelson TJ, Terzic A (2009) Induced pluripotent stem cells: reprogrammed without a trace. Regen Med 4:333–355

    Article  PubMed  Google Scholar 

  • Nelson TJ, Behfar A, Terzic A (2008a) Strategies for therapeutic repair: the “R3” regenerative medicine paradigm. Clin Transl Sci 1:168–171

    Article  PubMed  Google Scholar 

  • Nelson TJ, Behfar A, Terzic A (2008b) Stem cells: biologics for regeneration. Clin Pharmacol Ther 84:620–623

    Article  PubMed  CAS  Google Scholar 

  • Nelson TJ, Faustino RS, Chiriac A et al (2008c) CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells 26:1464–1473

    Article  PubMed  CAS  Google Scholar 

  • Nelson TJ, Behfar A, Terzic A (2009a) Regenerative medicine and stem cell therapeutics. In: Waldman SA, Terzic A (eds) Pharmacology and therapeutics: principles to practice. Saunders/Elsevier, Philadelphia

    Google Scholar 

  • Nelson TJ, Behfar A, Yamada S et al (2009b) Stem cell platforms for regenerative medicine. Clin Transl Sci 2:222–227

    Article  PubMed  CAS  Google Scholar 

  • Nelson TJ, Martinez-Fernandez A, Terzic A (2009c) KCNJ11 knockout morula re-engineered by stem cell diploid aggregation. Philos Trans R Soc Lond B Biol Sci 364:269–276

    Article  PubMed  CAS  Google Scholar 

  • Nelson TJ, Martinez-Fernandez A, Yamada S et al (2009d) Repair of acute myocardial infarction with human stemness factors induced pluirpotent stem cells. Circulation 120:408–416

    Article  PubMed  Google Scholar 

  • Nelson TJ, Martinez-Fernandez A, Yamada S et al (2010) Induced pluripotent stem cells: advances to applications. Stem Cells Cloning 3:29–37

    CAS  Google Scholar 

  • Nishikawa S, Goldstein RA, Nierras CR (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9:725–729

    Article  PubMed  CAS  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  PubMed  CAS  Google Scholar 

  • Opie SR, Dib N (2006) Surgical and catheter delivery of autologous myoblasts in patients with congestive heart failure. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S42–S55

    Article  PubMed  Google Scholar 

  • Oyer PE, Stinson EB, Jamieson SA et al (1983) Cyclosporin A in cardiac allografting: a preliminary experience. Transplant Proc 15:1247

    Google Scholar 

  • Papapetrou EP, Tomishima MJ, Chambers SM et al (2009) Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci USA 106:12759–12764

    Article  PubMed  CAS  Google Scholar 

  • Park IH, Arora N, Huo H et al (2008a) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed  CAS  Google Scholar 

  • Park IH, Lerou PH, Zhao R et al (2008b) Generation of human-induced pluripotent stem cells. Nat Protoc 3:1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Park IH, Zhao R, West JA et al (2008c) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  PubMed  CAS  Google Scholar 

  • Perin EC, Dohmann HF, Borojevic R et al (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110(Suppl 1):II213–II218

    PubMed  Google Scholar 

  • Quaini F, Urbanek K, Beltrami AP et al (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15

    Article  PubMed  Google Scholar 

  • Raya A, Rodríguez-Pizà I, Guenechea G et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59

    Article  PubMed  CAS  Google Scholar 

  • Rosamond W, Flegal K, Furie K et al (2008) American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–e146

    Article  PubMed  Google Scholar 

  • Rose EA, Moskowitz AJ, Packer M et al (1999) The REMATCH trial: rationale, design, and end points. Randomized evaluation of mechanical assistance for the treatment of congestive heart failure. Ann Thorac Surg 67:723–730

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal N (2003) Prometheus’s vulture and the stem-cell promise. N Engl J Med 349:267–274

    Article  PubMed  Google Scholar 

  • Rupp S, Koyanagi M, Iwasaki M et al (2008) Characterization of long-term endogenous cardiac repair in children after heart transplantation. Eur Heart J 29:1867–1872

    Article  PubMed  CAS  Google Scholar 

  • Sánchez PL, San Román JA, Villa A et al (2006) Contemplating the bright future of stem cell therapy for cardiovascular disease. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S138–S151

    Article  PubMed  Google Scholar 

  • Schächinger V, Assmus B, Britten MB et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 44:1690–1699

    Article  PubMed  Google Scholar 

  • Schächinger V, Erbs S, Elsässer A et al (2006) REPAIR-AMI investigators. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221

    Article  PubMed  Google Scholar 

  • Schenke-Layland K, Rhodes KE, Angelis E et al (2008) Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26:1537–1546

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Vitale JM, Terzic A et al (2009) Blastocyst injection of embryonic stem cells: a simple approach to unveil mechanisms of corrections in mouse models of human disease. Stem Cell Rev Rep 5:369–377

