Variety Protection and Plant Breeders’ Rights in the ‘DNA Era’

  • Huw Jones
  • Carol Norris
  • James Cockram
  • David Lee


The development of new crop varieties offers potential benefits, in terms of yield to growers, and in quality improvements to end users. A new variety represents a considerable investment by plant breeders and this can be sustained by commercial returns. A robust system to protect a new variety, and thus the plant breeders’ intellectual property, is part of the infrastructure needed to promote the flow of new varieties. Here we describe current plant variety protection systems and discuss how DNA based markers may be used within those legal and administrative provisions.


Quantitative Trait Locus Amplify Fragment Length Polymorphism Test Guideline Intellectual Property Protection Variety Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Dr Robert Cooke and Dr John Law for guidance over many years, and Dr Lydia Smith for useful comments. Thanks to FERA (formerly MAFF, DEFRA) and the CPVO for financial support of NIAB research into innovation in DUS testing.


  1. Andersen R (2006) Realising Farmers’ Rights under the international treaty on plant genetic resources for food and agriculture: summary of findings from the Farmers’ Rights project, phase 1. Fridtjof Nansen Institute, Lysaker. ISBN 82-7613-496-3Google Scholar
  2. Biological Innovation for Open Society (BIOS) Tutorial. Can IP rights protect plants? A. Utility Patents. (online) Available at: Accessed 18 July 2011
  3. Borchert T, Krueger J, Hohe A (2008) Implementation of a model for identifying essentially derived varieties in vegetatively propagated Calluna vulgaris varieties. BMC Genet 9:56. doi: 10.1186/1471-2156-9-56 PubMedCrossRefGoogle Scholar
  4. Bres-Patry C, Lorieux M, Clement G, Bangratz M, Ghesquiere A (2001) Heredity and genetic mapping of domestication-related traits in a temperate japonica weedy rice. Theor Appl Genet 102:118–126CrossRefGoogle Scholar
  5. Brooks SA, Yan W, Jackson AK, Deren CW (2008) A natural mutation in rc reverts white-rice-pericarp to red and results in a new, dominant, wild-type allele: Rc-g. Theor Appl Genet 117:575–580. doi: 10.1007/s00122-008-0801-8 PubMedCrossRefGoogle Scholar
  6. Bruins M (2009) Essentially derived varieties. FleuroSelect: the International Organisation for the Ornamental Plants Industry Leiden, March. (online) Available at: Accessed 18 July 2011
  7. Button P (2008) Situation in UPOV concerning the use of molecular techniques in plant variety protection. Presented at symposium on the application of molecular techniques for plant breeding and in plant variety protection, Seoul, KoreaGoogle Scholar
  8. Cai HW, Morishima H (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100:840–846CrossRefGoogle Scholar
  9. Chen A, Baumann U, Fincher GB, Collins NC (2009) FLT-2 L, a locus in barley controlling flowering time, spike density and plant height. Funct Integr Genomics 9:243–254PubMedCrossRefGoogle Scholar
  10. Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci U S A 101:700–707PubMedCrossRefGoogle Scholar
  11. Close TJ et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. doi: 10.1186/1471-2164-10-582
  12. Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007a) Control of flowering time in temperate cereals: genes, domestication and sustainable productivity. J Exp Bot 58:1231–1244PubMedCrossRefGoogle Scholar
  13. Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA, O’Sullivan DM (2007b) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115:993–1001PubMedCrossRefGoogle Scholar
  14. Cockram J, Mackay IJ, O’Sullivan DM (2007c) The role of double-stranded break repair in the creation of phenotypic diversity at cereal VRN1 loci. Genetics 177:1–5CrossRefGoogle Scholar
  15. Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16. doi: 10.1186/1471-2156-9-16 PubMedCrossRefGoogle Scholar
  16. Cockram J, Norris C, O’Sullivan DM (2009) PCR-based markers diagnostic for spring and winter seasonal growth habit in barley. Crop Sci 49:403–410CrossRefGoogle Scholar
  17. Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D et al (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci U S A 107:21611–21616PubMedCrossRefGoogle Scholar
