Skip to main content

Brassica napus

  • Chapter
  • First Online:
Edible Medicinal And Non-Medicinal Plants
  • 4031 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Abramson D, Smith DM (2003) Determination of ergosterol in canola (Brassica napus L.) by liquid chromatography. J Stored Prod 39(2):185–191

    Google Scholar 

  • Aguila MB, Mandarim-de-Lacerda CA (1999) Numerical density of cardiac myocytes in aged rats fed a cholesterol-rich diet and a canola oil diet (n-3 fatty acid rich). Virchows Arch 434(5):451–453

    PubMed  CAS  Google Scholar 

  • Aguila MB, Rodrigues-Apfel MI, Mandarim-de-Lacerda CA (1998) Stereology of the myocardium and blood biochemistry in aged rats fed with a cholesterol-rich and canola oil diet (n-3 fatty acid rich). Basic Res Cardiol 93(3):182–191

    PubMed  CAS  Google Scholar 

  • Aguila MB, Pinheiro AR, Aquino JC, Gomes AP, Mandarim-de-Lacerda CA (2005) Different edible oil beneficial effects (canola oil, fish oil, palm oil, olive oil, and soybean oil) on spontaneously hypertensive rat glomerular enlargement and glomeruli number. Prostaglandins Other Lipid Mediat 76(1–4):74–85

    PubMed  CAS  Google Scholar 

  • Akhov L, Ashe P, Tan Y, Datla R, Selvaraj G (2009) Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Botany 87(6):616–625

    CAS  Google Scholar 

  • Allender CJ, King GK (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    PubMed  Google Scholar 

  • ANZFA (2001) Final assessment report application A372. Oil derived from glufosinate-ammonium tolerant canola lines Topas 19/2 and T45 AND Oil derived from glufosinate-ammonium tolerant and pollination controlled canola lines MS1, MS8, RF2 and RF3. Report No. 05/02, ANZFA, Canberra. pp 1–88

    Google Scholar 

  • Australian Oilseeds Federation (AOF) (2007) Australian canola meal guide for the feed industry. Australian Oilseeds Federation. http://www.australianoilseeds.com/protein_meal

  • Batista C, Barros L, Carvalho AM, Ferreira IC (2011) Nutritional and nutraceutical potential of rape (Brassica napus L. var. napus) and “tronchuda” cabbage (Brassica oleraceae L. var. costata) inflorescences. Food Chem Toxicol 49(6):1208–1214

    PubMed  CAS  Google Scholar 

  • Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D (2005) Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family? Phytochemistry 66(11):1334–1345

    PubMed  CAS  Google Scholar 

  • Begg DP, Sinclair AJ, Stahl LA, Premaratna SD, Hafandi A, Jois M, Weisinger RS (2010) Hypertension induced by omega-3 polyunsaturated fatty acid deficiency is alleviated by alpha-linolenic acid regardless of dietary source. Hypertens Res 33(8):808–813

    PubMed  CAS  Google Scholar 

  • Bell JM (1984) Nutrients and toxicants in rapeseed meal: a review. J Anim Sci 58:996–1010

    PubMed  CAS  Google Scholar 

  • Bell JM, Belzile RJ (1965) Goitrogenic properties. In: Bowland JP, Clandinin DR, Wetter LR (eds) Rapeseed meal for livestock and poultry – a review. Canada Department of Agriculture, Publication No. 1257, Ottawa, Ontario. pp 45–60

    Google Scholar 

  • Bell JM, Jeffers HF (1976) Variability in the chemical composition of rapeseed meal. Can J Anim Sci 56:269–273

    CAS  Google Scholar 

  • Bell RR, Spencer MJ, Sherriff JL (1997) Voluntary ­exercise and monounsaturated canola oil reduce fat gain in mice fed diets high in fat. J Nutr 127(10):2006–2010

    PubMed  CAS  Google Scholar 

  • Bhardwaj HL, Hamama AA (2000) Oil, erucic acid, and glucosinolate contents in winter hardy rapeseed germplasms. Ind Crop Prod 12(1):33–38

    CAS  Google Scholar 

  • Bhardwaj HL, Hamama AA (2003) Accumulation of glucosinolate, oil, and erucic acid in developing Brassica seeds. Ind Crop Prod 17(1):47–51

    CAS  Google Scholar 

  • Bhardwaj HL, Hamama AA (2009) Characterization of oil and fatty acid composition in seed produced by canola regrowth. J Agron 8:89–92

    CAS  Google Scholar 

  • Bhardwaj HL, Hamama AA, Rangappa M (2003) Characterization of nutritional quality of canola greens. HortScience 38:1156–1158

    CAS  Google Scholar 

  • Bhatia E, Doddivenaka C, Zhang X, Bommareddy A, Krishnan P, Matthees DP, Dwivedi C (2011) Chemopreventive effects of dietary canola oil on colon cancer development. Nutr Cancer 63(2):242–247

