Zea mays

  • T. K. Lim


Ferulic Acid Total Phenolic Content Resistant Starch Trolox Equivalent Antioxidant Capacity Oxygen Radical Absorbance Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected References

  1. Abdel-Wahab SM, El-Tanbouly ND, Kassem HA, Mohamed EA (2002) Phytochemical and biological study of corn silk (styles and stigmas of Zea mays L.). Bull Fac Pharm Cairo Univ 40:93–102Google Scholar
  2. Abo KA, Fred-Jaiyesimi AA, Jaiyessimi AEA (2008) Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J Ethnopharmacol 115:67–71PubMedCrossRefGoogle Scholar
  3. Adjanohoun EJ, Ahyi MRA, Aké Assi L, Akpagana K, Chibon P, El-Adji A, Eymé J, Garba M, Gassita JN, Gbeassor M, Goudote E, Guinko S, Hodouto KK, Houngnon P, Keita A, Keoula Y, Hodouto WP, Issa Lo A, Siamevi KM, Taffame KK (1986) Contributions aux Études Ethnobotaniques et Floristiques au Togo. Médecine Traditionelle et Pharmacopée Agence de Coopération Culturelle et Technique, Paris, 671 ppGoogle Scholar
  4. Adjanohoun EJ, Adjakidjè V, Ahyi MRA, Aké Assi L, Akoègninou A, d’Almeida J, Apovo F, Boukef K, Chadare M, Cusset G, Dramane K, Eyme J, Gassita JN, Gbaguidi N, Goudote E, Guinko S, Houngnon P, Lo I, Keita A, Kiniffo HV, Kone-Bamba D, Musampa Nseyya A, Saadou M, Sodogandji T, De Souza S, Tchabi A, Zinsou Dossa C, Zohoun T (1989) Contribution aux Études Ethnobotaniques et Floristiques en République Populaire du Bénin. Médecine Traditionelle et Pharmacopée. Agence de Coopération Culturelle et Technique, Paris, 895 ppGoogle Scholar
  5. Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6168–6187CrossRefGoogle Scholar
  6. Agyare C, Asase A, Lechtenberg M, Niehues M, Deters A, Hensl A (2009) An Ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Gosomtwi-Atwima-Kwanwoma area, Ghana. J Ethnopharmacol 125:393–403PubMedCrossRefGoogle Scholar
  7. Akgün S, Ertel NH (1981) Plasma glucose and insulin after fructose an high-fructose corn syrup meals in subjects with non-insulin-dependent diabetes mellitus. Diabetes Care 4(4):464–467PubMedCrossRefGoogle Scholar
  8. Akgün S, Ertel NH (1985) The effects of sucrose, fructose, and high-fructose corn syrup meals on plasma glucose and insulin in non-insulin-dependent diabetic subjects. Diabetes Care 8(3):279–283PubMedCrossRefGoogle Scholar
  9. Badu-Apraku B, Fakorede MAB (2006) Zea mays L. [Internet] Record from Protabase. In: Brink M, Belay G (eds) PROTA (Plant resources of Tropical Africa/Ressources végétales de l’Afrique tropicale). Wageningen.
  10. Baerts M, Lehmann J (1989) Guérisseurs et plantes médicinales de la région des crêtes Zaïre-Nil au Burundi. Musée royal de l’Afrique centrale, Tervuren, Belgique. Annu Sci Ecol 18:214 (in French)Google Scholar
  11. Bah S, Diallo D, Dembélé S, Paulsen BS (2006) Ethnopharmacological survey of plants used for the treatment of schistosomiasis in Niono district, Mali. J Ethnopharmacol 105:387–399PubMedCrossRefGoogle Scholar
  12. Bai H, Hai C, Xi M, Liang X, Liu R (2010) Protective effect of maize silks (Maydis stigma) ethanol extract on radiation-induced oxidative stress in mice. Plant Foods Hum Nutr 65(3):271–276PubMedCrossRefGoogle Scholar
  13. Bellakhdar J (1997) La pharmacopée marocaine traditionnelle: Médecine arabe ancienne et savoirs populaires. Ibis Press, Paris, 764 ppGoogle Scholar
  14. Ben Saï S (1944) Médecine indigène et plantes médicinales au Soudan. Notes Afr 21:6–8Google Scholar
  15. Beunzel M, Ralph J, Marita JM, Hatfield RD, Steinhart H (2001) Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric 81(7):653–660CrossRefGoogle Scholar
  16. Birch CJ, Robertson MJ, Humphreys E, Hutchins N (2003) Agronomy of maize in Australia: in review and prospect. In: Birch CJ, Wilson SR (eds) The proceedings of the Versatile Maize – golden opportunities. 5th Australian maize conference, City Gold Club, Toowoomba, 18–20 Feb 2003, pp 45–57Google Scholar
  17. Boyer CD, Hannah LC (1964) Chapter 1: Kernel mutants of corn. In: Hallauer AR (ed) Specialty corns. CRC Press Inc., Boca Raton, pp 1–28Google Scholar
  18. Brites CM, Trigo MJ, Carrapiço B, Alviña M, Bessa RJ (2011) Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats. Nutr Res 31(4):302–308PubMedCrossRefGoogle Scholar
