• Gunter Backes


TILLING (Targeting Induced Local Lesions IN Genomes) combines the formation of a population with high density point-mutations provided by chemical mutagenesis with rapid mutational screening in pools of DNA. It is mainly applied as a reverse-genetic method to reveal the function of genes with known DNA sequence, but also as a non-GMO knock-out tool for molecular breeding. The steps involved are mutagenesis, the development of the TILLING population including DNA isolation and pooling, mutation detection and identification of the respective phenotype. In all steps, numerous methodological choices and modification can be applied that will influence the outcome of the results. EcoTILLING is a variation of TILLING that is used to study the allelic variation of natural populations instead of mutation populations. It has many possible applications both in scientific research to study the genetic diversity at certain genes as well as in molecular breeding to search for new allelic variation and genetic markers.


Mutation Detection High Resolution Melting Forward Genetic Tilling Population Fragment Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Qurainy F, Khan S (2009) Mutagenic effects of sodium azid and its application in crop improvement. World Appl Sci J 6:1589–1601Google Scholar
  2. Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genomics 9:212–226. doi: 10.2174/138920208784533656 PubMedCrossRefGoogle Scholar
  3. Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96:8774–8778. doi: 10.1073/pnas.96.15.8774 PubMedCrossRefGoogle Scholar
  4. Brady SM, Provart NJ (2007) Extreme breeding: leveraging genomics for crop improvement. J Sci Food Agric 87:925–929. doi: 10.1002/jsfa.2763 CrossRefGoogle Scholar
  5. Bui CT, Lambrinakos A, Babon JJ, Cotton RG (2003) Chemical cleavage reactions of DNA on solid support: application in mutation detection. BMC Chem Biol 3:1. doi: 10.1186/1472-6769-3-1 PubMedCrossRefGoogle Scholar
  6. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150. doi: 10.1111/j.1365-313X.2004.02190.x PubMedCrossRefGoogle Scholar
  7. Chao SM, Somers D (2012) Wheat and barley DNA extraction in 96-well plates. In: MAS wheat. Accessed 3 Jan 2012
  8. Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990. doi: 10.1073/pnas.060034297 PubMedCrossRefGoogle Scholar
  9. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484. doi:10.1104/pp. 126.2.480PubMedCrossRefGoogle Scholar
  10. Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694. doi: 10.1111/j.1365-313X.2006.02670.x PubMedCrossRefGoogle Scholar
  11. Comai L, Young KJ, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S, Reynolds SH, Greene EA (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786. doi: 10.1111/j.1365-313X.2003.01999.x PubMedCrossRefGoogle Scholar
  12. Cooper J, Till B, Laport R, Darlow M, Kleffner J, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu K, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9. doi: 10.1186/1471-2229-8-9 PubMedCrossRefGoogle Scholar
  13. Cotton RG, Rodrigues NR, Campbell RD (1988) Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci USA 85:4397–4401. doi: 10.1073/pnas.85.12.4397 PubMedCrossRefGoogle Scholar
  14. Cross MJ, Waters DLE, Lee LS, Henry RJ (2008) Endonucleolytic mutation analysis by internal labeling (EMAIL). Electrophoresis 29:1291–1301. doi: 10.1002/elps.200700452 PubMedCrossRefGoogle Scholar
  15. Desai NA, Shankar V (2003) Single-strand-specific nucleases. FEMS Microbiol Rev 26:457–491. doi: 10.1111/j.1574-6976.2003.tb00626.x PubMedCrossRefGoogle Scholar
  16. Dibya D (2010) High-throughput mutation screening on a TILLING platform using the AdvanCE FS96 system. Advanced Analytical, AmesGoogle Scholar