    PubMed  CAS  Google Scholar 

  • Bierenbaum ML, Reichstein RP, Watkins TR, Maginnis WP, Geller M (1991) Effects of canola oil on serum lipids in humans. J Am Coll Nutr 10(3):228–233

    PubMed  CAS  Google Scholar 

  • Björkman R (1973) Interaction between proteins and ­glucosinolate isothiocyanates and oxazolidinethiones from Brassica napus seed. Phytochemistry 12(7):1585–1590

    Google Scholar 

  • Bragg DB, Seier L (1974) Mineral content and biological activity of selenium in rapeseed meal. Poult Sci 53(1):22–26

    CAS  Google Scholar 

  • Butcher RD, MacFarlane-Smith W, Robertson GW, Griffiths DW (1994) The identification of potential aeroallergen/irritant(s) from oilseed rape (Brassica napus spp. oleifera): volatile organic compounds emitted during flowering progression. Clin Exp Allergy 24(12):1105–1114

    PubMed  CAS  Google Scholar 

  • Cao X, Tsukamoto T, Seki T, Tanaka H, Morimura S, Cao L, Mizoshita T, Ban H, Toyoda T, Maeda H, Tatematsu M (2008) 4-Vinyl-2,6-dimethoxyphenol (canolol) suppresses oxidative stress and gastric carcinogenesis in Helicobacter pylori-infected ­carcinogen-treated Mongolian gerbils. Int J Cancer 122(7):1445–1454

    PubMed  CAS  Google Scholar 

  • Cartea ME, Francisco M, Soengas P, Velasco P (2011) Phenolic compounds in Brassica vegetables. Molecules 16:251–280

    CAS  Google Scholar 

  • Chardin H, Mayer C, Sénéchal H, Poncet P, Clément G, Wal JM, Desvaux FX, Peltre G (2003) Polygalacturonase (pectinase), a new oilseed rape allergen. Allergy 58(5):407–411

    PubMed  CAS  Google Scholar 

  • Cheo TY, Lu LL, Yang G, Al-Shehbaz I, Dorofeev V (2001) Brassicaceae Burnett. In: Wu ZY, Raven PH (eds) Flora of China, vol 8, Brassicaceae through Saxifragaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis

    Google Scholar 

  • Chisholm A, Mc Auley K, Mann J, Williams S, Skeaff M (2005) Cholesterol lowering effects of nuts compared with a Canola oil enriched cereal of similar fat composition. Nutr Metab Cardiovasc Dis 15(4):284–292

    PubMed  CAS  Google Scholar 

  • Cho K, Mabasa L, Fowler AW, Walsh DM, Park CS (2010) Canola oil inhibits breast cancer cell growth in cultures and in vivo and acts synergistically with chemotherapeutic drugs. Lipids 45(9):777–784

    PubMed  CAS  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1986) Glossary of Indian medicinal plants. (Including the supplement). Council Scientific Industrial Research, New Delhi, 330 pp

    Google Scholar 

  • Clandinin DR, Robblee AR, Bell JMS, Slinger J (1986) Composition of canola meal. In: Canola meal for livestock and poultry. Publication No. 59. Canola Council of Canada, Winnipeg, Manitoba. pp 8–11

    Google Scholar 

  • Codex Alimentarius (1999) Codex standard for named vegetable oils. CODEX-STAN 210–1999

    Google Scholar 

  • Colton RT, Sykes JD (1992) Canola (Agfact P5.2.1). NSW Agriculture, pp 1–52

    Google Scholar 

  • Corner EJ, Bruce VM, McDonald BE (1990) Accumulation of eicosapentaenoic acid in plasma phospholipids of subjects fed canola oil. Lipids 25(10):598–601

    PubMed  CAS  Google Scholar 

  • Costa CA, Carlos AS, dos Santos AS, Monteiro AM, Moura EG, Nascimento-Saba CC (2011) Abdominal adiposity, insulin and bone quality in young male rats fed a high-fat diet containing soybean or canola oil. Clinics (Sao Paulo) 66(10):1811–1816

    Google Scholar 

  • Costa CA, Carlos AS, Gonzalez Gde P, Reis RP, Ribeiro Mdos S, Dos Santos AS, Monteiro AM, de Moura EG, Nascimento-Saba CC (2012) Diet containing low n-6/n-3 polyunsaturated fatty acids ratio, provided by canola oil, alters body composition and bone quality in young rats. Eur J Nutr 51(2):191–198

    PubMed  Google Scholar 

  • de Lorgeril M, Salen P (2004) Alpha-linolenic acid and coronary heart disease. Nutr Metab Cardiovasc Dis 14(3):162–169

    PubMed  Google Scholar 

  • Downey RK (1990) Canola: a quality brassica oilseed. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 211–217

    Google Scholar 

  • Duke JA (1983) Handbook of energy crops. http://www.hort.purdue.edu/newcrop/duke_energy/dukeindex.html