  18. Cockram J, Jones H, Norris C, O'Sullivan DM (2012) Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.). Theor Appl Genet 125:1735–1749Google Scholar
  19. CPV5766 Final Report (2008) Management of winter oilseed rape reference collections. NIAB, Cambridge, CB3 0LE on behalf of Community Plant Variety Office (CPVO), Anger, FranceGoogle Scholar
  20. Doveri S, Lee D, Maheswaran M, Powell W (2008) Molecular markers – history, features and applications. In: Kole C, Abbott AG (eds) Principles and practices of plant genomics, vol I, Genome mapping, Chapter 2. Science Publishers Inc., EnfieldGoogle Scholar
  21. Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291Google Scholar
  22. Dutfield G (2011) Food, biological diversity and intellectual property: the role of the International Union for the Protection of New Varieties of Plants (UPOV). Global Economic Issue Publications: Intellectual Property Issue Paper No. 9, Quaker United Nations Office. Available at
  23. Eiguchi M, Sano Y (1990) A gene complex responsible for seed shattering and panicle spreading found in common wild rices. Rice Genet Newsl 7:105–107Google Scholar
  24. Farmers’ Rights: two approaches to Farmers’ Rights. Resource pages for decision-makers and practitioners. (online) Available at: Accessed 18 Jul 2011
  25. Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS-T-like family in barley (Hordeum vulgare). Genetics 176:599–609PubMedCrossRefGoogle Scholar
  26. Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650PubMedCrossRefGoogle Scholar
  27. Fukuta Y, Yagi T (1998) Mapping of a shattering resistance gene in a mutant line SR-5 induced from an indica rice variety, Nan-jing11. Breed Sci 48:345–348Google Scholar
  28. Gunjaca J, Buhinicek I, Jukic M, Sarcevic H, Vragolovic A, Kozic Z, Jambrovic A, Pejic I (2008) Discriminating maize inbred lines using molecular and DUS data. Euphytica 161:165–172CrossRefGoogle Scholar
  29. Heckenberger M, van der Voort JR, Peleman J, Bohn M (2003) Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties: II. Genetic and technical sources of variation in AFLP data and comparison with SSR data. Mol Breed 12:97–106. doi: 10.1023/A:1026040007166 CrossRefGoogle Scholar
  30. Heckenberger M, Bohn M, Frisch M, Maurer HP, Melchinger AE (2005) Identification of essentially derived varieties with molecular markers: an approach based on statistical test theory and computer simulations. Theor Appl Genet 111:598–608. doi: 10.1007/s00122-005-2052-2 PubMedCrossRefGoogle Scholar
  31. Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39Google Scholar
  32. Ibáñez J, Vélez MD, de Andrés MT, Borrego J (2009) Molecular markers for establishing distinctness in vegetatively propagated crops: a case study in grapevine. Theor Appl Genet 119:1213–1222PubMedCrossRefGoogle Scholar
  33. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25PubMedCrossRefGoogle Scholar
  34. Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A et al (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390CrossRefGoogle Scholar
  35. Jones H, Jarman RJ, Austin L, White J, Cooke RJ (2003) The management of variety reference collections in distinctness, uniformity and stability testing of wheat. Euphytica 132:175–184CrossRefGoogle Scholar
  36. Jones H, Bernole A, Jensen LB, Horsnell RA, Law JR, Cooke RJ, Norris CE (2008a) Minimising inter-laboratory variation when constructing a unified molecular database of plant varieties in an allogamous crop. Theor Appl Genet 117:1335–1344PubMedCrossRefGoogle Scholar
  37. Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008b) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the fertile crescent. Mol Biol Evol 25:2211–2219PubMedCrossRefGoogle Scholar
  38. Jones H, Norris C, Smith D, Cockram J, Lee D, O'Sullivan DM, Mackay I (2012) Evaluation of the use of high-density SNP genotyping to implement UPOV Model 2 for DUS testing in barley. Theor Appl Genet. doi: 10.1007/s00122-012-2024-2
  39. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711CrossRefGoogle Scholar