  17. Gady AL, Hermans FW, Van de Wal MH, van Loo EN, Visser RG, Bachem CW (2009) Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods 5:13. doi: 10.1186/1746-4811-5-13 PubMedCrossRefGoogle Scholar
  18. Galeano CH, Gomez M, Rodriguez LM, Blair MW (2009) CEL I nuclease digestion for SNP discovery and marker development in common bean (Phaseolus vulgaris L.). Crop Sci 49:381–394. doi: 10.2135/cropsci2008.07.0413 CrossRefGoogle Scholar
  19. Garvin MR, Gharett AJ (2007) DEco-TILLING: an inexpensive method for single nucleotide polymorphism discovery that reduces ascertainment bias. Mol Ecol Notes 7:735–746. doi: 10.1111/j.1471-8286.2007.01767.x CrossRefGoogle Scholar
  20. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37. doi: 10.1128/MMBR.67.1.16-37.2003 PubMedCrossRefGoogle Scholar
  21. Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QCB (2006a) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378. doi: 10.1111/j.1365-294X.2006.02885.x PubMedCrossRefGoogle Scholar
  22. Gilchrist EJ, O’Neil NJ, Rose AM, Zetka MC, Haughn GW (2006b) TILLING is an effective reverse genetics technique for Caenorhabditis elegans. BMC Genomics 7:262. doi: 10.1186/1471-2164-7-262 PubMedCrossRefGoogle Scholar
  23. Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar “Barke” reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:258. doi: 10.1186/1756-0500-2-258 PubMedCrossRefGoogle Scholar
  24. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Theor Appl Genet 164:731–740Google Scholar
  25. Hecker KH, Taylor PD, Gjerde DT (1999) Mutation detection by denaturing DNA chromatography using fluorescently labeled polymerase chain reaction products. Anal Biochem 272:156–164. doi: 10.1006/abio.1999.4171 PubMedCrossRefGoogle Scholar
  26. Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, Parniske M, Wang TL, Downie JA (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol 142:1739–1750. doi:10.1104/pp. 106.089508PubMedCrossRefGoogle Scholar
  27. Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54:375–401. doi: 10.1143/annurev.arplant.54.031902.135009 PubMedCrossRefGoogle Scholar
  28. Hermann S, Brumbley S, McIntyre CL (2006) Analysing diversity in sugarcane resistance gene analogues. Australas Plant Pathol 35:631. doi: 10.1071/AP06066 CrossRefGoogle Scholar
  29. Himelblau E, Gilchrist EJ, Buono K, Bizzell C, Mentzer L, Vogelzang R, Osborn T, Amasino RM, Parkin IAP, Haughn GW (2009) Forward and reverse genetics of rapid-cycling Brassica oleracea. Theor Appl Genet 118:953–961. doi: 10.1007/s00122-008-0952-7 PubMedCrossRefGoogle Scholar
  30. Hirochika H (1997) Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 35:231–240. doi: 10.1023/A:1005774705893 PubMedCrossRefGoogle Scholar
  31. Hohmann U, Jacobs G, Jung C (2005) An EMS mutagenesis protocol for sugar beet and isolation of non-bolting mutants. Plant Breed 124:317–321. doi: 10.1111/j.1439-0523.2005.01126.x CrossRefGoogle Scholar
  32. Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL (2007) TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol 144:806–820. doi:10.1104/pp. 107.097063PubMedCrossRefGoogle Scholar
  33. Howard JT, Ward J, Watson JN, Roux KH (1999) Heteroduplex cleavage analysis using S1 nuclease. Biotechniques 27:18–19PubMedGoogle Scholar
  34. Huang J, Kirk B, Favis R, Soussi T, Paty P, Cao W, Barany F (2002) An endonuclease/ligase based mutation scanning method especially suited for analysis of neoplastic tissue. Oncogene 21:1909–1921. doi: 10.1038/sj.onc.1205109 PubMedCrossRefGoogle Scholar
  35. Igarashi H, Nagura K, Sugimura H, Kulinski J, Besack D, Oleykowski CA, Godwin AK, Yeung AT (2000) CEL I enzymatic mutation detection. Biotechniques 29:44–48Google Scholar