  • Egert S, Somoza V, Kannenberg F, Fobker M, Krome K, Erbersdobler HF, Wahrburg U (2007) Influence of three rapeseed oil-rich diets, fortified with alpha-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid on the composition and oxidizability of low-density lipoproteins: results of a controlled study in healthy volunteers. Eur J Clin Nutr 61(3):314–325

    PubMed  CAS  Google Scholar 

  • El-Beltagi HES, Mohamed AA (2010) Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Grasas Y Aceites 61(2):143–150

    Google Scholar 

  • Elson CM, Hynes DL, MacNeil PA (1979) Trace metal content of rapeseed meals, oils and seeds. J Am Oil Chem Soc 56(12):998–999

    CAS  Google Scholar 

  • Evangelista CM, Antunes LM, Francescato HD, Bianchi ML (2004) Effects of the olive, extra virgin olive and canola oils on cisplatin-induced clastogenesis in Wistar rats. Food Chem Toxicol 42(8):1291–1297

    PubMed  CAS  Google Scholar 

  • Facciola S (1990) Cornucopia. A source book of edible plants. Kampong Publ, Vista, 677 pp

    Google Scholar 

  • FAO (2012) FAO STAT. Food and Agricultural Organization of United Nations: Economic and Social Department: the statistical division. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Fenwick RG, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food plants. CRC Crit Rev Food Sci Nutr 18:123–201

    CAS  Google Scholar 

  • Focke M, Hemmer W, Hayek B, Götz M, Jarisch R (1998) Identification of allergens in oilseed rape (Brassica napus) pollen. Int Arch Allergy Immunol 117(2):105–112

    PubMed  CAS  Google Scholar 

  • Food Standards Australia New Zealand (FSANZ) (2003) Erucic acid in food: a toxicological review and risk assessment. Technical Report Series No. 21, Food Standards Australia New Zealand

    Google Scholar 

  • Freese R, Mutanen M, Valsta LM, Salminen I (1994) Comparison of the effects of two diets rich in monounsaturated fatty acids differing in their linoleic/alpha-linolenic acid ratio on platelet aggregation. Thromb Haemost 71(1):73–77

    PubMed  CAS  Google Scholar 

  • Fuhrman B, Plat D, Herzog Y, Aviram M (2007) Consumption of a novel dietary formula of plant sterol esters of canola oil fatty acids, in a canola oil matrix containing 1,3-diacylglycerol, reduces oxidative stress in atherosclerotic apolipoprotein E-deficient mice. J Agric Food Chem 55(5):2028–2033

    PubMed  CAS  Google Scholar 

  • Garman JH, Mulroney S, Manigrasso M, Flynn E, Maric C (2009) Omega-3 fatty acid rich diet prevents diabetic renal disease. Am J Physiol Renal Physiol 296(2):F306–F316

    PubMed  CAS  Google Scholar 

  • Gillingham LG, Gustafson JA, Han SY, Jassal DS, Jones PJ (2011) High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hypercholesterolaemic subjects. Br J Nutr 105(3):417–427

    PubMed  CAS  Google Scholar 

  • Golovko MY, Murphy EJ (2006) Uptake and metabolism of plasma-derived erucic acid by rat brain. J Lipid Res 47:1289–1297

    PubMed  CAS  Google Scholar 

  • Griffiths DW, Birch ANE, Hillman JR (1998) Antinutritional compounds in the brassicaceae: analysis, biosynthesis, chemistry and dietary effects. J Hort Sci Biotechnol 73:1–18

    CAS  Google Scholar 

  • Gulesserian T, Widhalm K (2002) Effect of a rapeseed oil substituting diet on serum lipids and lipoproteins in children and adolescents with familial hypercholesterolemia. J Am Coll Nutr 21(2):103–108

    PubMed  CAS  Google Scholar 

  • Gustafsson IB, Vessby B, Ohrvall M, Nydahl M (1994) A diet rich in monounsaturated rapeseed oil reduces the lipoprotein cholesterol concentration and increases the relative content of n-3 fatty acids in serum in hyperlipidemic subjects. Am J Clin Nutr 59(3):667–674

    PubMed  CAS  Google Scholar 

  • Hardman WE (2007) Dietary canola oil suppressed growth of implanted MDA-MB 231 human breast tumors in nude mice. Nutr Cancer 57(2):177–183

    PubMed  CAS  Google Scholar 

  • Höglund AS, Rödin J, Larsson E, Rask L (1992) Distribution of napin and cruciferin in developing rape seed embryos. Plant Physiol 98(2):509–515

    PubMed  Google Scholar 

  • Hulan HW, Kramer JK, Corner AH, Thompson B (1977) Myocardial lesions in rats fed rapeseed oil. II. Effects of castration. Can J Physiol Pharmacol 55(2):265–271

    PubMed  CAS  Google Scholar 

  • Hung S, Umemura T, Yamashiro S, Slinger SJ (1977) The effects of original and randomized rapseed oils containing high or very low levels of erucic acid on cardiac lipids and myocardial lesions in rats. Lipids 12(2):215–221