  19. Buchmann CA, Nersesyan A, Kopp B, Schauberger D, Darroudi F, Grummt T, Krupitza G, Kundi M, Schulte-Hermann R, Knasmueller S (2007) Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), two naturally occurring benzoxazinones contained in sprouts of Gramineae are potent aneugens in human-derived liver cells (HepG2). Cancer Lett 246(1–2):290–299PubMedCrossRefGoogle Scholar
  20. Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula, revised reprint, 2 vols. Ministry of Agriculture and Co-operatives, Kuala Lumpur. Vol 1 (A–H), pp 1–1240, vol 2 (I–Z), pp 1241–2444Google Scholar
  21. Burkill HM (1994) The useful plants of West Tropical Africa, vol 2, Families E to I. Royal Botanic Gardens, Kew/Richmond, 636 ppGoogle Scholar
  22. Cambier V, Hance T, de Hoffmann E (2000) Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53(2):223–229PubMedCrossRefGoogle Scholar
  23. Cantelo WW, Jacobson M (1979) Corn silk volatiles attract many pest species of moths. J Environ Sci Health Part A Environ Sci Eng 14(8):695–707CrossRefGoogle Scholar
  24. Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, Thielecke F, Jackson KG, Tuohy KM (2010) Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr 104(9):1353–1356PubMedCrossRefGoogle Scholar
  25. Chance GW, Albutt EC, Edkins SM (1969) Control of hyperlipidaemia in juvenile diabetes. Standard and corn-oil diets compared over a period of 10 years. Br Med J 3(5671):616–618PubMedCrossRefGoogle Scholar
  26. Chen SL, Phillips SM (2000) Zea Linnaeus. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 22, Poaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. LouisGoogle Scholar
  27. Choi SK, Choi HS (2004) Purification and characterization of an anticoagulant from corn silk. J Korean Soc Food Sci Nutr 33(8):1262–1267CrossRefGoogle Scholar
  28. Clayton WD, Harman KT, Williamson H (2006) Onwards. GrassBase – the online world grass flora.
  29. Clayton WD, Govaerts R, Harman KT, Williamson H, Vorontsova M (2011) World checklist of Poaceae. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; Retrieved 18 Aug 2011
  30. Colless JM (1992) Maize growing. Report No. P3.3.3 – Agdex 111, 2nd edn. NSW Agriculture Grafton, NSWGoogle Scholar
  31. Corcuera LJ, Woodward MD, Helgeson JP, Kelman A, Upper CD (1978) 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, an inhibitor from Zea mays with differential activity against soft rotting Erwinia species. Plant Physiol 61(5):791–795PubMedCrossRefGoogle Scholar
  32. Cuevas Montilla E, Hillebrand S, Antezana A, Winterhalter P (2011) Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. J Agric Food Chem 59(13):7068–7074PubMedCrossRefGoogle Scholar
  33. Darrah LL, McMullen MD, Zuber MS (2003) Breeding, genetic, and seed corn production. In: White PJ, Johnson LA (eds) Corn: chemistry and technology, 2nd edn. American Association of Cereal Chemists, St. Paul, 892 ppGoogle Scholar
  34. Davis DL, Poneleit CG (1974) Sterol accumulation and composition in developing Zea mays L. kernels. Plant Physiol 54:794–796PubMedCrossRefGoogle Scholar
  35. Dobberstein D, Bunzel M (2010) Separation and detection of cell wall-bound ferulic acid dehydrodimers and dehydrotrimers in cereals and other plant materials by reversed phase high-performance liquid chromatography with ultraviolet detection. J Agric Food Chem 58(16):8927–8935CrossRefGoogle Scholar
  36. Duke JA, Bogenschuts-Godwin MJ, du Cellier J, Duke P-AK (2002) CRC handbook of medicinal herbs, 2nd edn. CRC Press, Boca Raton, 896 ppCrossRefGoogle Scholar
  37. Duvick JP, Rood T, Rao AG, Marshak DR (1992) Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem 267(26):18814–18820PubMedGoogle Scholar
  38. Ebrahimzadeh MA, Pourmorad F, Hafezi S (2008) Antioxidant activities of Iranian corn silk. Turk J Biol 32:43–49Google Scholar
  39. El-Ghorab A, El-Massry KF, Shibamoto K (2007) Chemical composition of the volatile extract andantioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). J Agric Food Chem 55(22):9124–9127PubMedCrossRefGoogle Scholar
  40. Elliger CA, Chan BG, Waiss AC Jr, Lundin RE, Haddon WF (1980) C-glycosylflavones from Zea mays that inhibit insect development. Phytochemistry 19:293–297CrossRefGoogle Scholar
  41. Feng YZ, Lu XH, Tao B, Pang MH, Liu YC, Dong JG (2011) Natural occurrence of fumonisins b1 and b2 in corn from three main production provinces in China. J Food Prot 74(8):1374–1378PubMedCrossRefGoogle Scholar