  36. Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132–138. doi: 10.1016/j.copbio.2004.02.005 PubMedCrossRefGoogle Scholar
  37. Kadaru SB, Yadav AS, Fjellstrom RG, Oard JH (2006) Alternative ecotilling protocol for rapid, cost-effective single-nucleotide polymorphism discovery and genotyping in rice (Oryza sativa L.). Plant Mol Biol Rep 24:3–22. doi: 10.1007/BF02914042 CrossRefGoogle Scholar
  38. Kahn SD (2011) On the future of genomic data. Science 331:728–729. doi: 10.1126/science.1197891 PubMedCrossRefGoogle Scholar
  39. Klug A (2010) The discovery of Zinc figures and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231. doi:  10.1146/annurev-biochem-010909-095056 PubMedCrossRefGoogle Scholar
  40. Krysan PJ, Young JC, Jester PJ, Monson S, Copenhaver G, Preuss D, Sussman MR (2002) Characterization of T-DNA insertion sites in Arabidopsis thaliana and the implications for saturation mutagenesis. OMICS 6:163–174. doi: 10.1089/153623102760092760 PubMedCrossRefGoogle Scholar
  41. Kuhn DN, Borrone J, Meerow AW, Motamayor JC, Brown JS, Schnell RJ (2005) Single-strand conformation polymorphism analysis of candidate genes for reliable identification of alleles by capillary array electrophoresis. Electrophoresis 26:112–125. doi: 10.1002/elps.200406106 PubMedCrossRefGoogle Scholar
  42. Kutyavin IV (2000) 3′-Minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28:655–661. doi: 10.1093/nar/28.2.655 PubMedCrossRefGoogle Scholar
  43. Lababidi S, Mejlhede N, Rasmussen SK, Backes G, Al-Said W, Baum M, Jahoor A (2009) Identification of barley mutants in the cultivar “Lux” at the Dhn loci through TILLING. Plant Breed 128:332–336. doi: 10.1111/j.1439-0523.2009.01640.x CrossRefGoogle Scholar
  44. Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M, Pagny G, Moussy F, Sanchez M, Baker D, Clarke J, Thompson R (2009) Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnol J 7:430–441. doi: 10.1111/j.1467-7652.2009.00410.x PubMedCrossRefGoogle Scholar
  45. Lefebvre V, Goffinet B, Chauvet JC, Caromel B, Signoret P, Brand R, Palloix A (2001) Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RAPD and phenotypic data. Theor Appl Genet 102:741–750. doi: 10.1007/s001220051705 CrossRefGoogle Scholar
  46. Li Q, Liu Z, Monroe H, Culiat CT (2002a) Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis 23:1499–1511. doi:10.1002/1522-2683(200205)23:10<1499::AID-ELPS1499>3.0.CO;2-XPubMedCrossRefGoogle Scholar
  47. Li X, Lassner M, Zhang Y (2002b) Deleteagene: a fast neutron deletion mutagenesis-based gene knockout system for plants. Comp Funct Genomics 3:158–160. doi: 10.1002/cfg.148 PubMedCrossRefGoogle Scholar
  48. Lu A-L, Hsu I-C (1992) Detection of single DNA base mutations with mismatch repair enzymes. Genomics 14:249–255. doi: 10.1016/S0888-7543(05)80213-7 PubMedCrossRefGoogle Scholar
  49. Mashal RD, Koontz J, Sklar J (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat Genet 9:177–183. doi: 10.1038/ng0295-177 PubMedCrossRefGoogle Scholar
  50. May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, Roh D, Pan X, Stein L, Freeling M, Alexander D, Martienssen R (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546. doi: 10.1073/pnas.1831119100 PubMedCrossRefGoogle Scholar
  51. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457PubMedCrossRefGoogle Scholar
  52. Mejlhede N, Kyjovska Z, Backes G, Burhenne K, Rasmussen SK, Jahoor A (2006) EcoTILLING for the identification of allelic variation in the powdery mildew resistance genes mlo and Mla of barley. Plant Breed 125:461–467. doi: 10.1111/j.1439-0523.2006.01226.x CrossRefGoogle Scholar
