Advertisement

NK-92 Cytotoxicity Against Cancer Stem Cells in Hematologic Malignancies

  • Brent A. Williams
  • Brenna E. Swift
  • Richard Cheng
  • Armand Keating
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 9)

Abstract

The discovery that many cancers are driven by a rare population of cancer stem cells has raised new questions as to how the immune system recognizes these cells. There is evidence to support an immunophenotypically defined stem cell in acute myeloid leukemia and multiple myeloma, two common hematologic malignancies. While chemotherapy can cure a minority of AML patients, multiple myeloma is generally incurable with this approach. However, allogeneic stem cell transplantation is the most effective therapy for AML implying an important role for the graft-versus-leukemia effect while multiple myeloma is typically treated with autologous bone marrow transplantation. One novel emerging therapeutic approach is the use of immune effector cell lines that have a broad tumour killing capacity such as NK-92. Here we review the role of NK-92 in the recognition and killing of cancer stem cells in leukemia and multiple myeloma and outline the application of clonogenic cytotoxicity assays to study these immunologic interactions.

Keywords

Multiple Myeloma Acute Myeloid Leukemia Cancer Stem Cell Minimal Residual Disease Graft Versus Host Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, Klingemann H (2008) Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 10(6):625–632PubMedCrossRefGoogle Scholar
  2. Arora M, Weisdorf DJ, Spellman SR, Haagenson MD, Klein JP, Hurley CK, Selby GB, Antin JH, Kernan NA, Kollman C, Nademanee A, McGlave P, Horowitz MM, Petersdorf EW (2009) HLA-identical sibling compared with 8/8 matched and mismatched unrelated donor bone marrow transplant for chronic phase chronic myeloid leukemia. J Clin Oncol 27(10):1644–1652PubMedCrossRefGoogle Scholar
  3. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737PubMedCrossRefGoogle Scholar
  4. Bradley TR, Metcalf D (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44(3):287–299PubMedCrossRefGoogle Scholar
  5. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F, Giaccone L, Sorasio R, Omede P, Baldi I, Bringhen S, Massaia M, Aglietta M, Levis A, Gallamini A, Fanin R, Palumbo A, Storb R, Ciccone G, Boccadoro M (2009) A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 356(11):1110–1120CrossRefGoogle Scholar
  6. Burke MJ, Cao Q, Trotz B, Weigel B, Kumar A, Smith A, Verneris MR (2009) Allogeneic hematopoietic cell transplantation (allogeneic HCT) for treatment of pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer 53(7):1289–1294PubMedCrossRefGoogle Scholar
  7. Cesano A, Santoli D (1992) Two unique human leukemic T-cell lines endowed with a stable cytotoxic function and a different spectrum of target reactivity analysis and modulation of their lytic mechanisms. In Vitro Cell Dev Biol 28A(9–10):648–656PubMedCrossRefGoogle Scholar
  8. Cieciura SJ, Marcus PI, Puck TT (1956) Clonal growth in vitro of epithelial cells from normal human tissues. J Exp Med 104(4):615–628PubMedCrossRefGoogle Scholar
  9. Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, Olive D (2000) Human acute myeloid leukemia CD34+/CD38− progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60(16):4403–4411PubMedGoogle Scholar
  10. Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J, Gratwohl A, Tichelli A, Paluszewska M, Wiktor-Jedrzejczak W, Kalberer CP, Wodnar-Filipowicz A (2008) NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 111(3):1428–1436PubMedCrossRefGoogle Scholar
  11. Gong JH, Maki G, Klingemann HG (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8(4):652PubMedGoogle Scholar
  12. Hoffman RM (1991) In vitro sensitivity assays in cancer: a review, analysis, and prognosis. J Clin Lab Anal 5(2):133–143PubMedCrossRefGoogle Scholar
  13. Hurwitz CA, Mounce KG, Grier HE (1995) Treatment of patients with acute myelogenous leukemia: review of clinical trials of the past decade. J Pediatr Hematol Oncol 17(3):185–197PubMedCrossRefGoogle Scholar
  14. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319(6055):675–678PubMedCrossRefGoogle Scholar
  15. Langenkamp U, Siegler U, Jorger S, Diermayr S, Gratwohl A, Kalberer CP, Wodnar-Filipowicz A (2009) Human acute myeloid leukemia CD34  +  CD38− stem cells are susceptible to allorecognition and lysis by single KIR-expressing natural killer cells. Haematologica 94(11):1590–1594PubMedCrossRefGoogle Scholar