    PubMed  CAS  Google Scholar 

  • Iggman D, Gustafsson IB, Berglund L, Vessby B, Marckmann P, Risérus U (2011) Replacing dairy fat with rapeseed oil causes rapid improvement of hyperlipidaemia: a randomized controlled study. J Intern Med 270(4):356–364

    PubMed  CAS  Google Scholar 

  • Innis SM, Dyer RA (1999) Dietary canola oil alters hematological indices and blood lipids in neonatal piglets fed formula. J Nutr 129(7):1261–1268

    PubMed  CAS  Google Scholar 

  • Ion G, Akinsete JA, Hardman WE (2010) Maternal ­consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring. BMC Cancer 10:81

    PubMed  Google Scholar 

  • Iwarsson K, Ekman L, Everitt BR, Figueiras H, Nilsson PO (1973) The effect of feeding rapeseed meal on thyroid function and morphology in growing bulls. Acta Vet Scand 14(4):610–629

    PubMed  CAS  Google Scholar 

  • Jakobsen HB, Friis P, Nielsen JK, Olsen CE (1994) Emission of volatiles from flowers and leaves of Brassica napus in situ. Phytochemistry 37(3):695–699

    CAS  Google Scholar 

  • Jiang ST, Shao P, Pan LJ, Zhao YY (2006) Molecular distillation for recovering tocopherol and fatty acid methyl esters from rapeseed oil deodoriser distillate. Biosyst Eng 93(4):383–391

    Google Scholar 

  • Johnson GH, Keast DR, Kris-Etherton PM (2007) Dietary modeling shows that the substitution of canola oil for fats commonly used in the United States would increase compliance with dietary recommendations for fatty acids. J Am Diet Assoc 107(10):1726–1734

    PubMed  CAS  Google Scholar 

  • Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, d’Andréa S, Chardot T, Nesi N (2009) Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9(12):3268–3284

    PubMed  CAS  Google Scholar 

  • Jolivet P, Boulard C, Bellamy A, Valot B, d’Andréa S, Zivy M, Nesi N, Chardot T (2011) Oil body proteins sequentially accumulate throughout seed development in Brassica napus. J Plant Physiol 168(17):­2015–2020

    PubMed  CAS  Google Scholar 

  • Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6(16):4586–4598

    PubMed  CAS  Google Scholar 

  • Kong X, Narine SS (2007) Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromolecules 8(7):2203–2209

    PubMed  CAS  Google Scholar 

  • Koski A, Psomiadou E, Tsimidou M, Hopia A, Kefalas P, Wähälä K, Heinonen M (2002) Oxidative stability and minor constituents of virgin olive oil and cold pressed rapeseed oil. Eur Food Res Technol 214:294–298

    CAS  Google Scholar 

  • Kozlowska H, Naczk M, Shahidi F, Zadernowski R (1990) Phenolic acids and tannins in rapeseed and canola. In: Shahidi F (ed) Canola and rapeseed: production, chemistry, nutrition and processing technology. Van Nostrand Reinhold, New York, pp 193–210

    Google Scholar 

  • Krygier K, Sosulski F, Hogge L (1982) Free, esterified, and insoluble-bound phenolic acids. 2. Composition of phenolic acids in rapeseed flour and hulls. J Agric Food Chem 30(2):330–336

    CAS  Google Scholar 

  • Kuwahara H, Kanazawa A, Wakamatu D, Morimura S, Kida K, Akaike T, Maeda H (2004) Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (canolol) isolated from canola oil. J Agric Food Chem 52(14):4380–4387

    PubMed  CAS  Google Scholar 

  • Kwon JS, Snook JT, Wardlaw GM, Hwang DH (1991) Effects of diets high in saturated fatty acids, canola oil, or safflower oil on platelet function, thromboxane B2 formation, and fatty acid composition of platelet phospholipids. Am J Clin Nutr 54(2):351–358

    PubMed  CAS  Google Scholar 

  • Lajolo FM, Marquez UML, Filisetti-Cozzi TMCC, Mcgregor DI (1991) Chemical-composition and toxic compounds in rapeseed (Brassica napus L) cultivars grown in Brazil. J Agric Food Chem 39(11):1933–1937

    CAS  Google Scholar 

  • Lee J, Choe E (2011) Effects of phospholipids on the antioxidant activity of α-tocopherol in the singlet oxygen oxidation of canola oil. N Biotechnol 28(6):691–697

    PubMed  CAS  Google Scholar 

  • Lemaitre RN, King IB, Mozaffarian D, Kuller LH, Tracy RP, Siscovick DS (2003) n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Am J Clin Nutr 77(2):319–325

    PubMed  CAS  Google Scholar 

  • Li X, Gao MJ, Pan HY, Cui DJ, Gruber MY (2010) Purple Canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves. J Agric Food Chem 58(3):1639–1645