  53. Nataraj AJ, Olivos-Glander I, Kusukawa N, Highsmith WE (1999) Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis 20:1177–1185. doi:10.1002/(SICI)1522-2683(19990101)20:6<1177::AID-ELPS1177>3.0.CO;2-2PubMedCrossRefGoogle Scholar
  54. Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gómez-Guillamon ML, Truniger V, Gómez P, Garcia-Mas J, Aranda MA, Bendahmane A (2007) EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 7:34. doi: 10.1186/1471-2229-7-34 PubMedCrossRefGoogle Scholar
  55. Nolan PM, Hugill A, Cox RD (2002) ENU mutagenesis in the mouse: application to human genetic disease. Brief Funct Genomic Proteomic 1:278–289. doi: 10.1093/bfgp/1.3.278 PubMedCrossRefGoogle Scholar
  56. Okagaki RJ, Neuffer MG, Wessler SR (1991) A deletion common to two independently derived waxy mutations of maize. Genetics 128:425–431PubMedGoogle Scholar
  57. Oleykowski CA, Mullins CRB, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602. doi: 10.1093/nar/26.20.4597 PubMedCrossRefGoogle Scholar
  58. Owais WM, Kleinhofs A (1988) Metabolic activation of the mutagen azide in biological systems. Mutat Res 197:313–323. doi: 10.1016/0027-5107(88)90101-7 PubMedCrossRefGoogle Scholar
  59. Palotta MA, Warner P, Fox RL, Kuchel H, Jefferies SP, Langridge P (2003) Marker assisted wheat breeding in the southern region of Australia. In: Proceedings of the tenth international wheat genetics symposium, Paestum, 1–6 September 2003, pp 789–791Google Scholar
  60. Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825. doi: 10.1093/jxb/erp189 PubMedCrossRefGoogle Scholar
  61. Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871. doi:10.1104/pp. 102.017384PubMedCrossRefGoogle Scholar
  62. Raghavan C, Naredo MEB, Wang H, Atienza G, Liu B, Qiu F, McNally KL, Leung H (2006) Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Mol Breed 19:87–101. doi: 10.1007/s11032-006-9046-x CrossRefGoogle Scholar
  63. Rogers C, Wen JQ, Chen RJ, Oldroyd G (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiol 151:1077–1086. doi:10.1104/pp. 109.142919PubMedCrossRefGoogle Scholar
  64. Sestili F, Botticella E, Bedo Z, Phillips A (2010) Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breed 25:145–154. doi: 10.1007/s11032-009-9314-7 CrossRefGoogle Scholar
  65. Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. doi: 10.1038/nbt1486 PubMedCrossRefGoogle Scholar
  66. Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115. doi: 10.1007/s11248-005-2770-x PubMedCrossRefGoogle Scholar
  67. Slade AJ, Fuerstenberg S, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81. doi: 10.1038/nbt1043 PubMedCrossRefGoogle Scholar
  68. Sreelakshmi Y, Gupta S, Bodanapu R, Chauhan VS, Hanjabam M, Thomas S, Mohan V, Sharma S, Srinivasan R, Sharma R (2010) NEATTILL: a simplified procedure for nucleic acid extraction from arrayed tissue for TILLING and other high-throughput reverse genetic applications. Plant Methods 6:3. doi: 10.1186/1746-4811-6-3 PubMedCrossRefGoogle Scholar
  69. Stanssens P, Zabeau M, Meersseman G, Remes G, Gansemans Y, Storm N, Hartmer R, Honisch C, Rodi CP, Böcker S, van den Boom D (2004) High-throughput MALDI-TOF discovery of genomic sequence polymorphisms. Genome Res 14:126–133. doi: 10.1101/gr.1692304 PubMedCrossRefGoogle Scholar
  70. Stemple DL (2004) TILLING – a high-throughput harvest for functional genomics. Nat Rev Genet 5:145–150. doi: 10.1038/nrg1273 PubMedCrossRefGoogle Scholar
  71. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039. doi: 10.1073/pnas.76.3.1035 PubMedCrossRefGoogle Scholar
  72. Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279:213–223. doi: 10.1007/s00438-007-0293-2 PubMedCrossRefGoogle Scholar