  42. Flath RA, Forrey RR, John JO, Chan BG (1978) Volatile components of corn silk (Zea mays L.): possible Heliothis zea (Boddie) attractants. J Agric Food Chem 26(6):1290–1293CrossRefGoogle Scholar
  43. Foundation for Revitalisation of Local Health Traditions (2008) FRLHT database. htttp://
  44. Godier A, Durand M, Smadja D, Jeandel T, Emmerich J, Samama CM (2010) Maize- or potato-derived hydroxyethyl starches: is there any thromboelastometric difference? Acta Anaesthesiol Scand 54(10):1241–1247PubMedCrossRefGoogle Scholar
  45. Gong HZ, Ji R, Li YX, Zhang HY, Li B, Zhao Y, Sun L, Yu F, Yang J (2009) Occurrence of fumonisin B(1) in corn from the main corn-producing areas of China. Mycopathologia 167(1):31–36PubMedCrossRefGoogle Scholar
  46. Granfeldt Y, Drews A, Björck I (1995) Arepas made from high amylose corn flour produce favorably low glucose and insulin responses in healthy humans. J Nutr 125(3):459–465PubMedGoogle Scholar
  47. Grases F, March JG, Ramis M, Costa-Bauza A (1993) The influence of Zea mays on urinary risk factors for kidney stones in rats. Phytother Res 7:146–149CrossRefGoogle Scholar
  48. Grieve M (1971) A modern herbal, 2 vols. Penguin/Dover Publications, New York, 919 ppGoogle Scholar
  49. Guevara P, Perez-Amador MC, Zuniga B, Snook M (2000) Flavones in corn silks and resistance to insect attacks. Phyton 69:151–156Google Scholar
  50. Guo JY, Liu TJ, Han LN, Liu YM (2009) The effects of corn silk on glycaemic metabolism. Nutr Metab (Lond) 6:47CrossRefGoogle Scholar
  51. Habtemariam S (1998) Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression. Planta Med 64(4):314–318PubMedCrossRefGoogle Scholar
  52. Haghi G, Arshi R, Safaei A (2008) Improved high-performance liquid chromatography (HPLC) method for qualitative and quantitative analysis of allantoin in Zea mays. J Agric Food Chem 56(4):1205–1209PubMedCrossRefGoogle Scholar
  53. Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals), 1st English edn. Springer, Berlin, 3645 ppGoogle Scholar
  54. Hanway JJ (1966) How a corn plant develops. Special Report 48. Iowa State University, Ames, 17 ppGoogle Scholar
  55. Hirt HM, Bindanda M (1993) La médecine naturelle en Afrique. Comment se soigner par les plantes tropicales. Editions Centre de vulgarisation agricole, Kinshasa 2, République du Zaïre, 144 ppGoogle Scholar
  56. Hu QL, Deng ZH (2011) Protective effects of flavonoids from corn silk on oxidative stress induced by exhaustive exercise in mice. Afr J Biotechnol 10(16):3163–3167Google Scholar
  57. Hu QP, Xu JG (2011) Profiles of carotenoids, anthocyanins, phenolics, and antioxidant activity of selected color waxy corn grains during maturation. J Agric Food Chem 59(5):2026–2033PubMedCrossRefGoogle Scholar
  58. Hu QL, Zhang LJ, Ding YJ, Li FL (2010) Purification and anti-fatigue activity of flavonoids from corn silk. Int J Phys Sci 5(4):321–326Google Scholar
  59. Hung CT (1989) Effects of high-fructose (90%) corn syrup on plasma glucose, insulin, and C-peptide in non-insulin-dependent diabetes mellitus and normal subjects. Taiwan Yi Xue Hui Za Zhi 88(9):883–885PubMedGoogle Scholar
  60. Hutton JC, Schofield PH, Williams JF, Regtop HL, Hollows FC (1976) The effect of an unsaturated-fat diet on cataract formation in streptozotocin-induced diabetic rats. Br J Nutr 36(2):161–177PubMedCrossRefGoogle Scholar
  61. Jones RJ, Ouattar S, Crookston RK (1984) Thermal environment during endosperm cell division and grain filling in maize: effects on kernel growth and development in vitro. Crop Sci 24:133–137CrossRefGoogle Scholar
  62. Jones RJ, Roessler J, Outtar S (1985) Thermal environment during endosperm cell division in maize: effects on number of endosperm cells and starch granules. Crop Sci 25:830–834CrossRefGoogle Scholar
  63. Jouad H, Haloui M, Rhiouani H, El-Hilaly J, Eddouks M (2001) Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre of Morocco (Fez-Boulemane). J Ethnopharmacol 77:175–182PubMedCrossRefGoogle Scholar
  64. Kaddah MT, Ghowali SI (1964) Salinity effects on the growth of corn at different stages of development. Agron J 56:214–217CrossRefGoogle Scholar
  65. Kayode JL, Aleshinloye L, Ige OE (2008) Ethnomedicinal use of plant species in Ijesa Land of Osun State, Nigeria. Ethnobot Leafl 12:164–170Google Scholar
  66. Kays SJ (2011) Cultivated vegetables of the world: a multilingual Onomasticon. Wageningen Academic Publishers, Wageningen. 828 pp.
