Advertisement

Cancer Stem Cells

  • Murali M. S. Balla
  • Anjali P. Kusumbe
  • Geeta K. Vemuganti
  • Sharmila A. Bapat
Chapter

Abstract

Our knowledge of carcinogenesis has tremendously improved through decades of research. However, till date the therapeutic refractoriness and tumor dormancy that leads to cancer recurrence after therapy presents formidable obstacles through severely limiting the successful treatment outcomes for majority of cancers. Significant advances made recently in the cancer stem cell (CSC) biology field have provided new insights into cancer biology that are radically changing both our understanding of carcinogenesis and cancer treatment. The cancer stem cell hypothesis provides an attractive cellular mechanism to account for the therapeutic refractoriness and dormant behavior exhibited by many of these tumors. Direct evidence for the CSC hypothesis has recently emerged through their identification and isolation in diverse tumor types. These tumor types appeared to be hierarchically organized and sustained by a distinct fraction of self-renewing and tumor-initiating CSCs. Such illustration of the CSC paradigm in diverse tumor types necessitates reassessment and improvisation of the current therapeutic strategies originally developed against the homogenous tumor mass; now to specifically target the CSC population. Preliminary findings in the field indicate that such specific targeting of CSCs may be possible.

Keywords

Acute Myeloid Leukemia Cancer Stem Cell Cancer Stem Cell Marker Cancer Stem Cell Population Cancer Stem Cell Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CSCs

Cancer stem cells

NSCs

Normal stem cells, HSCs, Hematopoetic stem cells

RB

Retinoblastoma

LRCs

Label retaining cells

EMT

Epithelial to mesenchymal transition

NOD/SCID

Non-obese diabetic/severe combined immunodeficient

SP

Side population

MDR

Multidrug resistance

Notes

Acknowledgements

We thank Dr. G.C. Mishra, Director, National Center for Cell Science (Pune, India) for encouragement and support. We thank Dr. Santosh Honavar and team for providing clinical samples for Retinoblastoma work. We also acknowledge the Association for Research in Vision and Ophthalmology, the copyright holder of Figs. 15.3 and 15.4 for permitting use of these figures