  40. Karsai I, Szűcs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedö Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative X winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466PubMedCrossRefGoogle Scholar
  41. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A 104:1424–1429PubMedCrossRefGoogle Scholar
  42. Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter X spring barley (Hordeum vulgare L.) cross. Genome 38:575–585PubMedCrossRefGoogle Scholar
  43. Law JR, Donini P, Koebner RMD, Reeves JC, Cooke RJ (1998) DNA profiling and plant variety registration. III: The statistical assessment of distinctness in wheat using amplified fragment length polymorphisms. Euphytica 102:335–342CrossRefGoogle Scholar
  44. LeDuc C, Miller P, Lichter J, Parry P (1995) Batched analysis of genotypes. PCR Methods Appl 4:331–336PubMedCrossRefGoogle Scholar
  45. Lee D, Reeves JC, Cooke RJ (1996) DNA profiling and plant variety registration: 1. The use of random amplified polymorphisms to discriminate between varieties of oilseed rape. Electrophoresis 17:261–265PubMedCrossRefGoogle Scholar
  46. Lee D, Lupotto E, Powell W (2009) G-string slippage turns white rice red. Genome 52:490–493PubMedCrossRefGoogle Scholar
  47. Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359–366. doi: 10.1023/A:1025778227751 CrossRefGoogle Scholar
  48. Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newslett 26:22–516Google Scholar
  49. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63PubMedCrossRefGoogle Scholar
  50. Nagao S, Takahashi M (1963) Trial construction of twelve linkage groups in Japanese rice. J Fac Agric Hokkaido Univ 53:72–130Google Scholar
  51. Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S et al (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci U S A 107:490–495PubMedCrossRefGoogle Scholar
  52. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12:443–451PubMedCrossRefGoogle Scholar
  53. Noli E, Teriaca MS, Sanguineti MC, Conti S (2008) Utilization of SSR and AFLP markers for the assessment of distinctness in durum wheat. Mol Breed 22:301–313CrossRefGoogle Scholar
  54. Oba S, Kikuchi F, Maruyama K (1990) Genetic analysis of semidwarfness and grain shattering of Chinese rice (Oryza sativa) variety “Ai-Jio-Nan-Te”. Jpn J Breed 40:13–20Google Scholar
  55. Reid A, Hof L, Felix G, Rücker B, Tams S, Milczynska E, Esselink D, Uenk G, Vosman B, Weitz A (2011) Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU common catalogue. Euphytica. doi: 10.1007/s10681-011-0462-6
  56. Rogers YH, Craig Venter JC (2005) Massively parallel sequencing. Nature 437:326–327PubMedCrossRefGoogle Scholar
  57. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  58. Salazar R, Louwaars NP, Visser B (2006) On protecting farmers’ new varieties: new approaches to rights on collective innovations in plant genetic resources. CGIAR system wide program on collective action and property rights working paper 45. International Food Policy Research Institute, Washington, DCGoogle Scholar
  59. Smulders MJM, Esselink D, Voorrips RE, Vosman B (2009) Analysis of a database of DNA profiles of 734 hybrid tea rose varieties. Acta Hort (ISHS) 836:169–175, Scholar
  60. Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: Rc encodes a basic helix–loop–helix protein conditioning red pericarp in rice. Plant Cell 18:283–294. doi: 10.1105/tpc.105.038430 PubMedCrossRefGoogle Scholar
  61. Sweeney MT, Thomson MJ, Cho YG, Park YJ, Williamson SH, Bustamante CD, McCouch SR (2007) Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet 3:e133. doi: 10.1371/journal.pgen.0030133 PubMedCrossRefGoogle Scholar
  62. Szűcs P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, Corey AE, Chen THH, Hayes PM (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol Genet Genomics 277:249–261PubMedCrossRefGoogle Scholar
  63. Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci U S A 105:4062–4067PubMedCrossRefGoogle Scholar
  64. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME et al (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493PubMedCrossRefGoogle Scholar
  65. Tian F, Stevens NM, Buckler ES IV (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci U S A 106:9979–9986PubMedCrossRefGoogle Scholar
