Pituitary Tumorigenesis: Role of Regulation of Wee1 Kinase by microRNAs

  • Henriett Butz
  • Attila Patocs
Part of the Tumors of the Central Nervous System book series (TCNS, volume 10)


Mechanisms involved in pituitary tumorigenesis, especially of non-functional pituitary adenomas remain unclear. Various cell cycle inhibitors have been found to be underexpressed in pituitary tumors. However alterations of the G2/M checkpoint have not been revealed as a major player in the pathogenic process. Wee1 kinase, a nuclear protein that delays G2/M transition has been recently recognized as a tumor suppressor and has been found as a potential pathogenic factor in pituitary adenomagenesis. In this chapter after a brief summary of the cell cycle regulation, the biogenesis and function of miRs in pituitary adenomas, we review the role and function of Wee1 kinase focusing on its potential role in pituitary tumorigenesis. MicroRNAs posttranscriptionally regulating expression of Wee1 kinase and their expression and role in pituitary adenoma development are also discussed.


Pituitary Adenoma Pituitary Tumor Overexpressed miRs Mitotic Catastrophe Mitotic Entry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA Jr, Moreira AC, Castro M (2008) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323PubMedCrossRefGoogle Scholar
  2. Backert S, Gelos M, Kobalz U, Hanski ML, Böhm C, Mann B, Lövin N, Gratchev A, Mansmann U, Moyer MP, Riecken EO, Hanski C (1999) Differential gene expression in colon carcinoma cells and tissues detected with a cDNA array. Int J Cancer 82:868–874PubMedCrossRefGoogle Scholar
  3. Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–373PubMedCrossRefGoogle Scholar
  4. Butz H, Likó I, Czirják S, Igaz P, Khan MM, Zivkovic V, Bálint K, Korbonits M, Rácz K, Patócs A (2010) Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95:E181–E191PubMedCrossRefGoogle Scholar
  5. Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, Patócs A (2010b) microRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary. doi: 10.1007/s11102-010-0268-x (in press)
  6. Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297PubMedCrossRefGoogle Scholar
  7. Dworakowska D, Grossman AB (2009) The pathophysiology of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 23:525–541PubMedCrossRefGoogle Scholar
  8. Ebi N, Semba H, Tokunaga S, Takayama K, Wataya H, Kuraki T, Yamamoto H, Akamine S, Okamoto I, Nakanishi Y (2008) A phase II trial of gefitinib monotherapy in chemotherapy–naive patients of 75 years or older with advanced non-small cell lung cancer. J Thorac Oncol 3(10):1166–1171PubMedCrossRefGoogle Scholar
  9. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792:497–505PubMedCrossRefGoogle Scholar
  10. Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y (2000) Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 20:6147–6158PubMedCrossRefGoogle Scholar
  11. Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10:1431–1439PubMedCrossRefGoogle Scholar
  12. Katayama K, Fujita N, Tsuruo T (2005) Akt/protein kinase B-dependent phosphorylation and inactivation of WEE1Hu promote cell cycle progression at G2/M transition. Mol Cell Biol 25:5725–5737PubMedCrossRefGoogle Scholar
  13. Kawabe T (2004) G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3:513–519PubMedGoogle Scholar
  14. Koniaras K, Cuddihy AR, Christopoulos H, Hogg A, O’Connell MJ (2001) Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20:7453–7563PubMedCrossRefGoogle Scholar
  15. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMedGoogle Scholar
  16. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedCrossRefGoogle Scholar
  17. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  18. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215PubMedCrossRefGoogle Scholar
  19. Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641PubMedCrossRefGoogle Scholar
  20. McGowan CH, Russell P (1993) Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 12:75–85PubMedGoogle Scholar
  21. Michael WM, Newport J (1998) Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science 282:1886–1889PubMedCrossRefGoogle Scholar
  22. Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, Van Tilborg AA, Zwinderman AH, Geerts D, Kaspers GJ, Peter Vandertop W, Cloos J, Tannous BA, Wesseling P, Aten JA, Noske DP, Van Noorden CJ, Würdinger T (2010) In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 18:244–257PubMedCrossRefGoogle Scholar
  23. Mizuarai S, Yamanaka K, Itadani H, Arai T, Nishibata T, Hirai H, Kotani H (2009) Discovery of gene expression-based pharmacodynamic biomarker for a p53 context-specific anti-tumor drug Wee1 inhibitor. Mol Cancer 8:34PubMedCrossRefGoogle Scholar
  24. Mizuno H, Nakamura A, Aoki Y, Ito N, Kishi S, Yamamoto K, Sekiguchi M, Takeda S, Hashido K (2011) Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One 6:e18388PubMedCrossRefGoogle Scholar
  25. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134PubMedCrossRefGoogle Scholar
  26. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843Google Scholar
  27. Pais H, Nicolas FE, Soond SM, Swingler TE, Clark IM, Chantry A, Moulton V, Dalmay T (2010) Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RN A 16:489–494PubMedCrossRefGoogle Scholar
  28. Pickering MT, Stadler BM, Kowalik TF (2009) miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 28:140–145PubMedCrossRefGoogle Scholar
  29. Qi J, Yu JY, Shcherbata HR, Mathieu J, Wang AJ, Seal S, Zhou W, Stadler BM, Bourgin D, Wang L, Nelson A, Ware C, Raymond C, Lim LP, Magnus J, Ivanovska I, Diaz R, Ball A, Cleary MA, Ruohola-Baker H (2009) microRNAs regulate human embryonic stem cell division. Cell Cycle 8:3729–3741PubMedCrossRefGoogle Scholar
  30. Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M, Kudo E, Sano T (2009) Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441PubMedCrossRefGoogle Scholar
  31. Santarelli L, Strafella E, Staffolani S, Amati M, Emanuelli M, Sartini D, Pozzi V, Carbonari D, Bracci M, Pignotti E, Mazzanti P, Sabbatini A, Ranaldi R, Gasparini S, Neuzil J, Tomasetti M (2011) Association of MiR-126 with soluble mesothelin-related peptides, a marker for malignant mesothelioma. PLoS One 6:e18232PubMedCrossRefGoogle Scholar
  32. Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H (2004) M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A 101:4419–4424PubMedCrossRefGoogle Scholar
  33. Watanabe N, Arai H, Iwasaki J, Shiina M, Ogata K, Hunter T, Osada H (2005) Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proc Natl Acad Sci U S A 102:11663–11668PubMedCrossRefGoogle Scholar
  34. Zhan X, Desiderio DM (2010) Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics 3:13PubMedCrossRefGoogle Scholar
  35. Zhang CC, Boritzki TJ, Jackson RC (1998) An inhibitor of glycinamide ribonucleotide formyltransferase is selectively cytotoxic to cells that lack a functional G1 checkpoint. Cancer Chemother Pharmacol 41:223–228PubMedCrossRefGoogle Scholar
  36. Zhang Y, Liao Y, Wang D, He Y, Cao D, Zhang F, Dou K (2011) Altered expression levels of miRNAs in serum as sensitive biomarkers for early diagnosis of traumatic injury. J Cell Biochem 112(9):2435–2442. doi: 10.1002/jcb.23168 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Medicine, Second Department of MedicineSemmelweis UniversityBudapestHungary
  2. 2.Molecular Medicine Research GroupHungarian Academy of SciencesBudapestHungary
  3. 3.Department of Laboratory MedicineSemmelweis UniversityBudapestHungary

Personalised recommendations