References

  1. Aguirre-Ghiso J (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846PubMedCrossRefGoogle Scholar
  2. Ajioka I, Martins R, Bayazitov I et al (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131:378–390PubMedCrossRefGoogle Scholar
  3. Al-Hajj M, Wicha M, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRefGoogle Scholar
  4. Antunez J, Couce M, Fraga M et al (1991) Immunohistochemical demonstration of neuronal and astrocytic markers and oncofoetal antigens in retinoblastomas. Histol Histopathol 6:241–246PubMedGoogle Scholar
  5. Balla M, Vemuganti G, Kannabiran C et al (2009) Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Invest Ophthalmol Vis Sci 50:1506–1514PubMedCrossRefGoogle Scholar
  6. Bapat S (ed) (2009) Cancer stem cells. Wiley, HobokenGoogle Scholar
  7. Bapat S, Mali A, Koppikar C et al (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65:3025–3029PubMedGoogle Scholar
  8. Bhattacharya S, Jackson J, Das A et al (2003) Direct identification and enrichment of retinal stem cells/progenitors by hoechst dye efflux assay. Invest Ophthalmol Vis Sci 44:2764–2773PubMedCrossRefGoogle Scholar
  9. Blanpain C, Lowry W, Geoghegan A et al (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648PubMedCrossRefGoogle Scholar
  10. Bonnet D, Dick J (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedCrossRefGoogle Scholar
  11. Calabrese C, Poppleton H, Twala K (2007) Perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82PubMedCrossRefGoogle Scholar
  12. Challen G, Little M (2006) A side order of stem cells: the sp phenotype. Stem Cells 24:3–12PubMedCrossRefGoogle Scholar
  13. Chiba T, Kita K, Zheng Y et al (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44:240–251PubMedCrossRefGoogle Scholar
  14. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J et al (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 95:1007–1013PubMedGoogle Scholar
  15. Collins A, Berry P, Hyde C, Stower M et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefGoogle Scholar
  16. Cotran SR (1994) Pathologic basis of disease, 5th edn. WB Saunders Company, PhiladelphiaGoogle Scholar
  17. Courtenay V, Mills J (1978) An in vitro colony assay for human tumours grown in immune-suppressed mice and treated in vivo with cytotoxic agents. Br J Cancer 37:261–268PubMedCrossRefGoogle Scholar
  18. Courtenay V, Selby P, Smith I (1978) Growth of human tumor cell colonies from biopsies using two soft-agar techniques. Br J Cancer 38:77–81PubMedCrossRefGoogle Scholar
  19. Craft J, Sang D, Dryja T et al (1985) Glial cell component in retinoblastoma. Exp Eye Res 40:647–659PubMedCrossRefGoogle Scholar
  20. Decraene C, Benchaouir R, Dillies M et al (2005) Global transcriptional characterization of sp and mp cells from the myogenic c2c12 cell line: effect of fgf6. Physiol Genomics 23:132–149PubMedCrossRefGoogle Scholar
  21. Duncan A, Rattis F, DiMascio L et al (2005) Integration of notch and wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6:314–322PubMedCrossRefGoogle Scholar
  22. Eylerand C, Rich J (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845CrossRefGoogle Scholar
  23. Fearon E, Hamilton S, Vogelstein B (1987) Clonal analysis of human colorectal tumors. Science 238:193–197PubMedCrossRefGoogle Scholar
  24. Fialkow P (1976) Clonal origin of human tumors. Biochim Biophys Acta 458:283–321PubMedGoogle Scholar
  25. Goodell M, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806PubMedCrossRefGoogle Scholar
  26. Grichnik J, Burch J, Schulteis R et al (2006) Melanoma, a tumor based on a mutant stem cell? J Invest Dermatol 126:142–153PubMedCrossRefGoogle Scholar
  27. Hamburger A, Salmon S (1977) Primary bioassay of human tumor stem cells. Science 197:461PubMedCrossRefGoogle Scholar
  28. Hewitt H (1958) Studies of the dissemination and quantitative transplantation of a lymphocytic leukaemia of CBA mice. Br J Cancer 12(3):378–401PubMedCrossRefGoogle Scholar
  29. Hirschmann-Jax C, Foster A, Wulf G et al (2004) A distinct “Side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233PubMedCrossRefGoogle Scholar
