Integrated Groundwater Use and Management in Vulnerable Coastal Zones of Asia-Pacific

  • Karen G. Villholth
Part of the Coastal Research Library book series (COASTALRL, volume 7)


Groundwater in coastal zones around the globe is a critical asset in securing water, food and general development for millions of people. Particularly, in the Asia-Pacific region, such resources are significantly depended on in rural as well as urban areas for a wide range of uses, often as the only water source, which is exemplified by small island states. Present and future stresses on these significant, but often vulnerable systems, from human development, urbanization, climate change, and extreme events call for better understanding and awareness of these resources, their protection and best management approaches. The present chapter deals with the current level of knowledge of coastal groundwater systems in continental and island settings in the Asia-Pacific, their uses, vulnerabilities and hazards from various sources. The objective of the paper is to propose through an integrated framework approach how sustainable and resilient groundwater management can be promoted and enhanced. The work is partially based on the case of the tsunami in eastern Sri Lanka and the immense challenges but also opportunities it entailed for local and higher level groundwater management.


Coastal Zone Groundwater Quality Land Subsidence Coastal Aquifer Groundwater Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36(6):433–487. doi: 10.1080/10643380600678112 CrossRefGoogle Scholar
  2. Asia-Pacific Coastal Aquifer Management Meeting (APCAMM) (2009) Mapping for synergy in the twenty-first century. Proceedings of the 1st Asia-Pacific coastal aquifer management meeting, Bangkok, 9–10 Dec 2009, 25 ppGoogle Scholar
  3. Athulathmudali S, Balasuriya A, Fernando K (2011) An exploratory study on adapting to climate change in coastal areas of Sri Lanka. Norwegian University of Science and Technology (NTNU), Trondheim. Globalization Research Programme, Faculty of Humanities. 40 p (NTNU Working Paper 02/2011)Google Scholar
  4. Bear J, Cheng A, Sorek S, Ouazar D, Herrera I (1999) Seawater intrusion in coastal aquifers: concepts, methods, and practices. Kluwer, Dordrecht, 625 pp. ISBN 0-7923-5573-3CrossRefGoogle Scholar
  5. Beveridge MCM (2007) Cage aquaculture – an overview (chapter 2). In: Beveridge MCM (ed) Cage aquaculture, 3rd edn. Blackwell, OxfordGoogle Scholar
  6. Bird WA, Grossman E (2011) Chemical aftermath: contamination and cleanup following the Tohoku earthquake and tsunami. Environ Health Perspect 119(7):290–301. doi: 10.1289/ehp.119-a290 CrossRefGoogle Scholar
  7. Bo MW (2002) Fresh groundwater resources from artificial aquifers. In: Guo JJ (ed) Advances in hydraulics and water engineering, volumes I & II: proceedings of the 13th IAHR–APD Congress, Singapore, 6–8 August 2002. World Scientific, pp 631–636. doi: 10.1142/9789812776969_0114 Google Scholar
  8. Braddbaart O, Braadbart F (1997) Policing the urban pumping race: industrial groundwater overexploitation in Indonesia. World Dev 25(2):199–210CrossRefGoogle Scholar
  9. Bruggeman GA, Custodio E (eds) (1987) Studies and reports in hydrology: groundwater problems in coastal areas. UNESC, Paris, 596 pp. ISBN 9231024159Google Scholar
  10. Brunt R, Vasak L, Griffioen J (2004a) Arsenic in groundwater: probability of occurrence of excessive concentration on global scale. IGRAC report nr. SP 2004-1. IGRAC, Utrecht, 9 ppGoogle Scholar