  67. Kerharo J, Adam JG (1964) Plantes médicinales et toxiques des Peuls et des Toucouleurs du Sénégal. J Agric Trop Bot Appl 11:384–444; 543–599 (in French)Google Scholar
  68. Kerharo J, Bouquet A (1950) Plantes Médicinales et Toxiques de la Côte d’Ivoire – Haute-Volta. Vigot Frères, Paris, 291 ppGoogle Scholar
  69. Kim WK, Chung MK, Kang NE, Kim MH, Park OJ (2003) Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concentrations in streptozotocin-induced diabetic rats. J Nutr Biochem 14(3):166–172PubMedCrossRefGoogle Scholar
  70. King RC, Dobree JH, Kok D, Foulds WS, Dangerfield WG (1963) Exudative diabetic retinopathy. Spontaneous changes and effects of a corn oil diet. Br J Ophthalmol 47:666–672PubMedCrossRefGoogle Scholar
  71. Koopmans A, ten Have H, Subandi (1996) Zea mays L. In: Grubben GJH, Partohardjono S (eds) Plant resources of South-East Asia No 10. Cereals. Backhuys Publishers, Leiden, pp 143–149Google Scholar
  72. Kuhnen S, Lemos PM, Campestrini LH, Ogliari JB, Dias PF, Maraschin M (2011) Carotenoid and anthocyanin contents of grains of Brazilian maize landraces. J Sci Food Agric 91(9):1548–1553PubMedCrossRefGoogle Scholar
  73. Kurilich AC, Juvik JA (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem 47(5):1948–1955PubMedCrossRefGoogle Scholar
  74. Kwag JJ, Lee JG, Jang HJ, Kim OC (1999) Volatile components of corn silk (Zea mays L.). Korean J Food Nutr 12:375–379Google Scholar
  75. Larsen E, Christensen LP (2000) Simple method for large scale isolation of the cyclic arylhydroxamic acid DIMBOA from maize (Zea mays L.). J Agric Food Chem 48(6):2556–2558PubMedCrossRefGoogle Scholar
  76. Lee CH, Garcia HS, Parkin KL (2010) Bioactivities of kernel extracts of 18 strains of maize (Zea mays). J Food Sci 75(8):C667–C672PubMedCrossRefGoogle Scholar
  77. Li FL, Yu L (2009) Flavonoids extraction from maize silk and its function on blood sugar control. China Food Addit 94:121–124Google Scholar
  78. Li W, Wei CV, White PJ, Beta T (2007) High-amylose corn exhibits better antioxidant activity than typical and waxy genotypes. J Agric Food Chem 55(2):291–298PubMedCrossRefGoogle Scholar
  79. Li S, Nugroho A, Rocheford T, White WS (2010) Vitamin A equivalence of the ß-carotene in ß-carotene-biofortified maize porridge consumed by women. Am J Clin Nutr 92(5):1105–1112PubMedCrossRefGoogle Scholar
  80. Lin M, Chu QC, Tian XH, Ye JN (2007) Determination of active ingredients in corn silk, leaf, and kernel by capillary electrophoresis with electrochemical detection. J Capill Electrophor Microchip Technol 10(3–4):51–56PubMedGoogle Scholar
  81. Liu J, Wang CN, Wang ZZ, Zhang C, Lu S, Liu JB (2011) The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chem 126(1):61–69CrossRefGoogle Scholar
  82. Lopez-Martinez LX, Parkin KL, Garcia HS (2011) Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods Hum Nutr 66(1):41–47PubMedCrossRefGoogle Scholar
  83. Maksimovic ZA, Kovacevic N (2003) Preliminary assay on the antioxidative activity of Maydis stigma extracts. Fitoterapia 74(1–2):144–147PubMedCrossRefGoogle Scholar
  84. Maksimović Z, Malenović A, Jancić B, Kovacević N (2004) Quantification of allantoin in various Zea mays L. hybrids by RP-HPLC with UV detection. Pharmazie 59(7):524–527PubMedGoogle Scholar
  85. Marcocci L, Casadei M, Faso C, Antoccia A, Stano P, Leone S, Mondovì B, Federico R, Tavladoraki P (2008) Inducible expression of maize polyamine oxidase in the nucleus of MCF-7 human breast cancer cells confers sensitivity to etoposide. Amino Acids 34(3):403–412PubMedCrossRefGoogle Scholar
  86. Melanson KJ, Zukley L, Lowndes J, Nguyen V, Angelopoulos TJ, Rippe JM (2007) Effects of ­high-fructose corn syrup and sucrose consumption on ­circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women. Nutrition 23(2):103–112PubMedCrossRefGoogle Scholar
