Insertion-Deletion Marker Targeting for Intron Polymorphisms

  • Ken-ichi Tamura
  • Jun-ichi Yonemaru
  • Toshihiko Yamada


Insertion-deletion (indel) polymorphisms are the second most frequent type of polymorphisms in genomes following single nucleotide polymorphisms (SNPs). As one of the types of indel markers to detect polymorphisms among individuals, we focus on markers targeting intron length polymorphisms (ILPs) in this chapter. Intron polymorphism (IP) markers including ILP markers are based on more abundant polymorphisms in intron regions compared to exon regions. Conserved genic sequences and structures including exon-intron junctions allow the development of IP markers for orphan crops without genomic information. Based on syntenic relationships among genomes of related species, IP markers can be developed in regions of interest based on the single-copy genes, such as for regions containing quantitative trait loci (QTL). Although introns are non-coding sequences in genes, they are suggested to have functions such as control of transcription. In some cases, ILPs are directly associated with trait variation as functional nucleotide polymorphisms (FNPs). This chapter reviews recent studies on the characteristics of IPs, especially ILPs, how to develop markers, and their application for the genetic analysis and molecular breeding of crops.


Quantitative Trait Locus Tall Fescue Intron Region Indica Rice Sequence Characterize Amplify Region Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song XZ, Richmond TA, Middle CM, Rodesch MJ, Packard CJ, Weinstock GM, Gibbs RA (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905PubMedCrossRefGoogle Scholar
  2. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  3. Arai-Kichise Y, Shiwa Y, Nagasaki H, Ebana K, Yoshikawa H, Yano M, Wakasa K (2011) Discovery of genome-wide DNA polymorphisms in a landrace cultivar of japonica rice by whole-genome sequencing. Plant Cell Physiol 52:274–282PubMedCrossRefGoogle Scholar
  4. Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci 52:143–150CrossRefGoogle Scholar
  5. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  6. Burrell AM, Taylor KG, Williams RJ, Cantrell RT, Menz MA, Pepper AE (2011) A comparative genomic map for Caulanthus amplexicaulis and related species (Brassicaceae). Mol Ecol 20:784–798PubMedCrossRefGoogle Scholar
  7. Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562PubMedCrossRefGoogle Scholar
  8. Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755PubMedCrossRefGoogle Scholar
  9. Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502PubMedCrossRefGoogle Scholar
  10. Eagles HA, Cane K, Vallance N (2009) The flow of alleles of important photoperiod and vernalisation genes through Australian wheat. Crop Pasture Sci 60:646–657CrossRefGoogle Scholar
  11. Edwards JD, Janda J, Sweeney MT, Gaikwad AB, Liu B, Leung H, Galbraith DW (2008) Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods 4:13PubMedCrossRefGoogle Scholar
  12. Fan CH, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  13. Fedorov A, Merican AF, Gilbert W (2002) Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc Natl Acad Sci USA 99:16128–16133PubMedCrossRefGoogle Scholar
  14. Feltus FA, Singh HP, Lohithaswa HC, Schulze SR, Silva TD, Paterson AH (2006) A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiol 140:1183–1191PubMedCrossRefGoogle Scholar
  15. Ferreira AO, Cardoso HG, Macedo ES, Breviario D, Arnholdt-Schmitt B (2009) Intron polymorphism pattern in AOX1b of wild St John’s wort (Hypericum perforatum) allows discrimination between individual plants. Physiol Plant 137:520–531PubMedCrossRefGoogle Scholar
  16. Fiume E, Christou P, Giani S, Breviario D (2004) Introns are key regulatory elements of rice tubulin expression. Planta 218:693–703PubMedCrossRefGoogle Scholar
  17. Fredslund J, Madsen LH, Hougaard BK, Nielsen AM, Bertioli D, Sandal N, Stougaard J, Schauser L (2006a) A general pipeline for the development of anchor markers for comparative genomics in plants. BMC Genomics 7:207PubMedCrossRefGoogle Scholar
  18. Fredslund J, Madsen LH, Hougaard BK, Sandal N, Stougaard J, Bertioli D, Schauser L (2006b) GeMprospector – online design of cross-species genetic marker candidates in legumes and grasses. Nucleic Acids Res 34:W670–W675PubMedCrossRefGoogle Scholar
  19. Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65PubMedCrossRefGoogle Scholar
  20. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedCrossRefGoogle Scholar