  11. Brunt R, Vasak L, Griffioen J (2004b) Fluoride in groundwater: probability of occurrence of excessive concentration on global scale. IGRAC Report nr. SP 2004-2. IGRAC, Utrecht, 12 ppGoogle Scholar
  12. CIESIN (2012) Gridded Population of the World. Center for International Earth Science Information Network (CIESIN) Accessed 9 May 2012
  13. Central Groundwater Board (CGWB) (2010) Ground water quality in shallow aquifers of India. Ministry of Water Resources, Govt. of India, New Delhi, 107 ppGoogle Scholar
  14. Custodio E (2004) Myths about seawater intrusion in coastal aquifers. In: Araguás L et al (eds) Groundwater and saline intrusion: selected papers from the 18th SWIM, Cartagena, Spain. Instituto Geológico y Minero de España, Madrid, pp 599–608. ISBN 84-7840-588-7Google Scholar
  15. Das Gupta A, Babel MS (2005) Challenges for sustainable management of groundwater use in Bangkok, Thailand. Int J Water Resour Dev 21(3):453–464. doi: 10.1080/07900620500036570 CrossRefGoogle Scholar
  16. Das Gupta A, Paudyal GN, Seneviratne AR (1987) Optimum groundwater pumping pattern from a confined aquifer. In: Awadalla S and Noor IM (eds) Groundwater and the environment: proceedings of the international groundwater conference. University Kebangsaan Malaysia, Bangi, pp G60–G68Google Scholar
  17. Delinom RM, Assegaf A, Abidin HZ, Taniguchi M, Suherman D, Lubis RF, Yulianto E (2009) The contribution of human activities to subsurface environment degradation in Greater Jakarta Area, Indonesia. Sci Total Environ 407:3129–3141. doi: 10.1016/j.scitotenv.2008.10.003 CrossRefGoogle Scholar
  18. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  19. Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328(28):1123–1127. doi: 10.1126/science.1172974 CrossRefGoogle Scholar
  20. Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Change 2:342–345CrossRefGoogle Scholar
  21. Goswami R, Villholth KG, Vithanage M, Clement TP, Sakaki T, Illangasekare T, Jensen KH (2007) Variable density transport during well rehabilitation after a tsunami-induced saltwater contamination event. Paper presented at the ModelCARE conference, Copenhagen, 10–13 Sept 2007Google Scholar
  22. Hinrichsen D (2007) Ocean planet in decline. Available: [online] Accessed 31 July 2012
  23. Hiroshiro Y, Jinno K, Berndtsson R (2006) Hydrogeochemical properties of a salinity-affected coastal aquifer in western Japan. Hydrol Proc 20(6):1425–1435. doi:10.1002/hyp. 6099CrossRefGoogle Scholar
  24. Illangasekare T, Tyler SW, Clement TP, Villholth KG, Perera APGRL, Obeysekera J, Gunatilaka A, Panabokke CR, Hyndman DW, Cunningham KJ, Kaluarachchi JJ, Yeh WW-G, Van Genuchten M-R, Jensen KH (2006) Impacts of the 2004 tsunami on groundwater resources in Sri Lanka. Water Resour Res 42(5):W05201. doi: 10.1029/2006WR004876 CrossRefGoogle Scholar
  25. Institute for Global Environmental Strategies (IGES) (2007) Sustainable groundwater management in Asian cities. IGES, Kanagawa, 157 pp. ISBN 4-88788-039-9Google Scholar
  26. Institute of Southeast Asian Studies (ISEAS) (2009) Urbanisation in Southeast Asian countries. ISEAS, Singapore, 78 ppGoogle Scholar
  27. Jayasekera DL, Kaluarachchi JJ, Villholth KG (2010) Groundwater stress and vulnerability in rural coastal aquifers under competing demands: a case study from Sri Lanka. Environ Monit Assess 176(1–4):13–30. doi: 10.1007/s10661-010-1563-8 CrossRefGoogle Scholar