    PubMed  CAS  Google Scholar 

  • Lichtenstein AH, Ausman LM, Carrasco W, Jenner JL, Gualtieri LJ, Goldin BR, Ordovas JM, Schaefer EJ (1993) Effects of canola, corn, and olive oils on fasting and postprandial plasma lipoproteins in humans as part of a National Cholesterol Education Program Step 2 diet. Arterioscler Thromb 13(10):1533–1542

    PubMed  CAS  Google Scholar 

  • Lipsa FD, Snowdon RJ, Friedt W (2009) QTL analysis of condensed tannins content in Brassica napus L. Res J Agric Sci 41(2):274–278

    Google Scholar 

  • Liu JW, DeMichele SJ, Palombo J, Chuang LT, Hastilow C, Bobik E Jr, Huang YS (2004) Effect of long-term dietary supplementation of high-gamma-linolenic canola oil versus borage oil on growth, hematology, serum biochemistry, and N-6 fatty acid metabolism in rats. J Agric Food Chem 52(12):3960–3966

    PubMed  CAS  Google Scholar 

  • Liu Z, Hirani AH, McVetty PB, Daayf F, Quiros CF, Li G (2012) Reducing progoitrin and enriching glucoraphanin in Braasica napus seeds through silencing of the GSL-ALK gene family. Plant Mol Biol 79(1–2):179–189

    PubMed  CAS  Google Scholar 

  • Manandhar NP, Manandhar S (2002) Plants and people of Nepal. Timber Press, Oregon, 636 pp

    Google Scholar 

  • McDonald BE, Gerrard JM, Bruce VM, Corner EJ (1989) Comparison of the effect of canola oil and sunflower oil on plasma lipids and lipoproteins and on in vivo thromboxane A2 and prostacyclin production in healthy young men. Am J Clin Nutr 50(6):1382–1388

    PubMed  CAS  Google Scholar 

  • McEwan M, Macfarlane Smith WH (1998) Identification of volatile organic compounds emitted in the field by oilseed rape (Brassica napus ssp. oleifera) over the growing season. Clin Exp Allergy 28(3):332–338

    PubMed  CAS  Google Scholar 

  • McLennan PL, Dallimore JA (1995) Dietary canola oil modifies myocardial fatty acids and inhibits cardiac arrhythmias in rats. J Nutr 125(4):1003–1009

    PubMed  CAS  Google Scholar 

  • Mendez C, Jurkovich GJ, Wener MH, Garcia I, Mays M, Maier RV (1996) Effects of supplemental dietary arginine, canola oil, and trace elements on cellular immune function in critically injured patients. Shock 6(1):7–12

    PubMed  CAS  Google Scholar 

  • Miettinen TA, Vanhanen H (1994) Serum concentration and metabolism of cholesterol during rapeseed oil and squalene feeding. Am J Clin Nutr 59(2):356–363

    PubMed  CAS  Google Scholar 

  • Mithen R (2001) Glucosinolates and their degradation products. Adv Bot Res 35:213–262

    CAS  Google Scholar 

  • Molina I, Bonaventure G, Ohlrogge J, Pollard M (2006) The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry 67(23):2597–2610

    PubMed  CAS  Google Scholar 

  • Müller K, Pelzing M, Gnauk T, Kappe A, Teichmann U, Spindler G, Haferkorn S, Jahn Y, Herrmann H (2002) Monoterpene emissions and carbonyl compound air concentrations during the blooming period of rape (Brassica napus). Chemosphere 49(10):1247–1256

    PubMed  Google Scholar 

  • Mutanen M, Freese R, Valsta LM, Ahola I, Ahlström A (1992) Rapeseed oil and sunflower oil diets enhance platelet in vitro aggregation and thromboxane production in healthy men when compared with milk fat or habitual diets. Thromb Haemost 67(3):352–356

    PubMed  CAS  Google Scholar 

  • Naito Y, Kasama K, Yoshida H, Ohara N (2000a) Thirteen-week dietary intake of rapeseed oil or soybean oil as the only dietary fat in Wistar Kyoto rats-change in blood pressure. Food Chem Toxicol 38(9):811–816

    PubMed  CAS  Google Scholar 

  • Naito Y, Konishi C, Katsumura H, Ohara N (2000b) Increase in blood pressure with enhanced Na+, K  +  -ATPase activity in stroke-prone spontaneously hypertensive rats after 4-weeks intake of rapeseed oil as the sole dietary fat. Pharmacol Toxicol 87(3):144–148

    PubMed  CAS  Google Scholar 

  • Naito Y, Konishi C, Ohara N (2000c) Blood coagulation and osmolar tolerance of erythrocytes in stroke-prone spontaneously hypertensive rats given rapeseed oil or soybean oil as the only dietary fat. Toxicol Lett 116(3):209–215

    PubMed  CAS  Google Scholar 

  • Naito Y, Yoshida H, Nagata T, Tanaka A, Ono H, Ohara N (2000d) Dietary intake of rapeseed oil or soybean oil as the only fat nutrient in spontaneously hypertensive rats and Wistar Kyoto rats – blood pressure and pathophysiology. Toxicology 146(2–3):197–208