  30. Hopfer O, Zwahlen D, Fey M et al (2005) The notch pathway in ovarian carcinomas and adenomas. Br J Cancer 93:709–718PubMedCrossRefGoogle Scholar
  31. Jordan C, Guzman M, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261PubMedCrossRefGoogle Scholar
  32. Katano M (2005) Hedgehog signaling pathway as a therapeutic target in breast cancer. Cancer Lett 227:99–104PubMedCrossRefGoogle Scholar
  33. Kim C, Jackson E, Woolfenden A et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRefGoogle Scholar
  34. Kiran V, Kannabiran C, Chakravarthi K et al (2003) Mutational screening of the rb1 gene in indian patients with retinoblastoma reveals eight novel and several recurrent mutations. Hum Mutat 22:339PubMedCrossRefGoogle Scholar
  35. Kivela T (1986) S-100 protein in retinoblastoma revisited. An immunohistochemical study. Acta Ophthalmol (Copenh) 64:664–673CrossRefGoogle Scholar
  36. Kivela T, Virtanen I (1986) Intermediate filaments in the human retina and retinoblastoma. An immunohistochemical study of vimentin, glial fibrillary acidic protein, and neurofilaments. Invest Ophthalmol Vis Sci 27:1075–1084PubMedGoogle Scholar
  37. Knudson A (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823PubMedCrossRefGoogle Scholar
  38. Kolligs F, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66:131–144PubMedCrossRefGoogle Scholar
  39. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the c6 glioma cell line. Proc Natl Acad Sci USA 101:781–786PubMedCrossRefGoogle Scholar
  40. Krishnakumar S, Mallikarjuna K, Desai N et al (2004) Multidrug resistant proteins: P-glycoprotein and lung resistance protein expression in retinoblastoma. Br J Ophthalmol 88:1521–1526PubMedCrossRefGoogle Scholar
  41. Krivtsov A, Twomey D, Feng Z (2006) Transformation from committed progenitor to leukaemia stem cell initiated by mll-af9. Nature 442:818–822PubMedCrossRefGoogle Scholar
  42. Kruh G (2003) Introduction to resistance to anticancer agents. Oncogene 22:7262–7264PubMedCrossRefGoogle Scholar
  43. Kurrey N, Jalgaonkar S, Joglekar A et al (2009) Snail and slug mediate radio- and chemo-resistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27(9):2059–2068PubMedCrossRefGoogle Scholar
  44. Kusumbe A, Bapat S (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69(24):9245–9253PubMedCrossRefGoogle Scholar
  45. Kusumbe A, Mali A, Bapat S (2009) CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature. Stem Cells 27:498–508PubMedCrossRefGoogle Scholar
  46. Kyritsis A, Tsokos M, Triche T et al (1984) Retinoblastoma – origin from a primitive neuroectodermal cell? Nature 307:471–473PubMedCrossRefGoogle Scholar
  47. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into scid mice. Nature 367:645–648PubMedCrossRefGoogle Scholar
  48. Larderet G, Fortunel N, Vaigot P et al (2006) Human side population keratinocytes exhibit long-term proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells 24:965–974PubMedCrossRefGoogle Scholar
  49. Laurie N, Donovan S, Shih C et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66PubMedCrossRefGoogle Scholar
  50. Li C, Heidt D, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedCrossRefGoogle Scholar
  51. Mani S, Guo W, Liao M et al (2008) The epithelialmesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCrossRefGoogle Scholar
  52. Mark B, Meads R, Dalton G (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–667CrossRefGoogle Scholar
  53. Matsui W, Huff C, Wang Q et al (2004) Characterization of clonogenic multiple myeloma cells. Blood 103:2332–2336PubMedCrossRefGoogle Scholar
  54. Messmer E, Font R, Kirkpatrick J et al (1985) Immunohistochemical demonstration of neuronal and astrocytic differentiation in retinoblastoma. Ophthalmology 92:167–173PubMedGoogle Scholar
  55. Mohan A, Kandalam M, Ramkumar H et al (2006) Stem cell markers: Abcg2 and mcm2 expression in retinoblastoma. Br J Ophthalmol 90:889–893PubMedCrossRefGoogle Scholar
  56. Molnar M, Stefansson K, Marton L et al (1984) Immunohistochemistry of retinoblastomas in humans. Am J Ophthalmol 97:301–307PubMedGoogle Scholar