  73. Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485. doi: 10.1111/j.1467-7652.2008.00341.x PubMedCrossRefGoogle Scholar
  74. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530. doi: 10.1101/gr.977903 PubMedCrossRefGoogle Scholar
  75. Till BJ, Burtner C, Comai L, Henikoff JG (2004a) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641. doi: 10.1093/nar/gkh599 PubMedCrossRefGoogle Scholar
  76. Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004b) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12. doi: 10.1186/1471-2229-4-12 PubMedCrossRefGoogle Scholar
  77. Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1:2465–2477. doi: 10.1038/nprot.2006.329 PubMedCrossRefGoogle Scholar
  78. Till B, Cooper J, Tai T, Colowit P, Greene E, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. doi: 10.1186/1471-2229-7-19 PubMedCrossRefGoogle Scholar
  79. Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A (2007) Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J 51:1116–1125. doi: 10.1111/j.1365-313X.2007.03201.x PubMedCrossRefGoogle Scholar
  80. Triques K, Piednoir E, Dalmais M, Schmidt J, Le Signor C, Sharkey M, Caboche M, Sturbois B, Bendahmane A (2008) Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants. BMC Mol Biol 9:42. doi: 10.1186/1471-2199-9-42 PubMedCrossRefGoogle Scholar
  81. Uauy C, Paraiso F, Colasuonno P, Tran R, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115. doi: 10.1186/1471-2229-9-115 PubMedCrossRefGoogle Scholar
  82. Wang G-X, Tan M-K, Rakshit S, Saitoh H, Terauchi R, Imaizumi T, Ohsako T, Tominaga T (2007) Discovery of single-nucleotide mutations in acetolactate synthase genes by Ecotilling. Pestic Biochem Physiol 88:143–148. doi: 16/j.pestbp.2006.10.006 CrossRefGoogle Scholar
  83. Wang G-X, Imaizumi T, Li W, Saitoh H, Terauchi R, Ohsako T, Tominaga T (2008a) Self-EcoTILLING to identify single-nucleotide mutations in multigene family. Pestic Biochem Physiol 92:24–29. doi:10.1016/j.pestbp. 2008.05.00CrossRefGoogle Scholar
  84. Wang J, Sun JZ, Liu DC, Yang WL, Wang DW, Tong YP, Zhang AM (2008b) Analysis of Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm by Ecotilling and identification of a novel Pinb allele. J Cereal Sci 48:836–842. doi: 10.1016/j.jcs.2008.06.005 CrossRefGoogle Scholar
  85. Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964. doi: 10.1073/pnas.95.23.13959 PubMedCrossRefGoogle Scholar
  86. Weil CF (2009) TILLING in grass species. Plant Physiol 149:158–164. doi:10.1104/pp. 108.128785PubMedCrossRefGoogle Scholar
  87. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707. doi: 10.1101/gr.1725103 PubMedCrossRefGoogle Scholar
  88. Winkler S, Schwabedissen A, Backasch D, Bökel C, Seidel C, Bönisch S, Fürthauer M, Kuhrs A, Cobreros L, Brand M, González-Gaitán M (2005) Target-selected mutant screen by TILLING in Drosophila. Genome Res 15:718–723. doi: 10.1101/gr.3721805 PubMedCrossRefGoogle Scholar
  89. Xin Z, Li Wang M, Barkley N, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103. doi: 10.1186/1471-2229-8-103 PubMedCrossRefGoogle Scholar
  90. Yang B, Wen X, Kodali NS, Oleykowski CA, Miller CG, Kulinski J, Besack D, Yeung JA, Kowalski D, Yeung AT (2000) Purification, cloning, and characterization of the CEL I nuclease. Biochemistry 39:3533–3541. doi:10.1021/bi992376zPubMedCrossRefGoogle Scholar
  91. Yeung AT, Hattangadi D, Blakesly L, Nicolas E (2005) Enzymatic mutation detection technologies. Biotechniques 38:749–758. doi:10.2144/05385RV01PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Organic Agricultural Sciences, Department of Organic Breeding and AgrobiodiversityUniversity of KasselWitzenhausenGermany

Personalised recommendations