  87. Miao MS, Zhang GL, Miao YY, Shi JJ, Liu HL (2008) Influence of Zea mays L. saponin (ZMLS) on ultrastructure of kidney and pancreas in diabetes rats induced by streptozocin. Zhongguo Zhong Yao Za Zhi 33(10):1179–1183 (in Chinese)PubMedGoogle Scholar
  88. Midoh N, Tanaka A, Nagayasu M, Furuta C, Suzuki K, Ichikawa T, Isomura T, Nomura K (2010) Antioxidative activities of Oxindole-3-acetic acid derivatives from supersweet corn powder. Biosci Biotechnol Biochem 74(9):1794–1801PubMedCrossRefGoogle Scholar
  89. Miller SS, Reid LM, Butler G, Winter SP, McGoldrick NJ (2003) Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. J Agric Food Chem 51(23):6702–6708PubMedCrossRefGoogle Scholar
  90. Mochizuki M, Shigemura H, Hasegawa N (2010) Anti-inflammatory effect of enzymatic hydrolysate of corn gluten in an experimental model of colitis. J Pharm Pharmacol 62(3):389–392PubMedCrossRefGoogle Scholar
  91. Monjardino P, Smith AG, Jones RJ (2005) Heat stress on protein accumulation of maize endosperm. Crop Sci 45(4):1203–1210CrossRefGoogle Scholar
  92. Monjardino P, Smith AG, Jones RJ (2006) Zein transcription and endoreduplication in maize endosperm are differentially affected by heat stress. Crop Sci 46(3):2581–2589CrossRefGoogle Scholar
  93. Moreno-Loaiza O, Paz-Aliaga A (2010) Vasodilator effect mediated by nitric oxide of the Zea mays L (andean purple corn) hydroalcoholic extract in aortic rings of rat. Rev Peru Med Exp Salud Publica 27(4):527–531 (in Spanish)PubMedCrossRefGoogle Scholar
  94. Mosier NS (2006) Cellulosic ethanol – biofuel beyond corn. ID-335, Purdue University Cooperative Extension Service, West Lafayette. 1–4 pp
  95. Mosier NS, Illeleji K (2006) How fuel ethanol is made from corn. ID-328. Purdue University Cooperative Extension Service, West Lafayette.
  96. Muzhingi T, Gadaga TH, Siwela AH, Grusak MA, Russell RM, Tang G (2011) Yellow maize with high β-carotene is an effective source of vitamin A in healthy Zimbabwean men. Am J Clin Nutr 94(2):510–519PubMedCrossRefGoogle Scholar
  97. Namba T, Xu H, Kadota S, Hattori M, Takahashi T, Kojima Y (1993) Inhibition of IgE formation in mice by glycoproteins from corn silk. Phytother Res 7:227–230CrossRefGoogle Scholar
  98. Ndube N, van der Westhuizen L, Green IR, Shephard GS (2011) HPLC determination of fumonisin mycotoxins in maize: a comparative study of naphthalene-2,3-dicarboxaldehyde and o-phthaldialdehyde derivatization reagents for fluorescence and diode array detection. J Chromatogr B Analyt Technol Biomed Life Sci 879(23):2239–2243PubMedCrossRefGoogle Scholar
  99. Neuwinger HD (2000) African traditional medicine: a dictionary of plant use and applications. Medpharm Scientific, Stuttgart, 589 ppGoogle Scholar
  100. Nie C, Lou S, Zeng R, Wang J, Huang J, Li M (2004) Advance in cyclic hydroxamic acids, main allelochemicals of Zea mays. Ying Yong Sheng Tai Xue Bao 15(6):1079–1082 (in Chinese)PubMedGoogle Scholar
  101. Njoroge GN, Bussmann RW (2007) Ethnoterapeutic management of skin diseases among the Kikuyus of Central Kenya. J Ethnopharmacol 111:303–307PubMedCrossRefGoogle Scholar
  102. Norman MJT, Pearson CJ, Searle PGE (1995) Maize (Zea mays). In: Norman MJT, Pearson CJ, Searle PGE (eds) The ecology of tropical food crops, 2nd edn. Cambridge University Press, Cambridge, p 430, Chapter 6, pp 126–144Google Scholar
  103. Norton RA (1995) Quantitation of steryl ferulate and p-coumarate esters from corn and rice. Lipids 30(3):269–274PubMedCrossRefGoogle Scholar
  104. OECD (2002) Consensus document on compositional considerations for new varieties of Maize (Zea mays): key food and feed nutrients, anti-nutrients and secondary plant metabolites. Series on the safety of novel foods and feeds no. 6. Organisation for Economic Co-operation and Development, Paris.