  28. Johnston R, Hoanh CT, Lacombe G, Lefroy R, Pavelic P, Fry C (2012) Managing water in rainfed agriculture in the Greater Mekong subregion. Final report. International Water Management Institute (IWMI), Colombo; Swedish International Development Cooperation Agency (Sida), StockholmGoogle Scholar
  29. King C (2003) Urban groundwater systems in Asia. UNU/IAS Working Paper No. 101, 27 ppGoogle Scholar
  30. Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea‐level rise. Geophys Res Lett 38:L17401. doi: 10.1029/2011GL048604 CrossRefGoogle Scholar
  31. Liu J, Zheng CM, Zheng L, Lei YP (2008) Ground water sustainability: methodology and application to the North China Plain. Ground Water 46(6):897–909. doi: 10.1111/j.1745-6584.2008.00486.x Google Scholar
  32. Mukherji A, Villholth KG, Sharma BR, Wang J (eds) (2009) Groundwater governance in the Indo-Gangetic and Yellow River Basins: realities and challenges, vol 15, IAH – selected papers on hydrogeology. CRC Press, Boca Raton, 325 pp. ISBN 978-0-415-46580-9Google Scholar
  33. Mulligan AE, Charette MA (2009) Groundwater flow to the coastal ocean. In: John HS, Karl KT, Steve AT (eds) Encyclopedia of ocean sciences. Academic, Oxford, pp 88–97CrossRefGoogle Scholar
  34. Nguyen Thi H, Dang Tran T, Ito N (2008) Rapid declining of groundwater level in Hanoi. In: Proceedings of 36th IAH congress, Toyama, Oct 2008Google Scholar
  35. Nguyen TQ, Helm DC (1995) Land subsidence due to groundwater withdrawal in Hanoi, Vietnam. In: Land subsidence: proceedings of the fifth international symposium on land subsidence, The Hague, Oct 1995. IAHS Publ. no. 234, pp 55–60Google Scholar
  36. Onodera S-I, Saito M, Sawano M, Hosono T, Taniguchi M, Shimada J, Umezawa Y, Lubis RF, Buapeng S, Delinom R (2009) Erratum to “effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta”. Sci Total Environ 407:3209–3217. doi: 10.1016/j.scitotenv.2009.01.049 CrossRefGoogle Scholar
  37. Rejani R, Jha MK, Panda SN, Mull R (2008) Simulation modeling for efficient groundwater management in Balasore Coastal Basin, India. Water Resour Manage 22:23–50. doi: 10.1007/s11269-006-9142-z CrossRefGoogle Scholar
  38. Shanmugam P, Neelamani S, Ahn Y-H, Philip L, Hong G-H (2007) Assessment of the levels of coastal marine pollution of Chennai city, Southern India. Water Resour Manage 21:1187–1206. doi: 10.1007/s11269-006-9075-6 CrossRefGoogle Scholar
  39. Shanzhong Q, Zulu Z, Zhaopei Z, Qiaoyu G, Yan Z (2007) Saltwater intrusion in the Laizhou Gulf, Shandong Province, China: causes and its impact on coastal areas. AMBIO J Hum Environ 36(4):361–362. doi:10.1579/0044-7447(2007) 36[361:SIITLG]2.0.CO;2CrossRefGoogle Scholar
  40. Singh SB, Veeraiah B, Dhar RL, Prakash BA, Rani MT (2011) Deep resistivity sounding studies for probing deep fresh aquifers in the coastal area of Orissa, India. Hydrogeol J 19:355–366. doi: 10.1007/s10040-010-0697-7 CrossRefGoogle Scholar
  41. Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coast Res 19:584–599Google Scholar
  42. South GR, Skelton PS, Veitayaki J, Resture A, Carpenter C, Pratt C, Lawedrau A (2004) The global international waters assessment for the Pacific Islands: aspects of transboundary, water shortage, and coastal fisheries issues. Ambio 33(1):98–106Google Scholar
  43. Sugio S, Nakada K, Urish DW (1987) Subsurface seawater intrusion barrier analysis. J Hydraul Eng 113(6):767–779. doi:10.1061/(ASCE)0733-9429(1987) 113:6(767)CrossRefGoogle Scholar