    PubMed  CAS  Google Scholar 

  • Naito Y, Nagata T, Takano Y, Nagatsu T, Ohara N (2003) Rapeseed oil ingestion and exacerbation of hypertension-related conditions in stroke prone spontaneously hypertensive rats. Toxicology 187(2–3):205–216

    PubMed  CAS  Google Scholar 

  • Nielsen NS, Pedersen A, Sandström B, Marckmann P, Høy CE (2002) Different effects of diets rich in olive oil, rapeseed oil and sunflower-seed oil on postprandial lipid and lipoprotein concentrations and on lipoprotein oxidation susceptibility. Br J Nutr 87(5):489–499

    PubMed  CAS  Google Scholar 

  • Nordøy A, Davenas E, Ciavatti M, Renaud S (1985) Effect of dietary (n-3) fatty acids on platelet function and lipid metabolism in rats. Biochim Biophys Acta 835(3):491–500

    PubMed  Google Scholar 

  • Nowak H, Kujava R, Zadernowski R, Roczniak B, Kozlowska H (1992) Antioxidative and bactericidal properties of phenolic compounds in rapeseeds. Fat Sci Technol 94:149–152

    CAS  Google Scholar 

  • Nydahl M, Gustafsson IB, Ohrvall M, Vessby B (1994) Similar serum lipoprotein cholesterol concentrations in healthy subjects on diets enriched with rapeseed and with sunflower oil. Eur J Clin Nutr 48(2):128–137

    PubMed  CAS  Google Scholar 

  • Nydahl M, Gustafsson IB, Ohrvall M, Vessby B (1995) Similar effects of rapeseed oil (canola oil) and olive oil in a lipid-lowering diet for patients with hyperlipoproteinemia. J Am Coll Nutr 14(6):643–651

    PubMed  CAS  Google Scholar 

  • O’keefe S, Gaskins-Wright S, Wiley V, Chen I-C (1994) Levels of trans geometrical isomers of essential fatty acids in some unhydrogenated U. S. vegetable oils. J Food Lipid 1:165–176

    Google Scholar 

  • OECD (2001) Consensus document on key nutrients and key toxicants in low erucic acid rapeseed (canola). Report No. ENV/JM/MONO (2001)13, Organisation for Economic Co-operation and Development

    Google Scholar 

  • Office of the Gene Technology Regulator (2008) The biology of Brassica napus L. (canola). Version 2. Department of Health and Aging Office of the Gene Technology Regulator Canberra, Australia. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/content/canola-3/$FILE/biologycanola08_2.pdf

  • Ohara N, Kasama K, Naito Y, Nagata T, Saito Y, Kuwagata M, Okuyama H (2008) Different effects of 26-week dietary intake of rapeseed oil and soybean oil on plasma lipid levels, glucose-6-phosphate dehydrogenase activity and cyclooxygenase-2 expression in spontaneously hypertensive rats. Food Chem Toxicol 46(7):2573–2579

    PubMed  CAS  Google Scholar 

  • Ohara N, Naito Y, Kasama K, Shindo T, Yoshida H, Nagata T, Okuyama H (2009) Similar changes in clinical and pathological parameters in Wistar Kyoto rats after a 13-week dietary intake of canola oil or a fatty acid composition-based interesterified canola oil mimic. Food Chem Toxicol 47(1):157–162

    PubMed  CAS  Google Scholar 

  • Okuyama H, Ohara N, Tatematsu K, Fuma S, Nonogaki T, Yamada K, Ichikawa Y, Miyazawa D, Yasui Y, Honma S (2010) Testosterone-lowering activity of canola and hydrogenated soybean oil in the stroke-prone spontaneously hypertensive rat. J Toxicol Sci 35(5):743–747

    PubMed  CAS  Google Scholar 

  • Palomäki A, Pohjantähti-Maaroos H, Wallenius M, Kankkunen P, Aro H, Husgafvel S, Pihlava JM, Oksanen K (2010) Effects of dietary cold-pressed turnip rapeseed oil and butter on serum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome. Lipids Health Dis 9:137

    PubMed  Google Scholar 

  • Palombo JD, DeMichele SJ, Liu JW, Bistrian BR, Huang YS (2000) Comparison of growth and fatty acid metabolism in rats fed diets containing equal levels of gamma-linolenic acid from high gamma-linolenic acid canola oil or borage oil. Lipids 35(9):975–981

    PubMed  CAS  Google Scholar 

  • Papazzo A, Conlan X, Lexis L, Lewandowski P (2011) The effect of short-term canola oil ingestion on oxidative stress in the vasculature of stroke-prone spontaneously hypertensive rats. Lipids Health Dis 10:180

    PubMed  CAS  Google Scholar 

  • Pedersen A, Baumstark MW, Marckmann P, Gylling H, Sandström B (2000) An olive oil-rich diet results in higher concentrations of LDL cholesterol and a higher number of LDL subfraction particles than rapeseed oil and sunflower oil diets. J Lipid Res 41(12):1901–1911

