Skip to main content

Salt Response of Some Halophytes with Potential Interest in Reclamation of Saline Soils: Gas Exchange, Water Use Efficiency and Defence Mechanism

  • Chapter
  • First Online:
Developments in Soil Salinity Assessment and Reclamation

Abstract

Most models about global changes predict the development of salt deserts with strongly degraded vegetation, unhealthy living conditions and negative impact on economic goods. The reservoir of freshwater on earth (especially in arid zones) is not sufficient to ensure the feeding of manhood in future. Furthermore, the substitution of freshwater against saline sources in combination with unprofessional artificial irrigation systems leads to an increasing destruction of useful areas and to strong economic damages. The consecutive increase of soil salinity is a threat for the productive land because most crops have only a low degree of salt resistance. In future, halophytes, plants with a natural high salt resistance, can play a major role for the rehabilitation and economic use of salt-affected habitats. Halophytic ecosystems present a high productivity and can be the base for a sustainable agriculture on saline soils.

A precondition is the extension of the up to now incoherent knowledge about the ecology of halophytes, their economic potential and – for the warranty of a sustainable use – also about their individual mechanisms of resistance. The physiological studies with the sea water irrigation system shown in this chapter have the potential to provide highly valuable means of detecting individual mechanisms of species against NaCl toxicity and may also provide opportunities for the comparison and screening of different varieties for their adaptation to salinity (QCS for cash crop halophytes). After the selection of halophytic species suited for a particular climate and for a particular utilisation, greenhouse experiments at the local substrates (and climatic conditions) to select and propagate promising sites have to be started.

Worldwide, initiatives are being undertaken to develop saline vegetable crops, as well as crops for fuel and fibre, but the use of halophytes is still in the early stages of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotech 13:146–150

    Article  CAS  Google Scholar 

  • Ashraf M, O’Leary JW (1996) Effect of drought stress on growth, water relations, and gas exchange of two lines of sunflower differing in degree of salt tolerance. Int J Plant Sci 157:729–732

    Article  Google Scholar 

  • Boer B, Gliddon D (1998) Mapping of coastal ecosystems and halophytes (case study of Abu Dhabi, United Arab Emirates). Mar Freshw Res 49:297–301

    Article  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tiss Organ Culture 73:101–115

    Article  CAS  Google Scholar 

  • Epstein E (1980) Responses of plants to saline environments. In: Rains DW, Valentine RC, Hollaender A (eds) Genetic engineering of osmoregulation. Plenum Press, New York, pp 7–21. darter.ocps

    Chapter  Google Scholar 

  • FAO (2008) FAO Land and Plant Nutrition Management Service (www.fao.org/nr/land/en/)

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:07–319

    Article  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanisms of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Freitas H, Breckle SW (1992) Importance of bladder hairs for salt tolerance of field-grown Atriplex-species from a Portuguese salt marsh. Flora 187:283–297

    Google Scholar 

  • Freitas H, Breckle SW (1993a) Progressive cutinization in Atriplex bladder stalk cells. Flora 188:287–290

    Google Scholar 

  • Freitas H, Breckle SW (1993b) Accumulation of nitrate in bladder hairs of Atriplex species. Plant Physiol Biochem 31(6):887–892

    CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. USNW Press, Sydney

    Google Scholar 

  • Glaubrecht M (1999) Mangrove der tropischen Gezeitenwälder; Naturw Rdsch 52

    Google Scholar 

  • Glenn E, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Critic Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gordon-Weeks R, Koren’kov VD, Steele SH, Leigh RA (1997) Tris is a competitive inhibitor of K+ activation of the vacuolar H+-pumping pyrophosphatase. Plant Physiol 114:901–905

    CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–554

    Article  CAS  Google Scholar 

  • Hoek J (2008) Biosaline biomass for energy, a solution for saline wastelands. In: Lieth H, Sucre MG, Herzog B (eds) Mangroves and halophytes: restoration and utilisation. Springer, Dordrecht, pp 147–153

    Chapter  Google Scholar 

  • Hong B, Barg R, Ho TH (1992) Developmental and organ specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol 18:663–674

    Article  CAS  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber I, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  Google Scholar 

  • Isla R, Royo A, Aragues R (1997) Field screening of barley cultivars to soil salinity using a sprinkler and a drip irrigation. Plant Soil 197:105–117

    Article  CAS  Google Scholar 

  • Kinzel H (1982) Pflanzenökologie und Mineralstoffwechsel. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Koyro H-W (2000) Untersuchungen zur Anpassung der Wildrübe (Beta vulgaris ssp. maritima) an Trockenstreß oder NaCl-Salinität. Habilitation, Justus-Liebig-University Giessen, Germany