  105. OECD (2003) Consensus document on the biology of Zea mays subsp. mays (Maize). Series on harmonisation of regulatory oversight in biotechnology, no. 27. Organisation for Economic Co-operation and Development, Paris.
  106. Ogie-Odia EA, Oluowo EF (2009) Assessment of some therapeutic plants of the Abbi people in Ndokwa West L.G.A of Delta State, Nigeria. Ethnobot Leafl 13:989–1002Google Scholar
  107. OGTR (2008) The biology of Zea mays L. ssp. mays (maize or corn). Document prepared by the Office of the Gene Regulator, Canberra.$FILE/biologymaize08_2.pdf
  108. Okarter N (2012) Phenolic compounds from the insoluble-bound fraction of whole grains do not have any cellular antioxidant activity. Life Sci Med Res 2012:LSMR-37Google Scholar
  109. Ortíz de Bertorelli L (1993) Extraction and characterization of zeins from kernels of 10 maize cultivars. Arch Latinoam Nutr 43(3):248–253 (in Spanish)PubMedGoogle Scholar
  110. Ortiz de Bertorelli L, Guerra M (1983) Characterization of corn proteins of the cultivars Venezuela-1, Arichuna, Obregon and Venezuela-1 Opaque-2. Arch Latinoam Nutr 33(3):539–556 (in spanish)PubMedGoogle Scholar
  111. Owoyele BV, Negedu MN, Olaniran SO, Onasanwo SA, Oguntoye SO, Sanya JO, Oyeleke SA, Ibidapo AJ, Soladoye AO (2010) Analgesic and anti-inflammatory effects of aqueous extract of Zea mays husk in male Wistar rats. J Med Food 13(2):343–347PubMedCrossRefGoogle Scholar
  112. Paliwal RL (2000) Maize type. In: Paliwal RL, Granados G, Laffite HR, Marathée JP (eds) Tropical maize: improvement and production. FAO, Rome, pp 39–43Google Scholar
  113. Paraman I, Lamsal BP (2011) Recovery and characterization of α-zein from corn fermentation coproducts. J Agric Food Chem 59(7):3071–3077PubMedCrossRefGoogle Scholar
  114. Pastorello EA, Farioli L, Pravettoni V, Ispano M, Scibola E, Trambaioli C, Giuffrida MG, Ansaloni R, Godovac-Zimmermann J, Conti A, Fortunato D, Ortolani C (2000) The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein. J Allergy Clin Immunol 106(4):744–751PubMedCrossRefGoogle Scholar
  115. Pastorello EA, Pompei C, Pravettoni V, Farioli L, Calamari AM, Scibilia J, Robino AM, Conti A, Iametti S, Fortunato D, Bonomi S, Ortolani C (2003) Lipid-transfer protein is the major maize allergen maintaining IgE-binding activity after cooking at 100 degrees C, as demonstrated in anaphylactic patients and patients with positive double-blind, placebo-controlled food challenge results. J Allergy Clin Immunol 112(4):775–783PubMedCrossRefGoogle Scholar
  116. Pastorello EA, Farioli L, Pravettoni V, Scibilia J, Conti A, Fortunato D, Borgonovo L, Bonomi S, Primavesi L, Ballmer-Weber B (2009) Maize food allergy: lipid-transfer proteins, endochitinases, and alpha-zein precursor are relevant maize allergens in double-blind placebo-controlled maize-challenge-positive patients. Anal Bioanal Chem 395(1):93–102PubMedCrossRefGoogle Scholar
  117. Pink RC, Bailey TA, Iputo JE, Sammon AM, Woodman AC, Carter DR (2011) Molecular basis for maize as a risk factor for esophageal cancer in a South African population via a prostaglandin E2 positive feedback mechanism. Nutr Cancer 63(5):714–721PubMedCrossRefGoogle Scholar
  118. Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA 98:2101–2103PubMedCrossRefGoogle Scholar
  119. Porcher MH et al. (1995–2020) Searchable World Wide Web multilingual multiscript plant name database. Published by The University of Melbourne, Melbourne.