    PubMed  CAS  Google Scholar 

  • Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen AB (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31(11–12):812–819

    CAS  Google Scholar 

  • Polowick PL, Sawhney VK (1988) High temperature induced male and female sterility in canola (Brassica napus L.). Ann Bot 62(1):83–86

    Google Scholar 

  • Potter TC, Marcroft S, Walton G, Parker P (1999) Climate and soils. In: Salisbury PA, Potter TC, McDonald G, Green AG (eds) Canola in Australia: the first thirty years. Chapter 2. pp 5–8

    Google Scholar 

  • Raymer PL (2002) Canola: an emerging oilseed crop. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 122–126

    Google Scholar 

  • Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (2010) Glucosinolates in crop plants. In: Janick J (ed) Horticultural reviews, vol 19. Wiley, Oxford

    Google Scholar 

  • Rudkowska I, Roynette CE, Nakhasi DK, Jones PJ (2006) Phytosterols mixed with medium-chain triglycerides and high-oleic canola oil decrease plasma lipids in overweight men. Metabolism 55(3):391–395

    PubMed  CAS  Google Scholar 

  • Rzehak P, Koletzko S, Koletzko B, Sausenthaler S, Reinhardt D, Grübl A, Bauer CP, Krämer U, Bollrath C, von Berg A, Berdel D, Wichmann HE, Heinrich J, GINI Study Group (2011) Growth of infants fed formula rich in canola oil (low erucic acid rapeseed oil). Clin Nutr 30(3):339–345

    PubMed  CAS  Google Scholar 

  • Sahasrabudhe MR (1977) Crismer values and erucic acid contents of rapeseed oils. J Am Oil Chem Soc 54(8):323–324

    CAS  Google Scholar 

  • Sauer FD, Farnworth ER, Bélanger JMR, Kramer JKG, Miller RB, Shigeto Yamashiro S (1997) Additional vitamin E required in milk replacer diets that contain canola oil. Nutr Res 17(2):259–269

    CAS  Google Scholar 

  • Schwenke KD, Raab B, Linow KJ, Pähtz W, Uhlig J (1981) Isolation of the 12 S globulin from rapeseed (Brassica napus L.) and characterization as a “neutral” protein. On seed proteins. Part 13. Nahrung 25(3):271–280

    PubMed  CAS  Google Scholar 

  • Seppänen-Laakso T, Vanhanen H, Laakso I, Kohtamäki H, Viikari J (1992) Replacement of butter on bread by rapeseed oil and rapeseed oil-containing margarine: effects on plasma fatty acid composition and serum cholesterol. Br J Nutr 68(3):639–654

    PubMed  Google Scholar 

  • Seppänen-Laakso T, Vanhanen H, Laakso I, Kohtamäki H, Viikari J (1993) Replacement of margarine on bread by rapeseed and olive oils: effects on plasma fatty acid composition and serum cholesterol. Ann Nutr Metab 37(4):161–174

    PubMed  Google Scholar 

  • Seppänen-Laakso T, Laakso I, Lehtimäki T, Rontu R, Moilanen E, Solakivi T, Seppo L, Vanhanen H, Kiviranta K, Hiltunen R (2010) Elevated plasma fibrinogen caused by inadequate alpha-linolenic acid intake can be reduced by replacing fat with canola-type rapeseed oil. Prostaglandins Leukot Essent Fatty Acids 83(1):45–54

    PubMed  Google Scholar 

  • Solecka D, Boudet AM, Kacperska A (1999) Phenyl­propanoid and anthocyanin changes in low-temperature treated winter oilseed rape leaves. Plant Physiol Biochem 37(6):491–496

    CAS  Google Scholar 

  • Song K, Osborn TC (1992) Polyphyletic origins of Brassica napus – new evidence based on organelle and nuclear RFLP analyses. Genome 35:992–1001

    Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988) Brassica ­taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 75:784–794

    CAS  Google Scholar 

  • Sovero M (1993) Rapeseed, a new oilseed crop for the United States. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 302–307

    Google Scholar 

  • Stricker H, Duchini F, Facchini M, Mombelli G (2008) Canola oil decreases cholesterol and improves endothelial function in patients with peripheral arterial occlusive disease – a pilot study. Artery Res 2(2):67–73

    Google Scholar 

  • Tapper BA, MacGibbon DB (1967) Isolation of (−)-5-allyl-2-thiooxazolidone from Brassica napus L. Phytochemistry 6(5):749–753

    CAS  Google Scholar 

  • The Plant List (2010) Version 1. Published on the Internet. http://www.theplantlist.org/.