    Google Scholar 

  • Koyro H-W (2002) Ultrastructural effects of salinity in higher plants. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic, Dordrecht, pp 139–158

    Google Scholar 

  • Koyro H-W (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56(2):136–146

    Article  CAS  Google Scholar 

  • Koyro H-W, Huchzermeyer B (1997) The physiological response of Beta vulgaris ssp. maritima to sea water irrigation. In: Lieth H, Hamdy A, Koyro H-W (eds) Water management, salinity and pollution control towards sustainable irrigation in the mediterranean region, Salinity problems and halophyte use. Tecnomack, Bari, pp 29–50

    Google Scholar 

  • Koyro H-W, Huchzermeyer B (1999a) Influence of high NaCl-salinity on growth, water and osmotic relations of the halophyte Beta vulgaris ssp. maritima. Development of a quick check. In: Lieth H, Moschenko M, Lohmann M, Koyro H-W, Hamdy A (eds) Progress in biometeorology, vol 13. Backhuys Publishers, Leiden, pp 87–101

    Google Scholar 

  • Koyro H-W, Huchzermeyer B (1999b) Salt and drought stress effects on metabolic regulation in maize. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn. Marcel Dekker, New York, pp 843–878

    Google Scholar 

  • Koyro H-W, Huchzermeyer B (2004a) Ecophysiological mechanisms leading to salinity tolerance – screening of cashcrop halophytes. Rec Res Dev Plant Sci 1:187–207

    Google Scholar 

  • Koyro H-W, Huchzermeyer B (2004b) Ecophysiological needs of the potential biomass crop Spartina townsendii Grov. Trop Ecol 45:123–139

    Google Scholar 

  • Koyro H-W, Stelzer R (1988) Ion concentrations in the cytoplasm and vacuoles of rhizodermal cells from NaCl treated Sorghum, Spartina and Puccinellia plants. J Plant Physiol 133:441–446

    Article  CAS  Google Scholar 

  • Koyro H-W, Wegmann L, Lehmann H, Lieth H (1997) Physiological mechanisms and morphological adaptation of Laguncularia racemosa to high salinity. In: Lieth H, Hamdy A, Koyro H-W (eds) Water management, salinity and pollution control towards sustainable irrigation in the mediterranean region: salinity problems and halophyte use. Tecnomack, Bari, pp 51–78. http://www.usf.uos.de/∼hlieth/publications.html

  • Koyro H-W, Wegmann L, Lehmann H, Lieth H (1999) Adaptation of the mangrove Laguncularia racemosa to high NaCl salinity. In: Lieth H, Moschenko M, Lohmann M, Koyro HW, Hamdy A (eds) Progress in biometeorology, vol 13. Backhuys Publishers, Leiden, pp 41–62

    Google Scholar 

  • Koyro H-W, Geissler N, Hussin S, Huchzermeyer B (2006) Mechanisms of cash crop halophytes to maintain yield and reclaim soils in arid areas. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants, vol 40, Task for vegetation science. Springer, Dordrecht, pp 345–366. ISBN ISBN-10 1-4020-4017-2(HB)

    Chapter  Google Scholar 

  • Läuchli A (1999) Potassium interactions in crop plants. In: Oosterhuis DM, Berkowitz GA (eds) Frontiers in Potassium Nutrition: new perspectives on the effects of potassium on physiology of plants. Marcel Dekker, New York, pp 71–76

    Google Scholar 

  • Läuchli A, Epstein E (1990) Plant responses to saline and sodic conditions. In: Tanji KK (ed) Agricultural salinity assessment and management, ASCE Manual No. 71. ASCE, New York, pp 113–137

    Google Scholar 

  • Leigh RA (1997) The solute composition of the vacuoles. Adv Bot Res 25:253–295

    Article  Google Scholar 

  • Leigh RA, Sanders D (1997) The plant vacuole: advances in botanical research, vol 25. Academic, London, p 463. ISBN ISBN 0 12 441870 8

    Google Scholar 

  • Lieth H (1999) Development of crops and other useful plants from halophytes. In: Lieth H, Moschenko M, Lohmann M, Koyro H-W, Hamdy A (eds) Halophytes uses in different climates, ecological and ecophysiological studies. Backhuys Publishers, Leiden, pp 1–18

    Google Scholar 

  • Lieth U, Menzel U (1999) Halophyte database Vers 2. In: Lieth H, Moschenko M, Lohmann M, Koyro H-W, Hamdy A (eds) Halophytes uses in different climates, ecological and ecophysiological studies. Backhuys Publishers, Leiden, pp 159–258