  120. Pozo-Insfran DD, Brenes CH, Saldivar SOS, Talcott ST (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39(6):696–703CrossRefGoogle Scholar
  121. Purseglove JW (1972) Tropical crops: monocotyledons, vols 1 and 2. Longman, London, 607 ppGoogle Scholar
  122. Ramos-Escudero F, Mu Oz AM, Alvarado-Ort ZC, Alvarado N, Yáñez JA (2012) Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J Med Food 15(2):206–215PubMedCrossRefGoogle Scholar
  123. Ren SC, Ding XL (2004) Isolation and identification of flavonoids from corn silk (Zea mays). Chinese Trad Herb Drugs 8:857–858Google Scholar
  124. Ren SC, Ding XL (2007) Isolation of flavonoids in corn silk and their chemical structure identification. J Henan Univ Technol (Nat Sci Ed) 4:34–36Google Scholar
  125. Ren SC, Ding XL, Shi X (2005) Antioxidant activity of ax-5″-methane-3′ -metoxymaysin and ax-4″-OH-3′- methoxymaysin from corn silk. J Henen Univ Technol (Nat Sci ed) 26:5–8Google Scholar
  126. Ren SC, Liu ZL, Ding XL (2009) Isolation and identification of two novel flavones glycosides from corn silk (Stigma maydis). J Med Plants Res 3(12):1009–1015Google Scholar
  127. Sammon AM (1999) Maize meal, non-esterified linoleic acid, and endemic cancer of the esophagus – preliminary findings. Prostaglandins Other Lipid Mediat 57(2–3):167–171PubMedCrossRefGoogle Scholar
  128. Sammon AM, Iputo JE (2006) Maize meal predisposes to endemic squamous cancer of the oesophagus in Africa: breakdown of esterified linoleic acid to the free form in stored meal leads to increased intragastric PGE2 production and a low-acid reflux. Med Hypotheses 67(6):1431–1436PubMedCrossRefGoogle Scholar
  129. Sands AL, Leidy HJ, Hamaker BR, Maguire P, Campbell WW (2009) Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans. Nutr Res 29(6):383–390PubMedCrossRefGoogle Scholar
  130. Santiago R, Reid LM, Arnason JT, Zhu XY, Martinez N, Malvar RA (2007) Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). J Agric Food Chem 55(13):5186–5193PubMedCrossRefGoogle Scholar
  131. Santiago R, Sandoya G, Butrón A, Barros J, Malvar RA (2008) Changes in phenolic concentrations during recurrent selection for resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef.). J Agric Food Chem 56(17):8017–8022PubMedCrossRefGoogle Scholar
  132. Sarfare S, Menon S, Shailajan S (2010) Cornsilk as a bioavailable source of betasitosterol: a pharmacokinetic study using HPTLC. Asian J Plant Sci 9:44–50CrossRefGoogle Scholar
  133. Semprún-Fereira M, Ryder E, Morales LM, Gómez ME, Raleigh X (1994) Glycemic index and insulin response to the ingestion of precooked corn flour in the form of “arepa” in healthy individuals. Invest Clin 35(3):131–142 (in Spanish)PubMedGoogle Scholar
  134. Shimotoyodome A, Suzuki J, Kameo Y, Hase T (2011) Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects. Br J Nutr 106(1):96–104PubMedCrossRefGoogle Scholar
  135. Smith CW, Betrán J, Runge ECA (eds) (2004) Corn: origin, history, technology, and production. Wiley, Hoboken, 949 ppGoogle Scholar
  136. Snook ME, Gueldner RC, Widstrom NW, Wiseman BR, Himmelsbach DS, Harwood JS, Costello CE (1993) Levels of maysin and maysin analogs in silks of maize germplasm. J Agric Food Chem 41:1481–1485CrossRefGoogle Scholar
  137. Snook ME, Widstrom NW, Wiseman BR, Gueldner RC, Wilson RL, Himmelsbach DS, Harwood JS, Costello CE (1994) New flavone C-glycosides from corn (Zea mays L.) for the control of the corn earworm (Helicoverpa zea). In: Hedin PA (ed) Bioregulators for crop protection and pest control, vol 557, ACS symposium series. American Chemical Society, Washington, DC, pp 122–135CrossRefGoogle Scholar
  138. Snook ME, Widstrom NW, Wiseman BR, Byrne PF, Harwood JS, Costello CE (1995) New C-4″-hydroxy derivatives of maysin and 3′-methoxymaysin isolated from corn silks (Zea mays). J Agric Food Chem 43:2740–2745CrossRefGoogle Scholar
  139. Srinivasan G, Zaidi PH, Singh NN, Sanchez C (2004) Increasing productivity through genetic improvement for tolerance to drought and excess-moisture stress in maize (Zea mays L.). In Vang S, Craswell E, Shu F, Fischer K (eds) Water in agriculture. ACIAR proceedings no. 116, Canberra, 239 ppGoogle Scholar