  21. Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky PM, Rigau J, Murigneux A, Martinant JP, Barriere Y (2004) Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet 5:19PubMedCrossRefGoogle Scholar
  22. Gupta S, Kumari K, Das J, Lata C, Puranik S, Prasad M (2011) Development and utilization of novel intron length polymorphic markers in foxtail millet (Setaria italica (L.) P. Beauv.). Genome 54:586–602PubMedCrossRefGoogle Scholar
  23. Hemming MN, Fieg S, Peacock WJ, Dennis ES, Trevaskis B (2009) Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genomics 282:107–117PubMedCrossRefGoogle Scholar
  24. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  25. Ishikawa G, Yonemaru J, Saito M, Nakamura T (2007) PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics 8:135PubMedCrossRefGoogle Scholar
  26. Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu JZ, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514PubMedCrossRefGoogle Scholar
  27. Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Oyant LHS, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125PubMedCrossRefGoogle Scholar
  28. Jayashree B, Jagadeesh VT, Hoisington D (2008) CISprimerTOOL: software to implement a comparative genomics strategy for the development of conserved intron scanning (CIS) markers. Mol Ecol Resour 8:575–577PubMedCrossRefGoogle Scholar
  29. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334CrossRefGoogle Scholar
  30. Kawahigashi H, Kasuga S, Ando T, Kanamori H, Wu JZ, Yonemaru J, Sazuka T, Matsumoto T (2011) Positional cloning of ds1, the target leaf spot resistance gene against Bipolaris sorghicola in sorghum. Theor Appl Genet 123:131–142PubMedCrossRefGoogle Scholar
  31. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982PubMedCrossRefGoogle Scholar
  32. Lai JS, Li RQ, Xu X, Jin WW, Xu ML, Zhao HN, Xiang ZK, Song WB, Ying K, Zhang M, Jiao YP, Ni PX, Zhang JG, Li D, Guo XS, Ye KX, Jian M, Wang B, Zheng HS, Liang HQ, Zhang XQ, Wang SC, Chen SJ, Li JS, Fu Y, Springer NM, Yang HM, Wang JA, Dai JR, Schnable PS, Wang J (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1130PubMedCrossRefGoogle Scholar
  33. Li X, Ramchiary N, Choi SR, Van Nguyen D, Hossain MJ, Yang HK, Lim YP (2010) Development of a high density integrated reference genetic linkage map for the multinational Brassica rapa Genome Sequencing Project. Genome 53:939–947PubMedCrossRefGoogle Scholar
  34. Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118PubMedCrossRefGoogle Scholar
  35. Liu HL, Lin YA, Chen GB, Shen Y, Liu J, Zhang SZ (2012) Genome-scale identification of resistance gene analogs and the development of their intron length polymorphism markers in maize. Mol Breed 29:437–447CrossRefGoogle Scholar
  36. Lohithaswa HC, Feltus FA, Singh HP, Bacon CD, Bailey CD, Paterson AH (2007) Leveraging the rice genome sequence for monocot comparative and translational genomics. Theor Appl Genet 115:237–243PubMedCrossRefGoogle Scholar
  37. Lyons LA, Laughlin TF, Copeland NG, Jenkins NA, Womack JE, Obrien SJ (1997) Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat Genet 15:47–56PubMedCrossRefGoogle Scholar
  38. Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326PubMedCrossRefGoogle Scholar
  39. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182PubMedCrossRefGoogle Scholar
  40. Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci USA 106:8386–8391PubMedCrossRefGoogle Scholar
  41. Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806PubMedCrossRefGoogle Scholar
  42. Palumbi SR, Baker CS (1994) Contrasting population-structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol 11:426–435PubMedGoogle Scholar
  43. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113PubMedCrossRefGoogle Scholar
  44. Poczai P, Cernák I, Gorji AM, Nagy S, Taller J, Polgár Z (2010) Development of intron targeting (IT) markers for potato and cross-species amplification in Solanum nigrum (Solanaceae). Am J Bot 97:e142–e145PubMedCrossRefGoogle Scholar
  45. Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221PubMedGoogle Scholar
  46. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86PubMedCrossRefGoogle Scholar
  47. Salathia N, Lee HN, Sangster TA, Morneau K, Landry CR, Schellenberg K, Behere AS, Gunderson KL, Cavalieri D, Jander G, Queitsch C (2007) Indel arrays: an affordable alternative for genotyping. Plant J 51:727–737PubMedCrossRefGoogle Scholar
  48. Sargent DJ, Rys A, Nier S, Simpson DW, Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114:373–384PubMedCrossRefGoogle Scholar