  57. Moore M (1991) Clinical implications of positive and negative hematopoietic stem cell regulators. Blood 78:1–19PubMedGoogle Scholar
  58. Moore K, Lemischka I (2006) Stem cells and their niches. Science 311:1880–1885PubMedCrossRefGoogle Scholar
  59. Mukai N, Kobayashi S (1973) Human adenovirus-induced medulloepitheliomatous neoplasms in Sprague–Dawley rats. Am J Pathol 73:671–690PubMedGoogle Scholar
  60. Nakajima T, Kato K, Kaneko A et al (1986) High concentrations of enolase, alpha- and gamma-subunits, in the aqueous humor in cases of retinoblastoma. Am J Ophthalmol 101:102–106PubMedGoogle Scholar
  61. Nowell P (1976) The clonal evolution of tumor cell populations. Science 194:23–28PubMedCrossRefGoogle Scholar
  62. O’Brien C, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  63. Ogawa K, Tsutsumi A, Iwata K et al (1966) Histogenesis of malignant neoplasm induced by adenovirus type 12. Gann 57:43–52PubMedGoogle Scholar
  64. Ogawa K, Hamaya K, Fujii Y et al (1969) Tumor induction by adenovirus type 12 and its target cells in the central nervous system. Gann 60:383–392PubMedGoogle Scholar
  65. Ogawa M, Bergsagel D, McCulloch E (1973) Chemotherapy of mouse myeloma: quantitative cell cultures predictive of response in vivo. Blood 41:7–15PubMedGoogle Scholar
  66. Pacal M, Bremner R (2006) Insights from animal models on the origins and progression of retinoblastoma. Curr Mol Med 6:759–781PubMedGoogle Scholar
  67. Park C, Amare M, Savin M (1980) Prediction of chemotherapy response in human leukemia using an in vitro chemotherapy sensitivity test on the leukemic colony-forming cells. Blood 55:595–601PubMedGoogle Scholar
  68. Pece S, Tosoni D, Confalonieri S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73PubMedCrossRefGoogle Scholar
  69. Peeters S, van der Kolk D, de Haan G et al (2006) Selective expression of cholesterol metabolism genes in normal CD34+CD38 cells with a heterogeneous expression pattern in aml cells. Exp Hematol 34:622–630PubMedCrossRefGoogle Scholar
  70. Perentes E, Herbort C, Rubinstein L et al (1987) Immunohistochemical characterization of human retinoblastomas in situ with multiple markers. Am J Ophthalmol 103:647–658PubMedGoogle Scholar
  71. Prince M, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978PubMedCrossRefGoogle Scholar
  72. Puck T, Marcus P (1956) Action of x-rays on mammalian cells. J Exp Med 103:653–666PubMedCrossRefGoogle Scholar
  73. Puck T, Marcus P, Cieciura S (1956) Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single Hela cells with and without a feeder layer. J Exp Med 103:273–283PubMedCrossRefGoogle Scholar
  74. Rask K, Nilsson A, Brannstrom M et al (2003) Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and gsk3beta. Br J Cancer 89:1298–1304PubMedCrossRefGoogle Scholar
  75. Reid T, Albert D, Rabson A et al (1974) Characteristics of an established cell line of retinoblastoma. J Natl Cancer Inst 53:347–360PubMedGoogle Scholar
  76. Reya T, Morrison S, Clarke M et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  77. Ricci-Vitiani L, Lombardi D, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115PubMedCrossRefGoogle Scholar
  78. Rodrigues M, Wilson M, Wiggert B et al (1986) Retinoblastoma. A clinical, immunohistochemical, and electron microscopic case report. Ophthalmology 93:1010–1015PubMedGoogle Scholar
  79. Sanchez P, Clement V, Ruizi Altaba A (2005) Therapeutic targeting of the hedgehog-gli pathway in prostate cancer. Cancer Res 65:2990–2992PubMedGoogle Scholar
  80. Sawa H, Takeshita I, Kuramitsu M et al (1987) Immunohistochemistry of retinoblastomas. J Neurooncol 5:351–355PubMedCrossRefGoogle Scholar
  81. Scharenberg C, Harkey M, Torok-Storb B (2002) The abcg2 transporter is an efficient hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512PubMedCrossRefGoogle Scholar
  82. Schroder H (1987) Immunohistochemical demonstration of glial markers in retinoblastomas. Virchows Arch A Pathol Anat Histopathol 411:67–72PubMedCrossRefGoogle Scholar
  83. Seigel G, Hackam A, Ganguly A et al (2007) Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis 13:823–832PubMedGoogle Scholar