  44. Sukhija B (2011) Tsunamis: risk assessment and management of groundwater resources. In: Vrba J, Verhagen BT (eds) Groundwater for emergency situations – a methodological guide, vol 3, IHP-VII series on groundwater. UNESCO, Paris, pp 158–166Google Scholar
  45. Sukhija B, Rao BSRN (2011) Impact of the October 1999 super cyclone on the groundwater system and identification of groundwater resources for providing safe drinking water in coastal Orissa, India. In: Vrba J, Verhagen BT (eds) Groundwater for emergency situations – a methodological guide, vol 3, IHP-VII series on groundwater. UNESCO, Paris, pp 258–272Google Scholar
  46. Sun R, Jin M, Giordano M, Villholth K (2009) Urban and rural groundwater use in Zhengzhou, China: challenges in joint management. Hydrogeol J 17(6):1495–1506CrossRefGoogle Scholar
  47. Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16:2115–2129. doi:10.1002/hyp. 1145CrossRefGoogle Scholar
  48. Taniguchi M, Burnett WC, Dulaiova H, Siringan F, Foronda JM, Wattayakorn G, Rungsupa S, Kontar EA, Shirshov PP, McManus L (2005) Groundwater discharge as an important land-sea pathway in Southeast Asia. Final Report for APN Project 2004-16NSY, 64 ppGoogle Scholar
  49. Tran LT, Larsen F, Pham NQ, Christiansen AV, Tran N, Vu HU, Tran LV, Hoang HV, Hinsby K (2012) Origin and extent of fresh groundwater, salty paleowaters and recent saltwater intrusions in Red River flood plain aquifers, Vietnam. Hydrogeol J. doi:10.1007/s10040-012-0874-yGoogle Scholar
  50. Umezawa Y, Miyajima T, Kayanne H, Koike I (2002) Significance of groundwater nitrogen discharge into coral reefs at Ishigaki Island, southwest of Japan. Coral Reefs 21:346–356. doi: 10.1007/s00338-002-0254-5 Google Scholar
  51. United Nations Department of Economic and Social Affairs (UNDESA) (2010) Trends in sustainable development: small island developing states. Division for Sustainable Development, UNDESA, New York, 35 pp. ISBN 978-92-1-104610-6Google Scholar
  52. United Nations International Strategy for Disaster Reduction (UNISDR) (2009) Risk and poverty in a changing climate – invest today for a safer tomorrow. 2009 Global assessment report on disaster risk reduction. United Nations, Geneva, 210 pp. ISBN 978-92-1-132028-2Google Scholar
  53. van der Gun J (2012) Groundwater and global change: trends, opportunities and challenges. Side publication series: 01.4th UNESCO World Water Development Report. UNESCO, Paris, 38 ppGoogle Scholar
  54. van der Linden W (2011) The effect of the 2004 tsunami on groundwater in the Maldives islands. In: Vrba J, Verhagen BT (eds) Groundwater for emergency situations – a methodological guide, vol 3, IHP-VII series on groundwater. UNESCO, Paris, pp 285–295Google Scholar
  55. van Weert F, van der Gun J, Reckman J (2009) Global overview of saline groundwater occurrence and genesis. IGRAC Report nr. GP 2009, IGRAC, Utrecht. 1.104 ppGoogle Scholar
  56. Villholth KG, Neupane B (2011) Tsunamis as long-term hazards to coastal groundwater resources and associated water supplies. In: Mokhtari M (ed) Tsunami – a growing disaster. InTech, Rijeka, Croatia. pp 87–104. ISBN 978-953-307-431-3Google Scholar
  57. Villholth KG, Jeyakumar P, Amerasinghe PH, Manamperi ASP, Vithanage M, Goswami RR, Panabokke CR (2010) Tsunami impacts and rehabilitation of groundwater supply: lessons learned from eastern Sri Lanka. In: Jha MK (ed) Natural and anthropogenic disasters: vulnerability, preparedness and mitigation. Capital Publishing Company, New Delhi/Springer, Dordrecht, pp 82–99. ISBN 978-90-481-2497-8Google Scholar