  66. Tommasini L, Batley J, Arnold GM, Cooke RJ, Donini P, Lee D, Law JR, Lowe C, Moule C, Trick M, Edwards KJ (2003) The development of multiplex simple sequence repeats (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet 106:1091–1101PubMedGoogle Scholar
  67. Tripp R, Louwaars N, Eaton D (2007) Plant variety protection in developing countries. A report from the field. Food Policy 32:354–371CrossRefGoogle Scholar
  68. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034PubMedCrossRefGoogle Scholar
  69. Turuspekov Y, Mano Y, Honda I, Kawada N, Watanabe Y, Komatsuda T (2004) Identification and mapping of cleistogamy genes in barley. Theor Appl Genet 109:480–487PubMedCrossRefGoogle Scholar
  70. Ubisch G (1916) Beitrag zu einer Faktorenanalyse von Gerste. Z Indukt Abs Ver 17:120–152Google Scholar
  71. UPOV (1991) International convention for the protection of new varieties of plants. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 8 Aug 2012
  72. UPOV (2002) TG/1/3 General introduction to the examination of distinctness, uniformity and stability and the development of harmonized descriptions of new varieties of plants. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at:, Accessed 8 Aug 2012
  73. UPOV (2008a) TGP/4: constitution and maintenance of variety collections. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 19 July 2011
  74. UPOV (2008b) TGP/9: examining distinctness. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 8 Aug 2012
  75. UPOV (2010 a) TGP/7/2. Development of test guidelines. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 19 July 2012
  76. UPOV (2010 b) TGP/8. Trial design and techniques used in the examination of distinctness, uniformity and stability. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 28 July 2011
  77. UPOV (2010c) INF/17/1: Guidelines for DNA-profiling: molecular marker selection and database construction (“BMT Guidelines”). International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 19 July 2011
  78. UPOV (2011a) Mission statement. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 19 July 2012
  79. UPOV (2011b) About UPOV. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 8 Aug 2012
  80. UPOV (2011c) Test guidelines. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 8 Aug 2012
  81. UPOV (2011d) INF/18/1 Possible use of molecular markers in the examination of distinctness, uniformity and stability (DUS). International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: Accessed 8 Aug 2012
  82. von Zitzewitz J, Szűcs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen THH, Hayes P, Skinner J (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467CrossRefGoogle Scholar
  83. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  84. Vosman B, Barendrecht J, Esselink D, Jones H, Scott E, Spellerberg B, Tams S (2006) A European reference collection of rose varieties. Plant Research International B.V., Wageningen, The Netherlands. On behalf of Community Plant Variety Office (CPVO), Anger, France. Available at: Accessed 19 July 2011
  85. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447;7145:661–678Google Scholar
  86. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1992) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535CrossRefGoogle Scholar
  87. World Trade Organization (1994) Agreement on trade-related aspects of intellectual property rights. (online) Available at: Accessed 18 July 2011
  88. Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang Q (1999) Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. Rufipogon. Theor Appl Genet 98:243–251CrossRefGoogle Scholar
  89. Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, San-Miguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Huw Jones
    • 1
  • Carol Norris
    • 2
    • 3
  • James Cockram
    • 1
  • David Lee
    • 1
  1. 1.John Bingham LaboratoryNational Institute of Agricultural Botany (NIAB)CambridgeUK
  2. 2.Bayer CropScience LimitedCambridgeUK
  3. 3.Agricultural Crop CharacterisationNational Institute of Agricultural Botany (NIAB)CambridgeUK

Personalised recommendations