  140. Stuart GU (2010) Philippine alternative medicine. Manual of some Philippine medicinal plants.
  141. Suzuki R, Okada Y, Okuyama T (2005) The favorable effect of style of Zea mays L. on streptozotocin induced diabetic nephropathy. Biol Pharm Bull 28(5):919–920PubMedCrossRefGoogle Scholar
  142. Tabuti JRS, Lye KA, Dhillion SS (2003) Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. J Ethnopharmacol 88:19–44PubMedCrossRefGoogle Scholar
  143. Tahraoui A, El-Hilaly J, Israili ZH, Lyoussi B (2007) Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Moroco (Errachidia province). J Ethnopharmacol 100:105–117CrossRefGoogle Scholar
  144. Tang LH, Ding XL, You LF, Gu WE, Yu FR (1995) Bio-active substances from corn silk-corn silk polysaccharide (CSPS) and its immunological enhancing function. J Wuxi Univ Light Indus (China) 4:319–324Google Scholar
  145. Tapsoba H, Deschamps JP (2006) Use of medicinal plants for the treatment of oral diseases in Burkina Faso. J Ethnopharmacol 104:68–78PubMedCrossRefGoogle Scholar
  146. Torres-Sánchez L, López-Carrillo L (2010) Fumonisin intake and human health. Salud Publica Mex 52(5):461–467 (in Spanish)PubMedCrossRefGoogle Scholar
  147. Toufektsian MC, de Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L, Mock HP, Peterek S, Matros A, Petroni K, Pilu R, Rotilio D, Tonelli C, de Leiris J, Boucher F, Martin C (2008) Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr 138(4):747–752PubMedGoogle Scholar
  148. Tsaftaris AS (1995) The biology of maize (Zea mays, L.). Document XI/754/95 European CommissionGoogle Scholar
  149. U.S. Department of Agriculture, Agricultural Research Service (USDA) (2012) USDA national nutrient database for standard reference, Release 24. Nutrient Data Laboratory Home Page,
  150. Valencia Zavala MP, Vega Robledo GB, Sánchez Olivas MA, Duarte Diaz RJ, Oviedo CL (2006) Maize (Zea mays): allergen or toleragen? Participation of the cereal in allergic disease and positivity incidence in cutaneous tests. Rev Alerg Mex 53(6):207–211PubMedGoogle Scholar
  151. Velazquez DV, Xavier HS, Batista JE, de Castro-Chaves C (2005) Zea mays L. extracts modify glomerular function and potassium urinary excretion in conscious rats. Phytomedicine 12(5):363–369PubMedCrossRefGoogle Scholar
  152. Waiss AC Jr, Chan BG, Elliger CA, Wiseman BR, McMillian WW, Widstrom NW, Zuber MS, Keaster AJ (1979) Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. J Econ Entomol 72(2):256–258Google Scholar
  153. Wan Rosli WI, Nurhanan AR, Mohsin SSJ, Farid CG (2008) Aqueous, alcoholic treated and proximate analysis of Maydis stigma (Zea mays) hairs. Annu Microsc 8:66–72Google Scholar
  154. White PJ, Johnson LA (eds) (2003) Corn: chemistry and technology, 2nd edn. American Association of Cereal Chemists, St. Paul, 892 ppGoogle Scholar
  155. Xu JG, Hu QP, Wang XD, Luo JY, Liu Y, Tian CR (2010) Changes in the main nutrients, phytochemicals, and antioxidant activity in yellow corn grain during maturation. J Agric Food Chem 58(9):751–5756PubMedCrossRefGoogle Scholar
  156. Zeringue HJ Jr (2000) Identification and effects of maize silk volatiles on cultures of Aspergillus flavus. J Agric Food Chem 48(3):921–925PubMedCrossRefGoogle Scholar
  157. Zhou X, Kaplan ML (1997) Soluble amylose cornstarch is more digestible than soluble amylopectin potato starch in rats. J Nutr 127(7):1349–1356PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • T. K. Lim
    • 1
  1. 1.CanberraAustralia

Personalised recommendations