    Google Scholar 

  • Lieth H, Moschenko M, Lohmann M, Koyro H-W, Hamdy A (1999) Progress in biometeorology, vol 13. Halophyte uses in different climates I. Ecological and ecophysiological studies. Backhuys Publishers, Leiden, p 258

    Google Scholar 

  • Maas EV (1990) Crop salt tolerance. In: Tanji KK (ed) Agricultural salinity assessment and management, ASCE Manual No. 71. ASCE, New York, pp 262–304

    Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Marcum KB (1999) Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop Sci 39:1153–1160

    Article  Google Scholar 

  • Marcum KB, Anderson SJ, Engelke MC (1998) Salt gland ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Sci 38:806–810

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London/New York/San Diego/Boston/Sydney/Tokyo/Toronto, p 889

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Kluwer Academic, Dordrecht/Boston/London, p 849

    Book  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Ohta H (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  CAS  Google Scholar 

  • Pasternak D (1990) Fodder production with saline water. The institute for applied research, Ben Gurion University of the Negev. Project report BGUN-ARI-35-90. Beer-Sheva/Israel. p 173

    Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322(5907):1478–1480

    Article  CAS  Google Scholar 

  • Schimper AFW (1891) Pflanzengeographie auf physiologischer Grundlage. Fischer Publisher, Jena

    Google Scholar 

  • Schroeder FG (1998) Lehrbuch der Pflanzengeographie. Quelle & Meyer, Wiesbaden

    Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    CAS  Google Scholar 

  • Sutherland GK, Eastwood A (1916) The physiological anatomy of Spartina townsendii. Ann Bot 30:333–351

    Google Scholar 

  • Szabolcs I (1994) Soils and salinisation. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  Google Scholar 

  • US Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. In: Richards LA (ed) Agricultural handbook, vol 60. U.S. Department of Agriculture, Riverside

    Google Scholar 

  • Volkmar KM, Hu Y, Steppuhn H (1998) Physiological responses of plants to salinity: a review. Can J Plant Sci 78:19–27

    Article  CAS  Google Scholar 

  • Walsh GE (1974) Mangroves: a review. In: Reimold RJ, Queen WH (eds) Ecology of halophytes. Academic, New York/London, pp 51–174

    Google Scholar 

  • Warne TR, Hickok LG, Sams CE, Vogelien DL (1999) Sodium/potassium selectivity and pleiotropy in stl2, a highly salt-tolerant mutation of Ceratopteris richardii. Plant Cell Environ 22:1027–1034

    Article  Google Scholar 

  • Weber E, D’Antonio CM (1999) Germination and growth responses of hybridizing Carpobrotus species (Aizoaceae) from coastal California to soil salinity. Am J Bot 86:1257–1263

    Article  CAS  Google Scholar 

  • Winicov I (1998) New molecular approaches to improving salt tolerance in crop plants. Ann Bot 82:703–710

    Article  CAS  Google Scholar 

  • Winicov I, Bastola DR (1997) Salt tolerance in crop plants: New approaches through tissue culture and gene regulation. Acta Physiol Plant 19:435–449

    Article  CAS  Google Scholar 

  • Winicov I, Bastola DR (1999) Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol 120:473–480

    Article  CAS  Google Scholar 

  • Winter U, Kirst GO, Grabowski V, Heinemann U, Plettner I, Wiese S (1999) Salinity tolerance in Nitellopsis obtusa. Aust J Bot 47:337–346

    Article  Google Scholar 

  • Wyn Jones RG, Gorham J (2002) Intra- and inter-cellular compartmentation of ions. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 159–180

    Google Scholar 

  • Wyn Jones RG, Pollard A (1983) Proteins, enzymes and inorganic ions. In: Läuchli A, Bieleski RL (eds) Encyclopaedia of plant physiology, vol 15. Inorganic plant nutrition. Springer, New York, pp 528–555

    Google Scholar 

  • Wyn Jones RG, Brady CJ, Speirs J (1979) Ionic and osmotic relations in plant cells. In: Laidman DL, Wyn Jones RG (eds) Recent advances in the biochemistry of cereals. Academic, New York

    Google Scholar 

  • Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plant 58:1399–3054

    Article  Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Werner Koyro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koyro, HW., Daoud, S., Harrouni, M.C. (2013). Salt Response of Some Halophytes with Potential Interest in Reclamation of Saline Soils: Gas Exchange, Water Use Efficiency and Defence Mechanism. In: Shahid, S., Abdelfattah, M., Taha, F. (eds) Developments in Soil Salinity Assessment and Reclamation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5684-7_35

Download citation

Publish with us

Policies and ethics