  84. Sery T, Lee E, Lee W et al (1990) Characteristics of two new retinoblastoma cell lines: Weri-rb24 and weri-rb27. J Pediatr Ophthalmol Strabismus 27:212–217PubMedGoogle Scholar
  85. Setoguchi T, Taga T, Kondo T et al (2004) Cancer stem cells persist in many cancer cell lines. Cell Cycle 3:414–415PubMedCrossRefGoogle Scholar
  86. Sieber O, Heinimann K, Tomlinson I (2003) Genomic instability – the engine of tumorigenesis? Nat Rev Cancer 3:701–708PubMedCrossRefGoogle Scholar
  87. Silva A, Yi H, Hayes S et al (2010) Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines: a potential role for the canonical wnt signaling pathway. Mol Vis 16:36–45PubMedGoogle Scholar
  88. Singh S, Hawkins C, Clarke I et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  89. Sneddon J, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 1:607–611PubMedCrossRefGoogle Scholar
  90. Southam C, Brunschwig A (1960) A quantitative studies of autotransplantation of human cancer. Cancer 14:971–978CrossRefGoogle Scholar
  91. Suetsugu A, Nagaki M, Aoki H et al (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824PubMedCrossRefGoogle Scholar
  92. Summer R, Kotton D, Sun X et al (2003) Side population cells and bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol 285:L97–L104PubMedGoogle Scholar
  93. Szotek P, Pieretti-Vanmarcke R, Masiakos P et al (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 103:11154–11159PubMedCrossRefGoogle Scholar
  94. Terenghi G, Polak J, Ballesta J et al (1984) Immunocytochemistry of neuronal and glial markers in retinoblastoma. Virchows Arch A Pathol Anat Histopathol 404:61–73PubMedCrossRefGoogle Scholar
  95. Tumbar T, Guasch G, Greco V et al (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363PubMedCrossRefGoogle Scholar
  96. Umemoto T, Yamato M, Shiratsuchi Y et al (2006) Expression of integrin beta3 is correlated to the properties of quiescent hemopoietic stem cells possessing the side population phenotype. J Immunol 177:7733–7739PubMedGoogle Scholar
  97. Visvader J, Lindeman G (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768PubMedCrossRefGoogle Scholar
  98. Wani A, Sharma N, Shouche Y et al (2006) Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene 25:6336–6344PubMedCrossRefGoogle Scholar
  99. Weaver B, Cleveland D (2007) Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res 67:10103–10105PubMedCrossRefGoogle Scholar
  100. Welm B, Tepera S, Venezia T et al (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56PubMedCrossRefGoogle Scholar
  101. White D, Kurpios N, Zuo D et al (2004) Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6:159–170PubMedCrossRefGoogle Scholar
  102. Wilson A, Radtke F (2006) Multiple functions of notch signaling in self-renewing organs and cancer. FEBS Lett 580:2860–2868PubMedCrossRefGoogle Scholar
  103. Windle J, Albert D, O’Brien J et al (1990) Retinoblastoma in transgenic mice. Nature 343:665–669PubMedCrossRefGoogle Scholar
  104. Xu X, Fang Y, Lee T et al (2009) Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific mdm2 signaling. Cell 137:1018–1031PubMedCrossRefGoogle Scholar
  105. Yilmaz O, Valdez R, Theisen B et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482PubMedCrossRefGoogle Scholar
  106. Yue Z, Jiang T, Widelitz R et al (2005) Mapping stem cell activities in the feather follicle. Nature 438:1026–1029PubMedCrossRefGoogle Scholar
  107. Zagzag D, Krishnamachary B, Yee H et al (2005) Stromal cell-derived factor-1alpha and cxcr4 expression in hemangioblastoma and clear cell-renal cell carcinoma: Von hippel-lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65:6178–6188PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Murali M. S. Balla
    • 1
  • Anjali P. Kusumbe
    • 2
  • Geeta K. Vemuganti
    • 3
  • Sharmila A. Bapat
    • 4
  1. 1.Champalimaud Translational Centre for Eye Research, Hyderabad Eye Research FoundationL.V. Prasad Eye InstituteHyderabadIndia
  2. 2.National Centre for Cell SciencePuneIndia
  3. 3.School of Medical SciencesUniversity of HyderabadGachibowli, HyderabadIndia
  4. 4.National Centre for Cell SciencePuneIndia

Personalised recommendations