  58. Villholth KG, Jeyakumar P, Amerasinghe PH, Manamperi ASP, Vithanage M, Goswami RR, Panabokke CR (2011) Tsunami impacts and rehabilitation of groundwater supply: lessons learned from eastern Sri Lanka. In: Vrba J, Verhagen BT (eds) Groundwater for emergency situations – a methodological guide, vol 3, IHP-VII series on groundwater. UNESCO, Paris, pp 296–308Google Scholar
  59. Vithanage M, Villholth KG, Mahatantila K, Engesgaard P, Jensen KH (2009) Effect of well cleaning and pumping on groundwater quality of a tsunami-affected coastal aquifer in eastern Sri Lanka. Water Resour Res 45:W07501. doi: 10.1029/2008WR007509 CrossRefGoogle Scholar
  60. Vithanage M, Villholth KG, Engesgaard P, Jensen KH (2010) Vulnerability analysis of the coastal sandy aquifers in the east coast of Sri Lanka with recharge change consideration. Open Hydrol J 4:173183Google Scholar
  61. Vithanage M, Engesgaard P, Villholth KG, Jensen KH (2011) The effect of 2004 tsunami on a coastal aquifer in Sri Lanka. Ground Water. doi: 10.1111/j.1745-6584.2011.00893.x
  62. Vrba J, Salamat AR (2007) Groundwater for emergency situations. In: Proceedings of an international workshop, Tehran, 29–31 Oct 2006. UNESCO-IHP VI, Series on groundwater, vol 5. UNESCO, Paris, 128 pp.Google Scholar
  63. Vrba J, van der Gun J (2004) The world’s groundwater resources. Contribution to Chapter 4 of WWDR-2 (Draft). IGRAC Report Nr IP 2004-1. IGRAC, Utrecht, 10 ppGoogle Scholar
  64. Vrba J, Verhagen BTh (2006) Groundwater for emergency situations: a framework document. UNESCO-IHP VI, Series on groundwater, vol 12. UNESCO, Paris, 94 ppGoogle Scholar
  65. Vrba J, Verhagen BT (eds) (2011) Groundwater for emergency situations – a methodological guide. UNESCO, vol 3, IHP-VII Series on Groundwater. UNESCO, Paris, 316 ppGoogle Scholar
  66. Wada Y, van Beek LPH, Weiland FCS, Chao BF, Wu Y-H, Bierkens MFP (2012) Past and future contribution of global groundwater depletion to sea-level rise. Geophys Res Lett 39:L09402. doi: 10.1029/2012GL051230 CrossRefGoogle Scholar
  67. Werner AD, Alcoe DW, Ordens CM, Hutson JL, Ward JD, Simmons CT (2011) Current practice and future challenges in coastal aquifer management: flux-based and trigger-level approaches with application to an Australian case study. Water Resour Manage 25:1831–1853. doi: 10.1007/s11269-011-9777-2 CrossRefGoogle Scholar
  68. WHYMAP (2008) World-wide Hydrogeological Mapping and Assessment Programme. Accessed 9 May 2012
  69. World Bank (2005) Natural disaster hotspots – a global risk analysis. World Bank, Washington, DC, 132 pp. ISBN 0-8213-5930-4Google Scholar
  70. World Health Organization (WHO) (2011) Cleaning wells after seawater flooding. Technical notes on drinking-water, sanitation and hygiene in emergencies, No. 15. WHO, Geneva. Accessed 6 Aug 2012
  71. Xue Y, Wu J, Liu P, Wang J, Jiang Q, Shi H (1993) Sea-water intrusion in the coastal area of Laizhou Bay, China: 1. Distribution of sea-water intrusion and its hydrochemical characteristics. Ground Water 31:532–537. doi: 10.1111/j.1745-6584.1993.tb00584.x CrossRefGoogle Scholar
  72. Zaisheng H, Hao W, Rui C (2006) Transboundary aquifers in Asia with special emphasis to China. Paper prepared for ISARM, UNESCO Office Beijing, 43 ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.IWMI, International Water Management InstitutePretoriaSouth Africa

Personalised recommendations