  49. Selinger DA, Chandler VL (1999) Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize. Proc Natl Acad Sci USA 96:15007–15012PubMedCrossRefGoogle Scholar
  50. Shang W, Zhou R, Jia J, Gao L (2010) RGA-ILP, a new type of functional molecular markers in bread wheat. Euphytica 172:263–273CrossRefGoogle Scholar
  51. Shimada N, Nakatsuka T, Nakano Y, Kakizaki Y, Abe Y, Hikage T, Nishihara M (2009) Identification of gentian cultivars using SCAR markers based on intron-length polymorphisms of flavonoid biosynthetic genes. Sci Hortic (Amsterdam) 119:292–296CrossRefGoogle Scholar
  52. Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S (2010a) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121:731–739PubMedCrossRefGoogle Scholar
  53. Shirasawa K, Isobe S, Hirakawa H, Asamizu E, Fukuoka H, Just D, Rothan C, Sasamoto S, Fujishiro T, Kishida Y, Kohara M, Tsuruoka H, Wada T, Nakamura Y, Sato S, Tabata S (2010b) SNP discovery and linkage map construction in cultivated tomato. DNA Res 17:381–391PubMedCrossRefGoogle Scholar
  54. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028PubMedCrossRefGoogle Scholar
  55. Shu Y, Li Y, Zhu Y, Zhu Z, Lv D, Bai X, Cai H, Ji W, Guo D (2010) Genome-wide identification of intron fragment insertion mutations and their potential use as SCAR molecular markers in the soybean. Theor Appl Genet 121:1–8PubMedCrossRefGoogle Scholar
  56. Sommer R, Tautz D (1989) Minimal homology requirements for PCR primers. Nucleic Acids Res 17:6749PubMedCrossRefGoogle Scholar
  57. Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One 6:e21298PubMedCrossRefGoogle Scholar
  58. Tamura K, Yonemaru J, Hisano H, Kanamori H, King J, King IP, Tase K, Sanada Y, Komatsu T, Yamada T (2009) Development of intron-flanking EST markers for the Lolium/Festuca complex using rice genomic information. Theor Appl Genet 118:1549–1560PubMedCrossRefGoogle Scholar
  59. Tamura K, Kiyoshi T, Yonemaru J (2012) The development of highly transferable intron-spanning markers for temperate forage grasses. Mol Breed 30:1–8CrossRefGoogle Scholar
  60. Wang X, Zhao X, Zhu J, Wu W (2005) Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Res 12:417–427PubMedCrossRefGoogle Scholar
  61. Wang MJ, Zhang Y, Lin ZS, Ye XG, Yuan YP, Ma W, Xin ZY (2010) Development of EST-PCR markers for Thinopyrum intermedium chromosome 2Ai#2 and their application in characterization of novel wheat-grass recombinants. Theor Appl Genet 121:1369–1380PubMedCrossRefGoogle Scholar
  62. Wang C, Chen S, Yu S (2011) Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet 122:905–913PubMedCrossRefGoogle Scholar
  63. Wei H, Fu Y, Arora R (2005) Intron-flanking EST-PCR markers: from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet 111:1347–1356PubMedCrossRefGoogle Scholar
  64. Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420PubMedCrossRefGoogle Scholar
  65. Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009a) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293PubMedCrossRefGoogle Scholar
  66. Wu F, Eannetta NT, Xu Y, Tanksley SD (2009b) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935PubMedCrossRefGoogle Scholar
  67. Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice: substantially or superficially? DNA Res 16:141–154PubMedCrossRefGoogle Scholar
  68. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268PubMedCrossRefGoogle Scholar
  69. Yang L, Jin G, Zhao X, Zheng Y, Xu Z, Wu W (2007) PIP: a database of potential intron polymorphism markers. Bioinformatics 23:2174–2177PubMedCrossRefGoogle Scholar
  70. You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, Anderson OD (2009) ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinformatics 10:331PubMedCrossRefGoogle Scholar
  71. Zhao X, Yang L, Zheng Y, Xu Z, Wu W (2009) Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.). J Genet Genomics 36:435–442PubMedCrossRefGoogle Scholar
  72. Zhou Y, Zhu JY, Li ZY, Yi CD, Liu J, Zhang HG, Tang SZ, Gu MH, Liang GH (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183:315–324PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ken-ichi Tamura
    • 1
  • Jun-ichi Yonemaru
    • 2
  • Toshihiko Yamada
    • 3
  1. 1.NARO Hokkaido Agricultural Research Center, National Agriculture and Food Research OrganizationSapporoJapan
  2. 2.National Institute of Agrobiological SciencesTsukubaJapan
  3. 3.Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan

Personalised recommendations