  16. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648PubMedCrossRefGoogle Scholar
  17. Litzow MR, Tarima S, Perez WS, Bolwell BJ, Cairo MS, Camitta BM, Cutler CS, de Lima M, Dipersio JF, Gale RP, Keating A, Lazarus HM, Luger S, Marks DI, Maziarz RT, McCarthy PL, Pasquini MC, Phillips GL, Rizzo JD, Sierra J, Tallman MS, Weisdorf DJ (2010) Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood 115(9):1850–1857PubMedCrossRefGoogle Scholar
  18. Lowenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341(14):1051–1062PubMedCrossRefGoogle Scholar
  19. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, McNiece I, Lin L, Ambinder RF, Peacock C, Watkins DN, Huff CA, Jones RJ (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68(1):190–197PubMedCrossRefGoogle Scholar
  20. McCulloch EA, Till JE (1960) The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 13:115–125PubMedCrossRefGoogle Scholar
  21. Noonan K, Matsui W, Serafini P, Carbley R, Tan G, Khalili J, Bonyhadi M, Levitsky H, Whartenby K, Borrello I (2005) Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res 65(5):2026–2034PubMedCrossRefGoogle Scholar
  22. Ogawa M, Bergsagel DE, McCulloch EA (1973) Sensitivity of human and murine hemopoietic precursor cells to chemotherapeutic agents assessed in cell culture. Blood 42(6):851–856PubMedGoogle Scholar
  23. Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 364(11):1046–1060PubMedCrossRefGoogle Scholar
  24. Palumbo A, Rajkumar SV (2009) Treatment of newly diagnosed myeloma. Leukemia 23(3):449–456PubMedCrossRefGoogle Scholar
  25. Park CH, Bergsagel DE, McCulloch EA (1971) Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 46(2):411–422PubMedGoogle Scholar
  26. Park CH, Amare M, Savin MA, Goodwin JW, Newcomb MM, Hoogstraten B (1980) Prediction of chemotherapy response in human leukemia using an in vitro chemotherapy sensitivity test on the leukemic colony-forming cells. Blood 55(4):595–601PubMedGoogle Scholar
  27. Pierce RA, Field ED, Mutis T, Golovina TN, Von Kap-Herr C, Wilke M, Pool J, Shabanowitz J, Pettenati MJ, Eisenlohr LC, Hunt DF, Goulmy E, Engelhard VH (2001) The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J Immunol 167(6):3223–3230PubMedGoogle Scholar
  28. Puck TT, Marcus PI, Cieciura SJ (1956) Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med 103(2):273–283PubMedCrossRefGoogle Scholar
  29. Ribeiro RC, Razzouk BI, Pounds S, Hijiya N, Pui CH, Rubnitz JE (2005) Successive clinical trials for childhood acute myeloid leukemia at St Jude Children’s research hospital, from 1980 to 2000. Leukemia 19(12):2125–2129PubMedCrossRefGoogle Scholar
  30. Ries LAG, Krapcho M, Stinchcomb DG, Howlader N, Horner MJ, Mariotto A, Miller BA, Feuer EJ, Altekruse SF, Lewis DR, Clegg L, Eisner MP, Reichman M, Edwards BK (eds) (2008) SEER cancer statistics review, 1975–2005. National Cancer Institute, BethesdaGoogle Scholar
  31. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100PubMedCrossRefGoogle Scholar
  32. Sutlu T, Alici E (2009) Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J Intern Med 266(2):154–181PubMedCrossRefGoogle Scholar
  33. Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117(5):1137–1146PubMedCrossRefGoogle Scholar
  34. Swift BE, Williams BA, Kosaka Y, Wang XH, Medin JA, Viswanathan S, Martinez-Lopez J, Keating A (2012) Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model. Haematologica 97(7):1020–1028PubMedCrossRefGoogle Scholar
  35. Takahashi T, Lim B, Jamal N, Tritchler D, Lockwood G, McKinney S, Bergsagel DE, Messner HA (1985) Colony growth and self renewal of plasma cell precursors in multiple myeloma. J Clin Oncol 3(12):1613–1623PubMedGoogle Scholar
  36. Tonn T, Becker S, Esser R, Schwabe D, Seifried E (2001) Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res 10(4):535–544PubMedCrossRefGoogle Scholar
  37. Visonneau S, Cesano A, Porter DL, Luger SL, Schuchter L, Kamoun M, Torosian MH, Duffy K, Sickles C, Stadtmauer EA, Santoli D (2000) Phase I trial of TALL-104 cells in patients with refractory metastatic breast cancer. Clin Cancer Res 6(5):1744–1754PubMedGoogle Scholar
  38. Williams BA, Wang XH, Keating A (2010) Clonogenic assays measure leukemia stem cell killing not detectable by chromium release and flow cytometric ­cytotoxicity assays. Cytotherapy 12(7):951–960PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Brent A. Williams
    • 1
  • Brenna E. Swift
    • 1
  • Richard Cheng
    • 1
  • Armand Keating
    • 1
  1. 1.Cell Therapy Program, 4-605 Princess Margaret HospitalTorontoCanada

Personalised recommendations