  • Toxopeus H, Mvere B (2004) Brassica napus L. [Internet] Record from Protabase. Grubben GJH, Denton OA (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. http://database.prota.org/search.htm

  • Tso P, Ding K, DeMichele S, Huang YS (2002) Intestinal absorption and lymphatic transport of a high gamma-linolenic acid canola oil in lymph fistula Sprague-Dawley rats. J Nutr 132(2):218–221

    PubMed  CAS  Google Scholar 

  • Turpeinen AM, Alfthan G, Valsta L, Hietanen E, Salonen JT, Schunk H, Nyyssönen K, Mutanen M (1995) Plasma and lipoprotein lipid peroxidation in humans on sunflower and rapeseed oil diets. Lipids 30(6):485–492

    PubMed  CAS  Google Scholar 

  • U S Department of Agriculture, Agricultural Research Service (USDA) (2012) USDA National nutrient database for standard reference, Release 25. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl

  • Valsta LM, Jauhiainen M, Aro A, Katan MB, Mutanen M (1992) Effects of a monounsaturated rapeseed oil and a polyunsaturated sunflower oil diet on lipoprotein levels in humans. Arterioscler Thromb 12(1):50–57

    PubMed  CAS  Google Scholar 

  • Valsta LM, Salminen I, Aro A, Mutanen M (1996) Alpha-linolenic acid in rapeseed oil partly compensates for the effect of fish restriction on plasma long chain n-3 fatty acids. Eur J Clin Nutr 50(4):229–235

    PubMed  CAS  Google Scholar 

  • Vega-López S, Ausman LM, Jalbert SM, Erkkilä AT, Lichtenstein AH (2006) Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. Am J Clin Nutr 84(1):54–62

    PubMed  Google Scholar 

  • Velasco P, Soengas P, Vilar M, Cartea ME (2008) Comparison of glucosinolate profiles in leaf and seed tissues of different Brassica napus crops. J Am Soc Hort Sci 133(4):551–558

    Google Scholar 

  • Velasco P, Francisco M, Moreno DA, Ferreres F, ­García-Viguera C, Cartea ME (2011) Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of ­glucosinolates and phenolics. Phytochem Anal 22(2):144–152

    PubMed  CAS  Google Scholar 

  • Vles RO, Gottenbos JJ (1989) Nutritional characteristics and food uses of vegetable oils. In: Robblen G, Downey RK, Ashri A (eds) Oil crops of the world. McGraw Hill, New York, pp 36–86

    Google Scholar 

  • Wainwright PE, Huang YS, DeMichele SJ, Xing H, Liu JW, Chuang LT, Biederman J (2003) Effects of high-gamma-linolenic acid canola oil compared with borage oil on reproduction, growth, and brain and behavioral development in mice. Lipids 38(2):171–178

    PubMed  CAS  Google Scholar 

  • Wakamatsu D, Morimura S, Sawa T, Kida K, Nakai C, Maeda H (2005) Isolation, identification, and structure of a potent alkyl-peroxyl radical scavenger in crude canola oil, canolol. Biosci Biotechnol Biochem 69(8):1568–1574

    PubMed  CAS  Google Scholar 

  • Wan Q, Liu Z, Peng W, Wang J, Li X, Yang Y (2011) BnRCH gene inhibits cell growth of Hela cells through increasing the G2 phase of cell cycle. Hum Cell 24(4):150–160

    PubMed  CAS  Google Scholar 

  • Wanasundara JP (2011) Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr 51(7):635–677

    PubMed  CAS  Google Scholar 

  • Wardlaw GM, Snook JT, Lin MC, Puangco MA, Kwon JS (1991) Serum lipid and apolipoprotein concentrations in healthy men on diets enriched in either canola oil or safflower oil. Am J Clin Nutr 54(1):104–110

    PubMed  CAS  Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-Rom. Pl Syst Evol 259:249–258

    Google Scholar 

  • Weaver BJ, Corner EJ, Bruce VM, McDonald BE, Holub BJ (1990) Dietary canola oil: effect on the accumulation of eicosapentaenoic acid in the alkenylacyl fraction of human platelet ethanolamine phosphoglyceride. Am J Clin Nutr 51(4):594–598

    PubMed  CAS  Google Scholar 

  • Wolfram K, Schmidt J, Wray V, Milkowski C, Schliemann W, Strack D (2010) Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry 71(10):1076–1084

    PubMed  CAS  Google Scholar 

  • Wu J, Aluko RE, Muir AD (2009) Production of angiotensin I-converting enzyme inhibitory peptides from defatted canola meal. Bioresour Technol 100(21):5283–5287

    PubMed  CAS  Google Scholar 

  • Zhang H, Vasanthan T, Wettasinghe M (2004) Dry matter, lipids, and proteins of canola seeds as affected by germination and seedling growth under illuminated and dark environments. J Agric Food Chem 52(26):8001–8005

    PubMed  CAS  Google Scholar 

  • Zhang H, Vasanthan T, Wettasinghe M (2007) Enrich­ment of tocopherols and phytosterols in canola oil during seed germination. J Agric Food Chem 55(2):355–359

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2013). Brassica napus . In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5653-3_6

Download citation

Publish with us

Policies and ethics