    Article  Google Scholar 

  • Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  PubMed  CAS  Google Scholar 

  • Sha HY, Chen JQ, Chen J et al (2009) Fates of donor and recipient mitochondrial DNA during generation of interspecies SCNT-derived human ES-like cells. Cloning Stem Cells 11:497–507

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Desponts C, Do JT et al (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–574

    Article  PubMed  CAS  Google Scholar 

  • Silva J, Nichols J, Theunissen TW et al (2009) Nanog is the gateway to the pluripotent ground state. Cell 138:722–737

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Anversa P, Frishman WH (2009) Cytokines and myocardial regeneration: a novel treatment option for acute myocardial infarction. Cardiol Rev 17:1–9

    Article  PubMed  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949

    Article  PubMed  CAS  Google Scholar 

  • Stillwell E, Vitale J, Zhao Q et al (2009) Blastocyst injection of wild type embryonic stem cells induces global corrections in mdx mice. PLoS One 4(3):e4759

    Article  PubMed  CAS  Google Scholar 

  • Sun N, Panett NJ, Gupt DM et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA 106:15720–15725

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, McLaren A (2006) Stem cells: a new route to rejuvenation. Nature 443:284–285

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M et al (2007a) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007b) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi JK, Bruneau BG (2009) Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459:708–711

    Article  PubMed  CAS  Google Scholar 

  • Tam PP, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development 130:6155–6163

    Article  PubMed  CAS  Google Scholar 

  • Taylor DO, Edwards LB, Aurora P et al (2008) Registry of the International Society for Heart and Lung Transplantation: twenty-fifth official adult heart transplant report – 2008. J Heart Lung Transpl 27:943–956

    Article  Google Scholar 

  • Torella D, Ellison GM, Méndez-Ferrer S et al (2006) Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S8–S13

    Article  PubMed  CAS  Google Scholar 

  • Urbanek K, Torella D, Sheikh F et al (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 102:8692–8697

    Article  PubMed  CAS  Google Scholar 

  • Utikal J, Polo JM, Stadtfeld M et al (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Wakayama T, Tabar V, Rodriguez I et al (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743

    Article  PubMed  CAS  Google Scholar 

  • Waldman SA, Terzic A (2007) Individualized medicine and the imperative of global health. Clin Pharmacol Ther 82:479–483

    Article  PubMed  CAS  Google Scholar 

  • Waldman SA, Terzic A (2008) Therapeutic targeting: a crucible for individualized medicine. Clin Pharmacol Ther 83:651–654

    Article  PubMed  CAS  Google Scholar 

  • Waldman SA, Terzic MR, Terzic A (2007) Molecular medicine hones therapeutic arts to science. Clin Pharmacol Ther 82:343–347

    Article  PubMed  CAS  Google Scholar 

  • Wernig M, Zhao JP, Pruszak J et al (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105:5856–5861

    Article  PubMed  CAS  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P et al (2009) PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  PubMed  CAS  Google Scholar 

  • Wood SA, Allen ND, Rossant J et al (1993a) Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365:87–89

    Article  PubMed  CAS  Google Scholar 

  • Wood SA, Pascoe WS, Schmidt C et al (1993b) Simple and efficient production of embryonic stem cell-embryo chimeras by coculture. Proc Natl Acad Sci USA 90:4582–4585

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Alipio Z, Fink LM et al (2009) Phenotypic correction of murine hemophilia a using an iPS cell-based therapy. Proc Natl Acad Sci USA 106:808–813

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Nelson TJ, Behfar A et al (2009) Stem cell transplant into preimplantation embryo yields myocardial infarction-resistant adult phenotype. Stem Cells 27:1697–1705

    Article  PubMed  Google Scholar 

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S (2008) Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 363:2079–2087

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S (2009a) A fresh look at iPS cells. Cell 137:13–17

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S (2009b) Ekiden to iPS cells. Nat Med 15:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S (2009c) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460:49–52

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Smith SL, Tian XC et al (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39:295–302

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Soonpaa MH, Adler ED et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–852

    Article  PubMed  CAS  Google Scholar 

  • Ye Z, Zhan H, Mali P et al (2009) Human induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114(27):5473–5480

    Article  PubMed  CAS  Google Scholar 

  • Yokoo N, Baba S, Kaichi S et al (2009) The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochem Biophys Res Commun 387:482–488

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu K, Smuga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wilson GF, Soerens AG et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41

    Article  PubMed  CAS  Google Scholar 

  • Zhao XY, Li W, Lv Z et al (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461:86–90

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy J. Nelson M.D., Ph.D. or Andre Terzic M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nelson, T.J., Martinez-Fernandez, A., Yamada, S., Terzic, A. (2013). Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5690-8_20

Download citation

Publish with us

Policies and ethics