An Intelligent Flow Measurement Technique by Venturi Flowmeter Using Optimized ANN

Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 186)

Abstract

An intelligent flow measurement technique by venturi flow meter using an optimized Artificial Neural Network (ANN) is presented. The objectives of the present work are (i) to extend the linearity range of measurement to 100 % of the full scale, (ii) to make the measurement technique adaptive of variation in (a) venturi diameter ratio, (b) discharge coefficient, (c) liquid density, and (d) liquid temperature, and (iii) to achieve objectives (i) and (ii) by using an optimized neural network.

Keywords

Artificial neural networks Flow measurement Non linear estimation Optimization Sensor modeling Venturi 

References

  1. 1.
    Lawley JE (1982) Orifice meter calibration’. In: 57th international school of hydrocarbon measurement, document ID: 16233Google Scholar
  2. 2.
    Yanagiharaa S, Mochizukia O, Satoa K, Saitob K (1999) Variable area venturi type exhaust gas flow meter’. JSAE Rev, Science direct 20(2):265–267Google Scholar
  3. 3.
    Zhang JQ, Yan Y (2001) A self validating differential pressure flow sensor’. In: Proceedings of IEEE conference on instrumentation and measurement technology, BudapestGoogle Scholar
  4. 4.
    Na MG, Lee YJ, Hwang IJ (2005) A smart software sensor for feedwater flow measurement monitoring. IEEE Trans Nucl Sci 52(6):3026–3034Google Scholar
  5. 5.
    Xu L, Zhou W, Li X, Wang M (2011) Wet-gas flow modeling for the straight section of throat-extended venturi meter. IEEE Trans Instrum Meas 60(6):2080–2087Google Scholar
  6. 6.
    Xu L, Li H, Tang S, Tan C, Hu B (2008) Wet gas metering using a venturi-meter and neural networks. In: Proceedings of IEEE conference on instrumentation and measurement technology, CanadaGoogle Scholar
  7. 7.
    Pereira JMD, Postolache O, Girao PMBS (2009) PDF-based progressive polynomial calibration method for smart sensors linearization. IEEE Trans Instrum Meas 58(9):3245–3252Google Scholar
  8. 8.
    Yang HY, Lee SH, Na MG (2009) monitoring and uncertainty analysis of feedwater flow rate using data-based modeling method. IEEE Trans Nucl Sci 56(4):2426–2433Google Scholar
  9. 9.
    Fang L, Cao S, Li J, Cheng H (2009) Venturi wet gas measurement based on homogenous and Chisholm model. In: Proceedings of international conference on computer and automation engineering, ThailandGoogle Scholar
  10. 10.
    Xu L, Zhou W, Li X, Tang S (2011) Wet gas metering using a revised venturi meter and soft-computing approximation techniques. IEEE Trans Instrum Meas 60(3):946–2087Google Scholar
  11. 11.
    Pereira M (2009) Flow meters: Part 1. IEEE Mag Instrum Meas 12(1):18–26Google Scholar
  12. 12.
    Xu L, Tang S (2009) Wet gas metering using a venturi-meter and support vector machines. In: Proceedings of IEEE conference on instrumentation and measurement technology, SingaporeGoogle Scholar
  13. 13.
    Santhosh KV, Roy BK (2012) An intelligent flow measuring technique using venturi. Lecture notes in engineering and computer science: proceeding of international multiconference of engineers and computer scientists, IMECS 2012, 14–16 March 2012, Hong Kong, pp 902–907Google Scholar
  14. 14.
    Doebelin EO (2003) Measurement systems—application and design, 5th edn. Tata McGraw Hill publishing company, New YorkGoogle Scholar
  15. 15.
    Liptak BG (2003) Instrument engineers’ handbook: process measurement and analysis, 4th edn. CRC Press, Boca RatonGoogle Scholar
  16. 16.
    Plaza RJ (2006) Sink or swim: the effects of temperature on liquid density and buoyancy’. California state science fairGoogle Scholar
  17. 17.
    Density of fluids—changing pressure and temperature, the engineering toolbox (2004)Google Scholar
  18. 18.
    Sensorone DMD331 datasheets 2008Google Scholar
  19. 19.
    Björck A (1996) Numerical methods for least squares problems. SIAM Publications, Philadelphia, ISBN 0-89871-360-9Google Scholar
  20. 20.
    Roger F (1987) Practical methods of optimization, 2nd ed. Wiley, New York, ISBN 978-0-471-91547-8Google Scholar
  21. 21.
    Dias FM, Antunes A, Vieira J, Mota AM (2004) Implementing the levenberg-marquardt algorithm on-line: a sliding window approach with early stopping. In: International conference on proceedings of IFAC, USAGoogle Scholar
  22. 22.
    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, engineering faculty, computer engineering departmentGoogle Scholar
  23. 23.
    Venkata Rao R (2006) Multi-objective optimization of multi-pass milling process parameters using artificial bee colony algorithm. Artificial intelligence in manufacturing. Nova Science Publishers, USAGoogle Scholar
  24. 24.
    Li J-B, Chung Y-K (2005) A novel back propagation neural network training algorithm designed by an ant colony optimization. IEEE/PES transmission and distribution conference & exhibition: Asia and Pacific Dalian, ChinaGoogle Scholar
  25. 25.
    Bianchi L, Gambardella LM, Dorigo M (2002) An ant colony optimization approach to the probabilistic travelling salesman problem. In: Proceedings of PPSN-VII, seventh inter 17 national conference on parallel problem solving from nature. Springer, BerlinGoogle Scholar
  26. 26.
    Russell S, Norvig P (2009) Artificial intelligence a modern approach, 3rd edn. Prentice Hall, New YorkGoogle Scholar
  27. 27.
    Park J, Sandberg JW (1991) Universal approach using radial basis function network. Neural Comput 3:246–257Google Scholar
  28. 28.
    Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78(9):1484–1487CrossRefGoogle Scholar
  29. 29.
    Paul Yee V, Haykin S (2001) Regularized radial basis function networks: theory and applications. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Santhosh Krishnan Venkata
    • 1
  • Binoy Krishna Roy
    • 1
  1. 1.Department of Electrical EngineeringNational Institute of TechnologySilcharIndia

Personalised recommendations